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Abstract

Spin-dependent transport is investigated in ballistic regime through the interface between a

ferromagnet and a spin spiral. We show that spin-dependent interferences lead to a new type of

diffraction called ”spin-diffraction”. It is shown that this spin-diffraction leads to local spin and

electrical currents along the interface. This study also shows that in highly non homogeneous

magnetic configuration (non adiabatic limit), the contribution of the diffracted electrons is crucial

to describe spin transport in such structures.

PACS numbers: 72.25.-b,73.43.Qt,75.60.Ch,75.50.Ee
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The recent observations of current-induced domain wall motion [1] and the investigation

of this phenomenon by micromagnetic simulations [2] have underlined the question of spin

transport in non homogeneous systems. Although proposed very early [3], current-induced

domain wall motion (DWM) has attracted much attention because of its great application

potential but also because of the deep fundamental question of the role of electron spin

motion in temporally and spacially varying magnetic structures. Zhang et al. [4] proposed

an analytical formula for spin torque in slowly varying structures (see eq. 9 in Ref. 4):

T = a
∂M

∂t
+ bM ×

∂M

∂t
− c1M × [M × (je.∇)M ] − c2M × (je.∇)M (1)

where M is the magnetization unit vector, a is the renormalization factor of the gyromagnetic

ratio and b is the renormalization factor of the damping parameter in the Landau-Lifshitz-

Gilbert equation. The last two terms represent the spin transfer torque in spacially varying

magnetic structure. The prefactors c1 and c2 are respectively proportionnal to the adiabatic

and non adiabatic contribution. For smooth enough non-homogeneities of the magnetic

structure, the adiabatic approximation is usually assumed : the electron spin follows the

local magnetization producing a small torque proportional to the spatial derivative of the

magnetization [5, 6]. In this case, it is usually accepted that the non adiabatic term c2 is

small but cannot be neglected in domain wall experiments [7, 8]. Furthermore, in spacially

non homogeneous systems, c1 and c2 are non local coefficients [5, 6, 9]: at each point of

the structure, one has to consider the contribution of all the electrons flowing through the

structure.

In this article, we propose to study the non adiabatic regime in an ”academic” system.

We consider two adjacent layers: the left one (z¡0, F) with a homogenous magnetization

P = Pz and the right one (z¿0, SS - for Spin Spiral) with a 2D helical magnetization

contained in the (x,z) plane M = M(sin θ(x)x + cos θ(x)z), where θ(x) = θ0 + Qx. The

interface lies in the (x,y) plane and z is perpendicular to the interface. We consider that

the regions are semi-infinite and respectively connected to a ferromagnetic and a spin spiral

reservoir. The bias voltage V is applied across the interface.

Such helical spin structures exist in some compounds such as MnSi [10], oxide materials
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such as SrFeO3, NaCuO [11], rare-earth based compounds [12] or γ-iron [13]. This helical

structure can be also a simplified picture of narrow stripe domains with domain wall width

comparable to domain width.

In this case, the adiabatic approximation is no more valid because an electron moving

through the interface keeps the memory of its spin state for some distance. Spin-polarized

electrons moving from F into SS undergo ”spin diffraction” as represented on Fig. 1: an im-

pinging electron with an in-plane incident wavevector κ gives rise to transmitted (reflected)

waves with in-plane wavevectors κ+nQ/2 (κ+nQ), 2πQ−1 being the wavelength of the spin

spiral. From the interference of all these waves, one can expect original electrical properties

like non-zero torque acting on the magnetization of SS, local longitudinal spin current and

even charge current (Hall effect and spin Hall effect [14]) along the F/SS interface.

To model the spin-dependent transport, we use Keldysh out-of-equilibrium technique[15,

16] which expresses the lesser Keldysh Green functions G−+
σσ′ (rr’) as a function of the basis

of wavefunctions Ψl,rσ(r) for an electron moving from the left (right) to the right (left)

reservoir:

G−+
σσ′ (rr’) = fl(µl)Ψ

∗
lσ′(r’)Ψlσ(r) + fr(µr)Ψ

∗
rσ′(r’)Ψrσ(r) (2)

where fl(r)(µl(r)) are the Fermi distribution functions in the left and right electrodes and

µl(r) are the chemical potentials in these electrodes so that V = (µl − µr)/e. The electrical

current density Je, spin density m and torque T (exerted on SS) are given by the usual local

definitions:

Je = ℑ[(∇r’ −∇r)(G−+
↑↑ (rr’) + G−+

↓↓ (rr’))] (3)

mx + imy =< σ+ >= 2G−+
↑↓ (rr’) (4)

mz =< σz >= G−+
↑↑ (rr’) − G−+

↓↓ (rr’) (5)

T =
γJsd

h̄µB

M× m (6)

where γ is the gyromagnetic ratio, µB is the Bohr magneton and Jsd is the s − d exchange

coupling. The torque T possesses two components: the usual spin transfer torque term

(STT, adiabatic torque propotionnal to my and lying in the (x, z) plane), and the field-like
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term (IEC, non adiabatic torque perpendicular to the (x, z) plane). The Hamiltonian of the

system is then:

H =
p2

2m
+ U + Jsd(σ.S) (7)

where U is the potential profile, σ is the vector of Pauli matrices and S is the magnetization

of the layer (S = M in SS and S = P in F). The wavefunctions are the solutions of

the Schrödinger HΨ = EΨ. To solve these equation, we used the procedure developped

by Calvo[17] in a spin spiral. The boundary conditions of these wavefunctions and their

derivatives lead to recurrent relations between the coefficients of these wavefunctions [18].

