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Degenerate complex Monge-Ampere equations
over compact Kahler manifolds.

Jean-Pierre Demailly and Nefton Pali

Abstract

We prove the existence and uniqueness of the solutions of some
very general type of degenerate complex Monge-Ampere equations, and
investigate their regularity. This type of equations is precisely what is
needed in order to construct Kéhler-Einstein metrics over irreducible
singular Kéhler spaces with ample or trivial canonical sheaf.
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1 Introduction

In a celebrated paper [Yad] published in 1978, Yau settled all cases of the
Calabi conjecture. As is well known, the problem of prescribing the Ricci
curvature can be formulated in terms of non degenerate complex Monge-
Ampere equations.

Theorem 1.1 (Yau). Let X be a compact Kdihler manifold of complex
dimension n and let x be a Kdahler class. Then for any smooth density v > 0
on X such that [ v = [ X", there exists a unique (smooth) Kahler metric
w e x (ie. w=wp+1i00p with wy € x ) such that W™ = (wy + 100p)"™ = v.

Key words : Complex Monge-Ampere equations, Kéhler-Einstein metrics, Closed posi-
tive currents, Plurisubharmonic functions, Capacities, Orlicz spaces.
AMS Classification : 53C25, 53C55, 32J15.



Another breakthrough concerning the study of complex Monge-Ampere equa-
tions was achieved by Bedford-Taylor [Be-Tq]. Their work opened the way
to the study of very degenerate complex Monge-Ampere equations. In fact,
by combining these results, Kotodziej proved the existence of solu-
tions for equations of type (w + i90¢)" = v, where w a Kéhler metric and
v > 0 a density in LP or in some complicated Orlicz spaces. However, in
various geometric applications, it is necessary to consider the case where w
is merely semipositive. This more difficult situation has been examined first
by Tsuji [[[{], and his technique has been reconsidered in the recent works
Catd), (25, [0 and [Pad .

In this paper we push further the techniques developed so far and we
obtain some very general and sharp results on the existence, uniqueness and
regularity of the solutions of degenerate complex Monge-Ampeére equations.
In order to define the relevant concept of uniqueness of the solutions, we
introduce a suitable subset of the space of closed (1, 1)-currents, namely the
domain of definition BT of the complex Monge-Ampeére operator “in the
sense of Bedford-Taylor”: a current O is in BT if the the successive exterior
powers can be computed as %1 = i9d(pOF) where ¢ is a potential of ©
and ©OF is locally of finite mass. Then for every pseudoeffective (1,1)-
cohomology class y, we prove a monotone convergence result for exterior
powers of currents in the subset BT, := BTN .

The uniqueness of the solutions of the degenerate complex Monge-Ampere
equations in a reasonable class of unbounded potentials has been a big issue
and the object of intensive studies, see e.g. [Ty, [Ti-Zhd), [Blod], [E-G-4].
In this direction, we introduce the subset BT;’g of (closed positive) currents
T € BT, which have a Monge-Ampere product 7™ possessing a L'-density
such that [, —log(T"/)Q < +oo for some smooth volume form Q > 0.
For example this is the case when the current 7™ possesses a L!'-density
with complex analytic singularities (see theorem B.1]). We observe that the
Ricci operator is well defined in the class BT;’g.

In the last section we prove existence and fine regularity properties of
the solutions of complex Monge-Ampere equations with respect to a given
degenerate metric w > 0, when the right hand side possesses a Llog" " L-
density or a density carrying complex analytic singularities (see theorems
6.4 and B.1]). As a consequence of this results, we derive the following gen-
eralization of Yau’s theorem.

Theorem 1.2 Let X be a compact Kdhler manifold of complex dimension n
and let x be (1,1)-cohomology class admitting a smooth closed semipositive
(1,1)-form w such that {w™ = 0} is a set of measure zero.

A). For any Llog""® L-density v > 0, ¢ > 0 such that Jxv =[x X", there
exists a unique closed positive current T’ € BT, such that T" = v. Moreover,
this current possesses bounded local potentials over X and continuous local
potentials outside a complex analytic set X, C X. This set depend only on



the class x and is empty if and only if the class x is Kdhler.

B). In the particular case of a density v > 0 possessing complex analytic
singularities the current T' is also smooth outside the complex analytic subset
Yy UZ(v) C X, where Z(v) is the set of zeros and poles of v.

