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On the Description of Spectrogram Probabilities
with a Chi-Squared Law

Julien Huillery, Fabien Millioz and Nadine Martidlember, IEEE

Abstract—Given a correlated Gaussian signal, may a chi-

As shown in these studies [3][4][5], the pdfs obtained are

squared law of probability always be used to describe a spec- not trivial and of limited practical use. As a result, in appl

trogram coefficient distribution? If not, would a "chi-squared
description” lead to an acceptable amount of error when dete-
tion problems are to be faced in the time-frequency domain? fe
two questions prompted the study reported in this paper. Afer
deriving the probability distribution of spectrogram coefficients
in the context of a non-centred Gaussian correlated signalthe
Kullback-Leibler divergence is first used to evaluate to wha
extent the non-whiteness of the signal and the Fourier ana$js
window impact the probability distribution of the spectrogram.
To complete the analysis, a detection task formulated as a ibary
hypothesis test is considered. We evaluate the error comnbéd on
the probability of false alarm when the likelihood ratio test is ex-
pressed with chi-squared laws. From these results, a chi-sqred
description of the spectrogram distribution appears accuate
when the analysis window used to construct the spectrogram
decreases to zero at its boundaries, regardless of the levef
correlation contained in the signal. When other analysis widows
are used, the length of the window and the correlation contaied
in the analysed signal impact the validity of the chi-squard
description.

Index Terms—Spectrogram probability distribution, Chi-
squared law, Kullback-Leibler divergence, Time-Frequeng sta-
tistical detection.

T

|. INTRODUCTION

cations, the spectrogram coefficients are classicallyriest

as x? variables. For example in [§]262), in the context of
sinusoidal detection, the pdfs assumed under both hypeghes
arex? laws with 2 degrees of freedom. In [7] and [8], Martin
also uses ay? pdf with 2 degrees of freedom to describe
the squared modulus of Fourier coefficients. He indicates th
Fourier analysis window should be large enough and the kigna
correlation short enough so that thig description strictly
holds.

This study aims at characterizing the differences between
the spectrogram distribution and the pdf for correlated
Gaussian signals, as initiated in [9], and at giving a qutaiite
idea of theshort enougtor long enougltonditions mentioned
in [7].

We assume the signal observed, notgek] in the discrete
time domain, is composed of a deterministic pdjt] em-
bedded in a random additive perturbatigm.|:

2fm] = dlm] + plm]. )

The random perturbation is assumed stationary, Gaussian,
centred, with an autocorrelation functidp[r]. The symmetric
covariance matrix associated with this autocorrelatiorcfion

HIS paper focuses on the probability density function g§ noted R. Each sampler[m] of the signal is distributed
spectrogram coefficients obtained by the squared modulyls a Gaussian variable with meapn] and autocorrelation

of a Discrete Fourier Transform (DFT). In the context ofynction I',[7] and noted

statistical signal processing, knowledge of these prdipabi
functions is necessary so as to develop detection and estima

tion methods dedicated to time-frequency analysis [1].

z[m] ~ N (d[m],T'y[7]) )

From this temporal random model, the probability density

Under the assumptions of a white, centered and GaussigRction of a spectrogram coefficient can be evaluated. This

signal, the spectrogram constructed with an infinite regéar
window is distributed as a chi-squared variable (no

probability function will depend on two kinds of parameters
the signal model parameters, namelyn| and R, and the

with 2 degrees of freedom [2]. Under the same assumptioRsne frequency transform parameters which, for the spectr

the impact of temporal windowing, zero-padding or spectrgfam, are the length and shape of the analysis window and
windowing was studied by Durrani [3][4]. His analysis refsor e zero-padding.

a departure of the spectral coefficients distribution frdra t

The difference betweer? pdf and spectrogram pdf will

2 i . . .
X" law as soon as zero-padding or non-rectangular tempofigdt pe evaluated in terms of the Kullback-Leibler (KL)
windowing is used. The departure is evaluated in terms Ofdﬂ/ergence. Now, the amount of KL divergence between two
decrease in the equivalent degree of freedom. More recenflits s of great interest as a minimisation criterion, buesio

relaxing the whiteness assumption, Johnson and Long

t easily provide a practical measure of accuracy as regard

derived a general form for the pdf of spectral estimatgge approximation of one pdf with an other.

obtained by the Welch technique according to the number ofj, order to give more insight to this question, a specific
periodograms averaged and their amount of overlap. Defartyme-frequency detection task is investigated. For signadiel

of the obtained pdf from a Gaussian distribution is evakdlat?l), the detection task consists in deciding whether a con-

with the Kullback-Leibler divergence.