For example, the wavefunctions of an initially majority electron originating from the left

reservoir with in-plane wavevector κ are:

Ψ
↑(↑)
lSS =

∑

n

[c3(κ+Q(n− 1
2
))(cos

θ(x)

2
− iφκ+Q(n− 1

2
) sin

θ(x)

2
)e

ik
3(κ+Q(n−

1
2 ))

z

+ c4(κ+Q(n− 1
2
))(φκ+Q(n− 1

2
) cos

θ(x)

2
+ i sin

θ(x)

2
)e

ik
4(κ+Q(n−

1
2 ))

z
]ei(qy+(κ+Q(n− 1

2
))x) (8)

Ψ
↓(↑)
lSS =

∑

n

[c3(κ+Q(n− 1
2
))(sin

θ(x)

2
+ iφκ+Q(n− 1

2
) cos

θ(x)

2
)e

ik
3(κ+Q(n−

1
2
))

z

+ c4(κ+Q(n− 1
2
))(−i cos

θ(x)

2
+ φκ+Q(n− 1

2
) sin

θ(x)

2
)e

ik
4(κ+Q(n−

1
2
))

z
]ei(qy+(κ+Q(n− 1

2
))x) (9)

where c3(4) are complex diffraction coefficients and k3(4) are wavevectors for majority (mi-

nority) spin projection in SS. This procedure will be developped in a forthcoming article

[18].

For the numerical simulations, we took parameters corresponding to spin transport in

Co: the Fermi wavevectors for majority and minority spins are respectively k↑
F = 1.1 Å−1,

k↓
F = 0.6 Å−1; the inverse wavelength of the spin spiral is Q−1 = (2π)−1 Å−1 (highly non

homogeneous magnetic system). The Fermi wavevectors of SS and F are the same and

we consider the linear approximation : for a small enough bias voltage, only the electrons

originating from the left reservoir with an energy located between µl and µr significantly

contribute to the charge and spin transport. We set µl − µr = 38 meV.

Figure 2 displays the longitudinal charge current Je
x in the (x, z) plane. Close to the
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interface, Je
x oscillates with SS magnetization, but rapidly decreases and vanishes to zero

within 5 Å. We observe the same behaviour for the perpendicular current Je
z except it reaches

an averaged value within 5 Å. We observe the same features for STT and IEC (not shown

here).

This rapid decay is due to interferences between diffracted electron waves. Close to the

interface, the averaging effect is smaller than in the bulk SS, so the oscillation amplitude of

Je
x(z) and STT, IEC is always higher near the interface than in the bulk.

These damped oscillations strongly depend on the SS wavelength 2πQ−1[18]. Fig. 3

displays the z-dependence of the longitudinal current Je
x [Fig. 3(a)], STT [Fig. 3(b)] and

IEC [Fig. 3(c)] for different values of SS wavelenght Q−1.

When Q increases, the oscillation amplitude of Je
x is reduced so that Je

x vanishes more

rapidly to zero: the increase of the non adiabaticity induces a more important averaging

effect due to interference between multiple diffracted waves. STT and IEC have an opposite

behaviour when varying Q. The oscillation amplitude of STT decreases when Q increases

(similarly to Je
x), whereas the amplitude of IEC increases. This illustrates the different

nature of STT and IEC: STT is the adiabatic torque (vanishes in highly non homogeneous

structure) and IEC is the non adiabatic torque (vanishes in adiabatic systems).

This study demonstrates that spin diffraction gives rise to complex characteristic in spin

torque and electrical currents and is of seminal importance in non adiabatic magnetic sys-

tems.

This work was partially supported within the European MRTN SPINSWITCH CT-2006-

035327 and the Russian Fundings for Basic Research 07-02-00918-a.
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FIGURE CAPTIONS
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Figure 1: Cartoon of the bilayered structure. The left semi-infinite layer is a ferromagnet with

a homogeneous magnetization and the right semi-infinite layer is a spin spiral with wavelength

2πQ−1. The spin-polarized electrons undergo spin-diffraction at the interface.
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Figure 2: Map of the longitudinal electrical current density in the (x, z) plane.
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Figure 3: Longitudinal current (a), usual spin transfer torque (b) and current-induced interlayer

exchange coupling (c) as a function of z for different Q (see inset) and calculated at x = π/2Q.

8


	References