We wish to point out that the main examples of Orlicz spaces considered
by Kolodziej are contained in some space Llog™™ L. The type of complex
Monge-Ampere equation solved in theorem p.] is precisely what is needed in
order to construct Kéhler-Einstein metrics over irreducible singular Kéhler
spaces with ample or trivial canonical sheaf. This allows us also to solve
generalized equations of the form Ric(w) = —Aw+p, A > 0. The proof of our
Laplacian estimate in theorem [.1], which is obtained as a combination of the
ideas of in [Yad], [T, [Blod], provides in particular a drastic simplification
of Yau’s most general argument for complex Monge-Ampere equations with
degenerate right hand side. Moreover, it can be applied immediately to
certain singular situations considered in [[Pad] and it reduces the Laplacian
estimate in [Pad] to a simple consequence (however, one should point out
that the argument in [Pay] contains a gap due to the fact that the LP-norm
of the exponential exp (11, — 12.) of e-regularized quasi-plurisubharmonic
functions need not be uniformly bounded in € under the assumption that
exp(¢1 — o) is LP, as our lemma [.4 clearly shows if we do not choose
carefully the constant A there). Theorem [.] gives also some metric results
for the geometry of varieties of general type. In this direction, we obtain
the following result.

Theorem 1.3 Let X be a smooth complex projective variety of general type.
If the canonical bundle is nef, then there exists a unique closed positive
current w,, € BTI;ngI(KX) solution of the Finstein equation Ric(w,) = —w,,.
This current possesses bounded local potentials and defines a smooth Kdhler
metric outside a complex analytic subset, which is empty if and only if the

canonical bundle is ample.

The existence part has been studied in [I{], [Ca-Ld] and [Ti-Zhd] by a
Kihler-Ricci flow method. Quite recently Tian and Kotodziej [[[i-Kd] proved

a very particular case of our C%-estimate. Their method, which is com-
pletely different, is based on an idea developed in [De-Pd]. Our C%-estimate
allows us to completely solve a conjecture of Tian stated in [[[i-Kd] (see
Appendix D).

2 General C’-estimates for the solutions.

Let X be a compact connected complex manifold of complex dimension n
and let v be a closed real (1,1)-current with continuous local potentials or
a closed positive (1,1)-current with bounded local potentials. Then to any



distribution ¥ on X such that v 4+ i00¥ > 0 we can associate a unique
locally integrable and bounded from above function ¢ : X — [—o00,400)
such that the corresponding distribution coincides with ¥ and such that
for any continuous or plurisubharmonic local potential h of v the function
h + 1 is plurisubharmonic. The set of functions 1 obtained in this way will
be denoted by P,. We set 772 ={¢Y € P, | supx ¢ =0}. A closed positive
(1,1)-current with bounded local potentials such that {y}" := [ " > 0,
will be called big. If X is compact Kéahler, one knows by [De-Pq] that the
class {7} is big if and only if it contains a Kéhler current 7' = vy4i00v¢ > ew,
for some Kahler metric w on X and € > 0. We refer to the Appendix A
and to [Ra-Rd], [fw-M4g] for the basic definitions of Orlicz norms and Orlicz
spaces.

Theorem 2.1 Let X be a compact Kdahler manifold of complex dimension n,
let Q > 0 be a smooth volume form, let~y be a big closed positive (1,1)-current
with continuous local potentials. Let also 1) € Py N L*(X) be a solution of
the degenerate complex Monge-Ampeére equation

(v + i00p)" = [,

with f € Llog"t L(X) for some ey > 0. Then the following conclusions
hold.

(A) There ezist a uniform constant Cy = C1(go,7,Q) > 0 such that for all
e € (0,e9] we have an estimate

Osc(v) < (C1/e)" /" Lo(f)F + 1,

where

Lelf)i= ()7 [ F1og™ e+ 1o} ) .
X

(B) Assume that the solution v is normalized by the condition supx ¢ =0
and consider also a solution ¢ € PyNL>*(X), supx ¢ = 0 of the degenerate
complex Monge-Ampeére equation

(v +1i00p)" = g9,

with g € L1og" " L(X). Assume also Ly, (f), Iy, (9) < K for some con-
stant K > 0. Then there exists a constant Cy = Ca(gg,7,Q, K) > 0 such
that

—ag

lo = Ul < 265" (loglo—wll )

Ll(Xx,Q)

1
(’I’L—|— 1 +7’L2/€0) ’

ag =



provided that the inequality ||p — wHLl(X,Q) < min{1/2,e" 2} holds.