Julien Huillery, Fabien Millioz and Nadine Martin are withet GIPSA-Lab,
Signal and Image Department (DIS), INPG-CNRS, Grenoblanée.

sidered time-frequency location contains energy origiggat
from d[m] (signal hypothesigZ;) or not (null hypothesigiy).
The Neyman-Pearson detector is used to evaluate the error



generated on the probability of false alarm when fffelaw ¥, defined as
is used instead of the exact spectrogram distribution.

This paper is organized as follows: Section Il describes th mp = E {XZ[”v K},
time-frequency formulation of the signal random model. The] 2 = E {X [T”Jf]}’ )
x? and spectrogram probability distributions are recalled in . = B (XZ_ [n, ] —m1)2}, (8)
section Ill. Both central and non central cases are consiter 22 = E(X'[n k] —mo) } J
In section 1V, we describe how the parameters of fRelaw Tiz = E{(X7n k] = m) (X' k] —mo)}

ma;(/j_be set to f't W'thdthe spfe;ctrogram pdf.fln section V, tl\ﬁhereE{.} denotes the expectation. For clarity, the time-
KL divergence is used as a first measure of accuracy of a frequency locationn, k] in the probability parameter notations

descnpuon of spect_rogram._ In sect_lon Vi, th? t|me-.freltm:;e is dropped. The random time-frequency model can finally be
detection problem is examined. Finally, a discussion on tQ\‘Fritten as

respective sensibility of the two measures and the impact of
the analysis window’s shape is provided in section VII. #ect X[n, k] ~ N my > Y X2 (9)
VIl draws conclusions on the description of spectrogram ’ ma )’ Y12 Yoo '

probabilities with ay? law for correlated signals. ) ) )
Let us now describe how the five parameters of this model

can be written in terms of the signal and spectrogram pa-
Il. SPECTROGRAM ANDRANDOM TIME-FREQUENCY rameters. Because the random perturbatipn] is assumed
MODEL centred, the first order statistios; andms only depend on the

eterministic STFT real and imaginary parts. From equation

In this section, the random temporal model of signal ( ), (4) and (5), we have

is formulated in the time-frequency domain according to th
transform chosen in this work: the spectrogram. my = Re(STFT {d[m]}),
Given a discrete analysis window[m| of length M, the { mo = Im(STFT {d[m]}).
Short-Time Fourier TransfornX [n, k] of a discrete signal
z[m] is formed by the successive Discrete Fourier Transformi§e centered second order statisticsXif, k] are functions
of the windowed signal. Throughout this paper, the indices ©f the signal covariance matriR. Combined with the spec-
and & will refer to the discrete time and frequency locationgogram parameters, we have in algebraic form
respectively. The spectrograrfi,[n, k] corresponds to the

(10)

— T
squared modulus of the Short-Time Fourier Transform (STFT) i = WTC’“RC’“W’
. Yoy = WIS, RS, W, (11)
or equivalently to the sum of the squares of the STFT real and 5 — WTC,RS,W
imaginary parts X" [n, k] and X*[n, k] respectively. We start 2o RERR T
with the following definitions: where WT' = [w[0]---w[M —1]] is the analysis window
S,[n k] = X"[n k]g +Xi[n k]g 3) vector andCy, (resp.Sy) is the cosine (resp. sine) diagonal
e ’ B matrix,
M1 . C;, = diag [cos(_zwzﬂ)] , (12)
X"[n, k| = x[nD + m]w[m] cos(—QWkE), 4) In{l m=0,M—1
m=0 Sy = diag [sin(—Zwk—)} . (13)
M1 K’ Im=0,m-1
i _ : m
X', k] = a[nD + mw(m] Sm(_%kﬁ)’ () Note: as we are interested in a single time-frequency lo-
m=0

cation [n, k], the amount of overlap between the successive
whereK is the length of the computed DFT) is the window analysed frames of the signal (represented by the window
sliding step andK /M corresponds to the factor of zero-sliding stepD in (4) and (5)) is not involved in this time-

padding. frequency model and does not influence the results presented
Let us now define the STFT vect®[n, k] as further.
X"[n, k|
X[n, k] = ( Xi[n, k] ) ) (6) [1l. x?> AND SPECTROGRAM PROBABILITY DENSITY
FUNCTIONS

so that the spectrogram may be written ) ) o )
In this section the definition and pdf of @ variable are