(C) Let (vt)e=0 be a family of currents satisfying the same properties as
v, fix a finite covering (Uy)q of coordinate starshaped open sets, and let us
write y; = i@éhtﬂ with supy hio = 0 over Uy and C1; := Ci(go,v:, ),
Cot = Cae0, 1,2, K). Assume

(Cl) Supy> MaXey Hht,a”Loo(Ua) < +o0 and B

(C2a) there exist a decomposition of the type v¢ = 0+i00uy, with 0y smooth,
miny u; = 0, Supssomaxy u; < +0o and 0 < ({:}")/"w for some Kihler
metric w >0 on X,

or

(C2b) the distributions v /S are represented by L'-functions and

sup {%}‘"/log (e+ {1} ™ /Q) 1 < +o0.
X

Then supy~q Cjt < 400 for j =1,2.

Statement (C) will follow from the arguments of the proof of theorem P.1.

Remark 1. As an application of his estimates, Kolodziej considers in Ex-
ample 1, page 91 of [Koll]] Monge-Ampere equations with non degenerate
left hand side and with right hand side taking values in the Orlicz space
LY(X), with W(t) := tlog"(e + t)log" (e + log(1 + t)), § > 0. If we take
g0 = 1/k with an integer k£ > 1 we obtain

 log™(e + log(1+ 1)
lim
t——+00 log® (e 4 t)

This implies LY (X) C Llog""® L(X).

Let X be a compact complex manifold of complex dimension n, let v be a big
closed positive (1,1)-current with bounded local potentials. Set P[0, 1] :=
{oePy | 0<p <1}, 7, =7+ i00p and

Cap,(E):= sup {7}7" [ 5,
PPy [0,1] J

for all Borel sets £ C X. We remark that if (E;);, E; C Ej41 C X is a
family of Borel sets and F = | ; Ej then clearly, we have

Cap,(E) = jli»I-Poo Cap., (Ej) . (2.1)

Lemma 2.2 Let X be a compact connected compler manifold of complex
dimension n, let v be a closed real (1,1)-current with continuous local poten-
tials or a closed positive (1,1)-current with bounded local potentials and let
Q > 0 be a smooth volume form. Then there exist constants o = (7, §) > 0,
C=C(v,Q) >0 such that [, —Q < C and [ e~V Q < C forally e 732.
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The first two integral estimates of lemma P.9 are quite standard in the ele-
mentary theory of plurisubharmonic functions and the dependence of the
constants a and C' on < is only on the L* bound of its local potentials.
To be more precise concerning the uniform estimate [ x e~ < C one
can make the constant o depending only on the cohomology class of v as
in [[TL], but in this case the constant C' will depend on the L bound of
the local potentials of v and on the volume form 2. One can also make C'
depending only on the volume form €2, but in this case o will depend on the
L*> bound of the local potentials of v and on the volume form (2.

Lemma 2.3 Let X be a compact connected Kdhler manifold of complex di-
mension n, let v be a big closed positive (1,1)-current with continuous local
potentials.

(A) There exists a constant C = C(v) > 0 such that Cap. ({1 < —t}) < C/t
for all ¢ € 732 and t > 0. Moreover the constant C' stay bounded for per-
turbations of 7y satisfying the hypothesis (C1) and (C2a) of statement (C) in
theorem [2.].

(B) If v/ € Llog L(X), for a smooth volume form € > 0 then the con-
clusion of statement (A) hold with a constant C' = C(v,Q) > 0 which stays
bounded for perturbations of vy satisfying the hypothesis (C1) and (C2b) of
statement (C) in theorem P.].

Proof. We first notice the obvious inequality
n 1 n
Yo =7 V%
Y<—t X
which implies

Cap,({v < ) <7 swp (3} / . (22)

©EP[0,1]
and we prove the following elementary claim.

Claim 2.4 Let vy be a closed positive (1,1)-current with bounded local po-
tentials over a compact complex manifold X of complex dimension n and let
0, ¥ € Py such that 0 < ¢ <1 and ¢ < 0. Then

[ < [vaman [, (2.3)

X X X

Proof. The fact that the current + is positive implies . := max{¢, c} € P,
¢ € R.g, so by the monotone convergence theorem it is sufficient to prove
inequality (R-3) for ¢ € P, N L>®(X). So assume this and let w > 0 be a
hermitian metric over X. By a result of Greene-Wu [[Gr-W] there exist a



family of functions (¢¢)e>0, e € PytewNC(X) such that ¢, | 1 ase — 0.
Consider now the integrals I; := fX —py A vp 7 for all j =0,...,n. Then
I; < Iy + [ 7" In fact by Stokes formula

R SR T i A0 n—j-1
I; I sli%l"‘ /am Ni00p N vy
X

— P 99 J n—j—1
Lia = lim [ 000, Ay Aoy
X

< Iin +/<Mj“ A7 < I +/'Y”-
X X
In this way we deduce the required inequality Iy < I,, +n [ x " O

The following claim will be very useful for the rest of the paper.

Claim 2.5 Let (X,w) be a polarized compact connected Kdihler manifold
of complex dimension n and let v, T be closed positive (1,1)-currents with
respectively continuous, bounded local potentials. Then for alll =0,....,n

Cy := sup /—1/1 T' AW < 400
PePy %

and %p/\Tl :Tl/\7¢ for ally € P,.

Proof. The proof of the convergence of the constants C; goes by induction
on !l =0,...,n. The statement is true for [ = 0 by the first integral estimate
of lemma P.3. So we assume it is true for [ and we prove it for [ + 1. Let
e == max{y),c} € Py, ¢c € Rep. By the result of Greene-Wu [Gr-Wad] let
(Ye,e)e0s Yee € Pytew N CP(X) such that ¢, | Y. as e — 07 and write
T = 6 + i00u, with 6 smooth, # < Kw and u bounded with infx u = 0. By
using the monotone convergence theorem and Stokes formula, we expand



the integral

/—’l/}Tl+1 /\wn—l—l = lim Lim /_waa Tl+1 /\wn—l—l

c——00 g0t
X X

— lim lim / e OANT AW / Ve i0Ou AT A W1

c——00 g—(0*t
L X

lim lim /—Q,Z)c,eTl/\Kw" ! /u188¢c€ATlAw =1

c——00 g—01

IN

L X

c——00 g—(0t

X
= /—¢Tl/\Kw"l+ lim lim /u Vope,e T EW) YAT AW
X

+ /u(7+€w) AT A WL
X

IN

KC)+supu /’)//\Tl/\w"_l_1 < 400,
X
X

by the inductive hypothesis. Concerning the symmetry of the exterior prod-
uct we remark that the decreasing monotone convergence theorem implies

lim [ (o — )T AL =0,
C——0O0

X

which means the convergence of the mass ||(¢).—1)T"||,(X) — 0 as ¢ — —oo,
in particular ¥.T" — T weakly as ¢ — —oo. So by the weak continuity of
the 100 operator we deduce

Yoo NT  — y AT, (2.4)

weakly as ¢ — —oo. Moreover the weak continuity of the i00 operator
implies by induction on [

T' A vy, — T' Ay,
weakly as ¢ — —oc. This combined with (R.4) implies v, A TH=T'A Yy O

In the particular case T' = v big, the constant

0<C(y):=n+sup {7} " [ 7" <+o0
YePY



satisfies the capacity estimate of statement (A) in lemma P.3, by inequality
(B2) and claim P.4. Thus if (v;)¢>0 is a family satisfying the hypothesis
(C1) and (C2a) of statement (C) in theorem -] and K; = ({7,}")"/", then
the constant C'(v) satisfies the stability properties of statement (A) of the
lemma P.J, and we can use the induction in the proof of claim R.§ with
T=,60=0; u=u and K = K; to get

01sm/—wwusuput/%Awn—lsm/—wquKt/w",
X X X X X

where R > supy u; and in general

Ciy1 < K G+ R / AL AW < K Cp + REF! / W™
X X

We deduce Cy, < K7* [ —thw"+nRK}" [, w". We now prove statement (B)
of lemma P.3 In fact let f := {7y} "+"/Q > 0. Then the uniform estimate

for the integral
—n n 1
[ o= [ —avro
X X

follows from the elementary inequality —avyf < e=% — 1 4+ flog(l + f)
combined with the uniform estimate f x e~ < C of lemma @ In this
case the required stability properties of the constant C(+v,€) > 0 in the
capacity estimate are obvious. U

Lemma 2.6 (Degenerate Comparison Principle). Let X be a com-
pact Kdhler manifold of complex dimension n, let v be a closed real (1,1)-
current with continuous local potentials or a closed positive (1,1)-current
with bounded local potentials, and consider ¢, ¢ € Py, N L>¥(X). Then

/%ZS/’YZ-

<y <t

Proof.