Syn, k] = XT[n,k]X[n, k). (7) first recalled. Then the pdf of a spectrogram coefficient is
expressed. For the central case, (= mo = 0), an analytical
Equations (4) and (5) express the real and imaginary partsfofmulation of the pdf is available. For the noncentral case
the STFT as linear combinations of signal sampleszfx$ are however, the spectrogram pdf can not be written in a closed
Gaussian variablesy"[n, k] and X¢[n, k] are also distributed form. We present a numerical method based on geometrical
with Gaussian laws ank|[n, k] is a two-dimensional Gaussianconsiderations that can be used to compute the exact spectro
vector characterized by five parameters;, ms, X11, Y22 and gram pdf.



A 2 law

0.01

Given N independent and homoscedastic (of same variant ! Xlaw:z, =3 =13, =0
Gaussian variablegs; ~ ./\/'(mi,UQ) ,i = 1,...,N, the | — — — heteroscedasticity :3, =0.4,%_=16,5_=0| |
sum of the squares of the variablég is distributed as a | I correlation:3, =3, =1,5_=07
x? variable. It is defined by three parameters and we nc S both:S 045 =163 07
2 0,006 N\ T T T S T S T
x° (6, a, 0) where

« 0§ is the degree of freedom. It corresponds to the numk & _
of independent Gaussian variables summegd= N in o
the example mentioned above.

o « denotes the coefficient of proportionality. It account o002
for the common variance of the Gaussian variables. He
we havea = o2. 0 . . . .

o 6 stands for the noncentrality parameter. It is defined 0 ! 2 3 4 5

this work asf = >, m?.

Fig. 1. Examples of central distributions correspondinglifterent covari-

5 .
For 6 # 0 andx > 0, the pdf of ay~ variable is ance matrices.

1 /x\ 7 x+0
variables. The moment-generating function of the random
Tss <V Io) (14) variableX[n, k]” X[n, k] is
2 o ’
1
Mp)=E{e XXl -~ ___ (16)
where I,,(.) stands for the n-order modified Bessel function { } Iz + 2p31/2

of the first kind. In the central casé & 0), the pdf is The corresponding pdf is obtained by the inverse Laplace
transform of M (1) and is given by ([3], equatioth06)

@)= ——r'Tew(-).  @9)
Px2(5,0,0=0)\T) = —F 5L * €Xp (——) ) 1
o (2a)31"(%) 20 Ps, /0(s) = —exp (=bs) Iy (cs) ,s > 0. a7)
a
whereT'(n) = ;)*0" e~ 2" !dz is the gamma function. Following [3] (equationsl07 or 109), the three parameterts
b andc are obtained with
Note: the denomination "chi-squared variable" and its no- a = Videtx,
tation "y2" are usually dedicated to the central case only. In p — Uz
. Tdets (18)
some reference literature [10], the central and noncecasgs ()4 det 2]%
are covered separately. Thé variable is usually defined as ¢ = T Qadas

the sum of the squares of Gaussian variablé§), 1) and \here det &' and 'tr =’ stand for the determinant and trace
requires only one parameter: the degree of freedorithe of the covariance matrif respectively. FoiX proportional
definition proposed here is based on non-centred and N@8-identity, we haver = 1/b = 2%, andc¢ = 0, leading to
unit-variance Gaussian variables. This has led the autioorsihe centraty® law (15) with s = 2 anda = 11 = Ss.
introduce three paramete(s, o, ) within the definition of  Some examples of central spectrogram pdfs are displayed
the x? variable. The reason for this choice is the informativg, figure 1. The continuous line plot corresponds to the
nature of the means and variances of the Gaussian variagjesmw_ The three other dashed plots report the evolution
in the study presented here. They are part of the model ajd spectrogram probability law when heteroscedasticity
we found comfortable to handle them in a single formulatiopgifference of variancesy,; # Xs») andlor correlation
(212 # 0) happens between the components of veXipt, k.
B. Spectrogram probability distribution 2) Noncentral casem;, ms # 0: No closed form was
From the definition of thex? law given above and the derived for the pdf of a quadratic form in non-centered Gaus-
time-frequency model (9) described in section I, it fol®w sian variables. The literature provides many series expass
that a spectrogram coefficient is distributed ag®avariable using Laguerre polynomials [11][12}2 pdfs [13][14][15] or
as soon as the covariance matlix is proportional to the the hypergeometric function [5]. While one of the reference
identity matrix. As already reported in [9], this assumptiocited above could have been used, in this paper we propose
is not always valid. The following pdfs are valid for anya simple geometrical approach to compute the jpgf(s) of

covariance matrixe. a spectrogram coefficient. The method is applicable to any
squared modulus of a two-dimensional random vector, céntre
1) Central case,;m; = mo = 0: Under the central or not, Gaussian or not.