Step I. We assume first ¢, ¢» € P, N C%(X). We will denote by 95 the
boundary in X of a set S C X. By the continuity of the functions ¢, 1) we
deduce:

1) the set {¢ < v} is open and d{p < 1} C {p =¥},

2) for all £ > 0 there exists an open neighborhood V C X of the set {¢ > ¢}
such that max{¢ +¢,9} = ¢ + ¢ over V.

So 0{p < ¥} CV and the Stokes formula implies the equality

/7{2 = /(v+i05maX{w+6,w})",

<y <y



for all € > 0. Moreover by the monotone convergence theorem in pluripoten-
tial theory we deduce that the current (v + i00 max{y + ¢,1})" converges
weakly to the current v, over the open set {¢ < ¢} ase — 0T. Thus

/fyw :liargti)rjf /('y—i—i@@max{cp—i—a,w}) > /71#'

< <t <t

Step II. Let now (U,)Y_; be a finite open covering of X such that v = i99h,,
over U, with infy, h, = 0. By the quasicontinuity of plurisubharmonic
functions, for every > 0 there exists an open set G5, C U, such that
Ug = ho + ¢, ha € CO(Uy N Gs4) and Cap(Gsa,Us) < 6. In particular
¢ € C%Uy\Gs,), and therefore ¢ € CO(X \Gs) where G5 :=J, Gs.o C X.
We can also assume 1) € CO(X \ Gj). Set vy := hy + 1. Let w be a Kéhler
metric over X and g, smooth functions over U, such that w = i00g,,
infy, go = 0. By the result of Greene-Wu [[Gr-Wu] there exists a sequence
(65); C(0,¢€), &5 | 0 and ¥, @; € Pyie;0 NCP(X), with p; | ¢ and p; | .
We can assume 0 < infx ¢, 0 < infx ¢ and we set ujo = ha + go + @j,
Vja = ha + ga + 15, M = maxe{||us,allrew,): lviallrew,)}- Then by
step 1

/ (v + ew + i00;)" < / (v + ew + i00pr)" . (2.5)
Pr<t; Pr<y;

Let f € C9X) such that f = 1 over X \ Gs. Then the set {¢p < f} is
open and {p, < f}UGs = {¢r < ¢} UGs. Thus

[ s [ [ans [ Greriony+Y [ oo
Gs Y Gsa

Prp<y er<f or<f
< liminf / (v + ew +i00;)" + M™ Z / (10OM ' v, )"
jFoo
or<f  Gsa

< 11m+inf / (fy+aw+z'aawj)”+/(v+aw+iaa¢j)” + M"N§
Jj—+oo
PR <th; Gs
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< liminf / (7 + ew + 100 )" + M™ Z / (i00M " vj0)"
J—too
Pr<th; * Gsa
M"N§ (by (B9))
< Alirll / (v + ew +i00pp)" + 2M™ N§
j—+too
Pr<t;
= / (7 + ew + 00 )" + 2M™N§ .
<t

Then by letting £k — +o00 we get

/ Y < limsup / (v + ew + i00pg)" + 2M"™ NG . (2.6)
k——+

< - Pr<t

Now the set {¢ < ¥}~ Gj is closed by the continuity of ¢ and 1) over X \ Gs.