case, the spectrogram pdf, noteg ,,(s), corresponds to the  We look for the density of probability for which a spec-
distribution of a quadratic form in two centered Gaussiamogram coefficientS,.[n, k] equals a given positive value



-4 configuration, the histogram af° runs of the corresponding
random variable is also plotted so as to validate the acgurac
of the method. The continuous line plot corresponds to a
noncentraly? distribution (& = I,). The dashed plots show
the evolution of the spectrogram pdf when the components of
the STFT vectoiX|n, k| have different variances and/or are
correlated.

Xlaw:z =3 =13 =0
— — — heterosced. 12,=057% =153 =0
....... correlation: = =% =1,2 =05

11 22 12

————— both:%X =053 =153 =05
11 22 12

P (S)

Q | IV. DESCRIPTION OF THE SPECTROGRAM WITH A2 LAW

| In this section, we present two different settings of jfte

A% law parametersé( o and#) that can be used to approximate
e 1 the spectrogram distribution. The noncentrality paraméte
0 : : : : : o can be treated separately as it does not generate any diftere
between spectrogram ang’ pdfs. For all cases, it will be
given byd = m? +m3. The differences between spectrogram

9 - .
Fig. 2. Examples of noncentral distributiorm%—km% = 8) corresponding and X pdfs originate from the covariance matrk. Two

to different covariance matrices. The histograms 0f0¢ equivalent random different ways to link they* parametersr ando to this matrix
variables are also plotted (background colour). are proposed.

A. Setting 1: fixed

From (3), this event happens when the realisationsand | 3 first approach, the degree of freedom is fixed at
x; of the two random variableX"[n, k] and X"[n, k] satisfy o \hich means considering STFT real and imaginary parts
the equationz? + 27 = s. Within the (X", X") plane, this a5 independent and homoscedastic. This corresponds to the
describes the circle centred at (0,0) and with radjGs The - commonly usedy? law and leads to the most simple pdf. The
spectrogram pdps, (s) can thus be obtained by integrating theyroportionality coefficient: is set according to its maximum
joint pdf p(x - x+) (2, x;) of the two random variable¥™ and  |ikelihood estimator for a centrab(= 0) x2 law with § =
X" over this domain. 2 degrees of freedom. This estimator is the arithmetic mean

To adapt the notation to the geometry of the problem, thg hoth real and imaginary STFT part variances. The three
pdf p(xr x)(zr, i) is expressed in polar coordinates ¢) parameters of the firsg? law used to describe the spectrogram

using distribution are written as
T, = TCOSQ, 5 = 2,
{ x; = rsing. (19) a = wv (24)
The spectrogram pdis, (s) is now obtained with integration 0 = mi+m3.
over the angular coordinatg over [0; 27| and is written The corresponding pdf is

_s—l—m%—i—m%)

2
= - xi do. 20 2 = —
b = [ peao(sOde @) pel) = gotpo e (-SRI

In this work, the STFT vectdK [n, k] is Gaussianp x x) I 2s(m? + m3) 25
is a bi-dimensional Gaussian distribution which is fornteda B WD PSS I (25)
in polar coordinates as
exp (_ 2?1(1’;?2))) B. Setting 2: adapted
pxr xiy(r, @) = =, (21) The degree of freedomof a x? law reflects the number of
2my/E11E22(1 — p?) independent variables that are summed. If the two Gaussian
where variables are correlated.€ >, # 0), the equivalent degree
Y19 of freedom becomes smaller thanAlso, if the two variances
po= \/ﬁ (22) 311 and Xy, are not equal, one of the Gaussian variable has

is the correlation coefficient between STFT real and im:;tggyinamor.e impact on the sum of the squares. ansequently the
parts and equwal_ent number of independant variables is not anymore
2 but lies betweenl (X1; > Yoo) and2 (317 = Ya2). As
(rcos¢ —m1) (rsing —mo) a result, adapting the degree of freedonaccording to the
Y11 Yo covariance matriX of the time-frequency model should lead
~ 2p(rcos¢ —my)(rsing —mo) (23) to a better description of the spectrogram.

V11299 The "method of moments"is used for the joint estimation

A discrete version of (20) is used to compute the spectr8t the parameters and «. The first two statistical moments

gram qu- _Some examples of nonc?ntral d'St”.bUt'onS are diSithe method of moments consists in equating the statisticaments
played in figure 2 for different covariance matric8sIn each between the empirical observations and the model.

2 2

A(r, ¢)




KL Divergence

rectangular, 6=2

..... rectangular, adapted &

Gaussian, 6=2
. Gaussian, adapted &
——>—— Hanning, 6=2

X Hanning, adapted &

0.001 001 01 1 10 100 1000 16 32 64 128 256 512 1024
correlation time ratio A window length M

Fig. 3. Kullback-Leibler divergence between spectrogramd g2 distribution as a function of a) the correlation time raddor 512-point long windows
and b) the lengthV/ of the analysis window for a correlation time ratho= 30.

of a centraly? variable are V. KL DIVERGENCE MEASUREMENTS
E{x?} = af, (26) In this section, the Kullback-Leibler divergence
Var {x*} = 2a?%, J(py2llps,) is used as a measure of distance between

where Var {.} stands for the variance operator. Now ththe spectrogram ang? distributions. It is calculated as [16]

first two statistical moments of a 'noise-only’ spectrogram +oo 2(s)
W - log, |21 g
coefficient are T (pxzllps.) = py2(s)log, ps. (5)

(31)

E{S,} = i1+ Zoo, L . .
(5.} = Zu ez ) (27) As the natural logarithm is used in this expression, the KL
Var{S.} = 2[Zf; + 33, +2%7,]. : . af
) ) o divergence unit is the 'nat’.
Equating the respective statistical moments leads to the ne |, he sequel we consider a stationary, centred, Gaussian
description and exponentially correlated process:|. The autocorrelation
§ = (Cut¥e)? function of this process is
D P
a = Zutin (28) |7]
0 = mi+mi [plr] =Toexp <__c) ) (32)
The final corresponding? pdf is obtained through (14). wherer,. is the correlation time anfly is set tol.

To obtain more insight into this new setting, let us define a 1) Impact of correlation: For a given correlation time,,
coefficient of heteroscedasticifybetween the STFT real andthe impact on the spectrogram pdf depends on the analysis

imaginary parts as window’s lengthM. To analyse the impact of the correlation

%(211 + 90) separately from the impact of the window’s length, the corre

{=—F0——". (29) lation time ratio) is defined as
V211222
The degree of freedomi can be rewritten as A= % (33)
2
0= I (30) This parameter represents the span of correlation at tHe sca
T e of the analysis.

where p is the correlation coefficient (22). This formulation As shown in Figure 3-a), the KL divergence increases as
highlights the impact of both correlation and heteroscicias the amount of correlation becomes higher. The spectrogram
that tend to diminish the equivalent degree of freedbmf probability distribution moves away fromy? law. When the
the spectrogram coeffciet, [n, k], as they increase. correlation timer, is of the order of the window’s length/
(i.,e A = 1), the KL divergence is stabilized.

The two proposeq? parameter settings lead to two possible
approximations of the spectrogram distribution. To evidua 2) Impact of windowing:Figure 3-a) also highlights the
these approximations, the? pdfs have to be compared withdifferent sensibilities of the spectrogram pdf to signat-co
the exact spectrogram pdf obtained with (20). The Kullbackelation according to the shape of the analysis window. The
Leibler divergence is now used to this purpose. KL divergence increases and is maximal with the rectangular



window while it remains constant with the Hanning windowpart d[m] of the signal (signal hypothesi&#;). This time-

This point will be discussed in section VII. frequency binary hypotheses test is formulated as
Figure 3-b) reports the KL divergence between spectrogram Ho: S _
5 . el ) 01 Szn, k] = Spn, kl,
and y* pdfs according to the analysis window’s length. The { Hy : Suln K] = Saypln. k.

correlation time ratio is fixed ak = 30. As in a white en-

vironment [3], the distance between spectrogram ghgdfs In the Neyman-Pearson detection approach, the detection

diminishes as the analysis window lengthens. Also, the KthresholdS*" is determined by means of a given probability

divergence is stabilized for windows longer than a threshodf false alarmp;. S is calculated so as to satisfy the relation

that grows with the correlation time ratia (we found 64 400

samples for\ = 1, 128 for A = 30 and512 for A\ = 100). Py = / pH,(s)ds, (34)
Dissimilarities with the white case also are to be noted. In st

a white environment, a long rectangular window assures twderep, (s) is the spectrogram pdf under the null hypothesis

best fit between spectrogram agél pdfs as opposed to otherHo. The corresponding decision rule is

windows [3]. '_I'he opposite pheno_m_enon i_s observed in a decideHy if Sy[n, k] < St

correla’ged env!ronment :.the best fit is obtaln.ed for long and { decideH; if Sy[n, k] > St*.

non-uniform windows. With the rectangular window, The KL

divergence remains constant over the whole range of wind%w

|engths_ Impact measurements

The overall probability of error of a binary hypotheses test
3) Impact of zero-paddingThe impact of zero-padding iS the sum of two terms: one is the probability of false alarm
was also investigated. The amount of KL divergence betweffA) while the other is the probability of miss-detectidhe
spectrogram andy® pdfs remained constant as the factofeéyman-Pearson detection strategy minimizes the prababil
of zero-paddingK /M went from 1 to 3. Our experiments of miss-detection while restraining the probability of skl

do not show that this parameter influences the probabil@@m to a given value. From this point of view, the respect
distribution of spectrogram coefficients. of a chosen PFA is the main focus of this detection strategy.

Now, if an approximatiom,,, is used instead of the exact pdf

4) Impact of the degree of freedomAn unexpected PHo: the ob_tained PfObab"“Y Of false al_‘?‘rmf?obmmed of the
difference of KL divergence is observed between the t st WI|| shift from th_e one |n|t|aII{ de_5|red.3j»7wanted. More
proposedy? pdfs. They? law with § = 2 degrees of freedom precisely, the detection threshaofd” will satisfy
appears closer to the spectrogram pdf than its counterpart P /+°°

fiwanted —
s

with adapted). This point will be discussed in section VII. Pap(s)ds, (35)

th

The interpretation of a numerical amount of KL divergenc\’eyhereas the effective size of the test will be

between two probability distributions is difficult. This ttie P /+°° (s)ds (36)
to a lack of a practical normalisation method and the non- frobtained = [~ PHo '

symmetric behavior of this measure. Hence, only qualéativ propose to consider the errarpr 4 defined as
conclusions have been made from this point. In the following

section, a time-frequency detection problem is investidat Apra = |Pfobtained — Pfwanted| (37)
This will provide more quantitative references so as to amsw Foo
the question: what is the level of inaccuracy and on which = /Sm Pr, (5) — Pap(s)|ds (38)

parameters attention should specifically be paid y?daw is

used to describe the spectrogram statistics? so as to evaluate the practical significance of the divemgenc

observed between spectrogram agél pdfs. In a system,
the error engendered by a modelisation mismatch has to be
V1. APPROXIMATION IN A DETECTION CONTEXT lower than the desired precision. So if the variation of PFA
] ] ] o Apra appears higher than the desired PFA ,qnteqa, the

_In_th|$ sect_|on, the |mp_act of descrll_:nng t_he spectrograg(nz approximation has to be rejected. If the ertpp is
dlstrlbynon with ay? law is evaluated in a tme-frequencymuch lower thanP;.nieq, the modelisation mismatch can
detection context. be judged insignificant as it does not noticeably impact the

detection test performances.

A. Problem formulation 1) Impact of correlation: The error Aprs on the PFA

We consider the model of observation (1) where the signas a function of the correlation time ratid is reported in
under interest is embedded in an additive random pertarhatifigure 4-a). The desired PFA is fixed & ,antea = 1075.
The time-frequency detection task consists in determinidg the analysed signal becomes more correlated, the shift of
whether the energys,[n, k] observed at a particular time-PFA Apr4 reaches the significance level o6—> with the
frequency locatiorin, k| originates from the perturbatigiim] rectangular window only. For the Gaussian window, variaio
only (null hypothesisH,) or is also due to the deterministicof PFA are stabilized at the level ab—2. Correspondingly,



rectangular, 6=2

————— rectangular, adapted &

Gaussian, 6=2
. Gaussian, adapted o

—>—— Hanning, =2

X Hanning, adapted &

-20 M\%ﬁéﬁ(

10 3 . - -
0.001  0.01 0.1 1 10 100 1000 16 32 64 128 256 512 1024
correlation time ratio A window length M

Fig. 4. Error on the PFA as a function of a) the correlationetimatio \ for 512-point long windows and b) the lengty of the analysis window for
correlation time ratio\ = 30. For both cases, the initial desired PFALB—>.

the modelisation mismatch impact is of ordéx—3 compared
with the test precision and can be judge insignificant. Tt
Hanning window generates even lower and insignifica
impact.

spectrogram pdf
— — — X’ pdf with 5=2
x? pdf with adapted &

2) Impact of the window’s lengthErrors on the PFA as a
function of the window’s lengthl/ are reported in figure 4-b).
The correlation time ratio is fixed &t = 30 and the desired o
PFA is Ps wanted = 10~5. For very short analysis windows best fit with =2 S o
(16 or 32 samples), the impact of@ approximation appears
significant. However, as soon as the Gaussian or Hanni
windows are longer thait4 samples, the effects observec best fit with adaptedé/7
appear non significant. The situation is different with th
rectangular window: increasing the window’s length ha
no effect and the variation of the PFA is always above tt._
significance level.

log( pdf )

Fig. 5. Differences between thg? pdfs with fixed or adapted degree of
] freedomé and comparison with the exact spectrogram pdf.
3) Impact of the degree of freedontor both figures 4-

a) and -b), the continuous lines correspondytolaws with

fixed § = 2 degree of freedom, while dotted lines stand {8r

laws with an adapted degree of freedom. Contrary to the Kidf. Conversely, in the detection test, adapting the degfee

divergence measurements, the errors on PFA are lower whesedom of they? law appeared favorable.

the degree of freedom is adjusted to the covariance malrix  The different sensibilitiy of the two measures can explain

This is especially true as the analysed signal becomes mMg{g opservation: our point is that KL divergence is patticly

and more correlated and for high errofspr4. However, sensitive to differences located on the main body of the two

the improvement is not noticeable enough to generate N@finpability distributions. Also, differences between this of

significant errors. the distributions have a small impact on the KL divergence.
As an explanation, the KL divergence is an expectation and

VII. DISCUSSION hence a summation weighted by a pdf. Consequently, the
differences located where the pdf is high give more value

A. Whichx? law? to the KL divergence than the differences located where the

We tried to approximate the spectrogram probabmty d|§ldf is small. On the other hand, it is intuitive that a qumtll

tribution with two different y2 laws according to a fixed corresponding to a given PFA is particularly sensitive te th

or adapted degree of freedom. When the approxima’[ion V\Iélg of the distribution. Henceforth, the two criteria usadhis

evaluated with the KL divergence, thé law with 2 degrees Study mostly react to different modelisation mismatches.

of freedom engendered the best fit with the spectrogramThe exact spectrogram pdf as well as the two proposed
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Fig. 6. Covariance kernel-window products before summat#?) as used to evaluate the covariangs, Y22 and Y12 for 512-point rectangular (top)
and Hanning (bottom) windows. Observation frequency is- 4, correlation time ratio is\ = 1. X117 /Y22 = 0.4415 and p = 0.0206 for the rectangular
window, 311 /%22 = 0.9965 and p = 8,3.10~° for the Hanning window.

x? approximations are plotted in log scale in figure 5. Theearly proportional to identity,e ¥11 /9 = 1 and X5 = 0,
spectrogram is constructed with &l2-point rectangular regardless of the level of correlation contained in the align
window and the correlation time ratio is = 10. The fixed With the rectangular window, the correlation generategdar
degree of freedom produces the best fit regarding the madiifferences betweei;; and ¥,,, and non-null¥X;,. Conse-
body of the distributions. Consequently, the KL divergenaguently, the covariance matriX is far from identity and the
was smaller. On the other hand, the tail of the spectrograpectrogram distribution far from g2 law.
pdf is better approximated when the degree of freedom of theX;, Y5, andX5, defined in (11), are quadratic forms in the
x? law is adapted, thus producing the smallest variations window vectorW. Let us call 'covariance kernels’ the three
PFA in the detection test. matricesK1,, Koo and K1, associated with these quadratic
forms, corresponding to
Now, the use of a¢? law with fixed or adapted degree of

freedom depends on the main focus of the approximation. If Ku = GCiRGy, (39)
the approximation has to be global, thé law with § = 2 K22 = SiRSy, (40)
degrees of freedom is recommended. If the approximation has K12 = C.RS;. (41)
to respect the tail of the distribution, adapting the degke . ) ) ) o

freedom is favorable. From simple matrix manipulation, the definition &f;; can

be reformulated as

B. Impact of the window shape Y= Z K11(4, ) )W?3(i, ), (42)
Throughout this study, noticeable differences among the w
analysis windows were observed. The probability distidout whereW? = WW7. ¥, appears as the summation of the
of a spectrogram constructed with a Hanning window agovariance kernel elements weighted by the analysis window
peared insensitive to the correlation of the analysed kignmatrix W2. A similar formulation of ¥5, and £15 is also
Conversely, the rectangular window reacted significantly valid. Figure 6 displays the covariance kernel-window piaid
a correlated environment, leading to important modebsati before summation (42) in the case of a rectangular window
mismatches. The sensibility of the Gaussian window stamds(top three panels) and a Hanning window (bottom panels).
the middle. The correlation time ratio is = 1.
As observed in [9], different windows lead to different The cosine and sine functions are dephasedr 8. Con-
covariance matriceX. With a Hanning windowX: is always sequently, the covariance kern&l,o (formed with sines)
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Fig. 7. Energy-normalized analysis windows and correspaniullback-Liebler divergences between spectrogramyghgdfs as a function of the correlation
time ratio \.

can be obtained froniK,; (formed with cosines) with two is embedded in a correlated centred Gaussian perturbation?
translations, one horizontal and one verticalZ®f4 samples What is the influence of the nature and length of the analysis
whereT}, is the period of the sine and cosine at the observedndow, the zero-padding or the amount of correlation in the

frequencyk. As seen in figure 6 (top panels), noticeable difsignal?

ferences betweeK;; andKs, are present on the boundaries
of the kernels.

In this paper, we present two experiments to answer these

If no correlation is present in the analysed signal, the ddsrn questions. The first consists in measuring the KL divergence
reduce to diagonal matrices, no differences exist and thetween the exact spectrogram distribution and {Aelaw
spectrogram is distributed as(@ variable. Now, if correlation whose parameters are tuned to match the first statistical
exists in the analysed signal, the covariance kernels dxtgnoments of the spectrogram. The second focuses on a more
apart from the main diagonal and differences appear on theactical situation: a detection task in the time-freqyenc

boundaries.

domain. We evaluate the deviation of PFA engendered by the

According to the shape of the analysis window, thes&pproximation of the spectrogram pdf with;@law. These
differences will be preserved or not. The rectangular wimdotwo experiments lead to the following conclusions:

represents a uniform weighting and preserves such diffeen

As a result,>;; differs from Xo,. If the analysis window
decreases to zero at its boundaries, as the Hanning window,
the impact of the aforementioned differences is drasticall
reduced. The summation (42) leading X3; and X5, only
concerns the middle of the covariance kernels where no*
such differences exist (see figure 6, bottom panels). As a
consequence, the correlation of the analysed signal does no
lead to different>;; and Xs2, and the spectrogram remains
distributed as a2 variable.

From these observations, the behavior of the analysis win-
dow at its boundaries appears to be responsible for the more
or less important impact of correlation on the spectrogram
probability distribution. Several currently used anadysiin-
dows are depicted in figure 7. For each of these windows, the
KL divergence between the corresponding spectrogram pdf
and ay? law with § = 2 degrees of freedom is evaluated
as a function of the correlation time ratid. This figure
clearly shows the link between the behavior of the windows ®
at their boundaries and the corresponding difference letwe
spectrogram ang? pdfs.

VIII. CONCLUSIONS

May the probability distribution of a spectrogram coeffitdie
be accurately described withy& law when the analysed signal

No restrictions can be formulated as to the use of zero-
padding. Its impact on the spectrogram probability distri-
bution was found null.

The spectrogram probability distribution differs fromya

law as the amount of correlation in the signal increases.
However, the difference is linked with the behavior of
the analysis window at its boundaries. For windows with
null boundaries (as the Hanning or Blackman windows),
the spectrogram pdf remains insensitive to correlation.
Longer non-uniform analysis windows increase the re-
semblance between spectrogram artdpdfs for corre-
lated signals.

The x? law with 2 degrees of freedom provides the best
fit with the overall spectrogram pdf. However, adapting
the degree of freedom provides a better approximation of
the tail of the distribution.

The differences observed between spectrogram xghd
pdfs are significant only when the spectrogram is con-
structed with a rectangular window whose length is
smaller than the correlation time of the signal. For
windows with null boundaries, approximating the spec-
trogram pdf with ay? law generates insignificant modeli-
sation mismatches, regardless of the level of correlation.
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