Thus
/ (v + ew +i00p)™ > / (v + ew + i00p)™

Py {e<}InGs
> limsup / (v + ew + i00pp)"
k—+o0
{e<¥}NGs

> limsup / (7 + ew 4+ 1001, )" — /(7 + ew + 100 )™
k—+o0
o<t Gs

> limsup / (7 + ew + 100y )" — M™ Z / (100M ™ up, o))"
k—+o00 o
<y Gs,a

Y

lim sup / (7 + ew + i00p1)" — M™ NG .
k—+o00
PRt

So by (B.§) we derive

/’y{z < /(’y—i—aw—i—i@&p)"—i—SM"Né

o<y o<y
n
< / ’YZ + Z (?) /elwl/\’yn_l+3M"N5.
o<t =1 X

Then letting € — 0 and § — 0 we get

/WZS/%Z-

<y p<t

11



Now the conclusion follows by replacing ¢ by ¢ + t, ¢ > 0 in the previous
formula and letting ¢ — 0. U

We recall now the following lemma due to Kolodziej [[Koll]], (see also [Ti-Zhull,
[izEm).

Lemma 2.7 Let a: (—00,0] — [0,1], be a monotone non decreasing func-
tion such that for some B >0, § > 0 the inequality

ta(s) < Ba(s+t)'*°

holds for all s < 0,t € [0,1], s+t < 0. Then for all S < 0 such that
a(S) >0 and all D € [0,1], S+ D < 0 we have the estimate

D <e(3+2/8)Ba(S+ D).

The following lemma is a simple application of the main result in Bedford-
Taylor [Be-Td| and of the monotone increasing convergence theorem in pluripo-
tential theory.

Lemma 2.8 Let X be a compact connected complex manifold of complex
dimension n, let vy be a big closed positive (1,1)-current with continuous
local potentials and let 2 > 0 be a smooth volume form. Then there exist
constants o = a(y,Q) > 0, C = C(y,Q) > 0 such that for all Borel sets
E C X we have

/Q < (e~ Capy(E)/™ (2.7)
E

In particular Cap.(E) = 0 implies [z=0.

Proof. 1t is sufficient to prove this estimate for an arbitrary compact set. In
fact assume (R.7) for compact sets and let (Kj);, K; C K;41 C E be a family
of compact sets such that ij Q— [pQasj— 4o0. Set U :=U;K; CFE

and take the limit in () with E replaced by Kj;. By (R.]) we deduce

1/n

/Q < eace—a/Capw(U)l/" < eace—a/Capy(E)
E

We prove now (R.7) for compact sets K C X. For this purpose, consider the
function

Vg (x) :==sup{p(x) | ¢ € Py, <0} >0.

Remark that (Vg )|, = 0 since 0 € P, by the positivity assumption on 7.
Assume [, Q # 0, otherwise there is nothing to prove. In this case there
exists a constant C'r > 0 such that supy ¢ < Ck for all ¢ € P, Pl < 0.

12



In fact let Sk := {p € P, | 9|, <0} and set $ := ¢ —supy ¢. By contra-
diction we would get a sequence ¢; € Sk such that supy ¢; — +oo. This
implies supy ¢; — —oo and so fK —0; ) > —(fK Q) supg ¢; — +00, which
contradicts the first integral estimate of lemma P.9.

Then it follows from quite standard local arguments that the upper regular-
ization ¥}, € P,. (Here we use the assumption that the local potentials of
7 are continuous.) Moreover U} € L*(X), ¥} > 0 and ¥} = 0 over the
interior K° of K. We recall now the following well known consequence of a
result of Bedford and Taylor [Be-T4].

Theorem 2.9 Let ¢ € P, N L>®(X) and let B be an open coordinate ball.
Then there exists p € PyNL>(X), ¢ = ¢ such that v; =0 on B and = ¢
on X ~ B. Moreover if o1 < o, then o1 < Po.

This implies the following quite standard fact in pluripotential theory.

Corollary 2.10 The extremal function ¥y, € P,NL>*(X) satisfies ¥, > 0
over X, W =0 over the interior K° of K and ’yff,;( =0 over X \ K.

Proof. By the classical Choquet lemma there exists a sequence (¢;); C Sk,
¢j > 0 such that W3 = (sup; ¢;)*. We can assume that this sequence is
increasing. Otherwise, set ¢1 := ¢ and ¢; := max{p;,p;_1} € Sk. Let
B be an open coordinate ball in X \ K and let ¢; € Sk be a solution of
the Dirichlet problem 'ygj = 0 over B as in theorem P.9. Thus the sequence
(¢j)j C Sk is still increasing and W, = (sup; $;)*. Remember also that the
plurisubharmonicity implies that W = lim; ¢; almost everywhere. By the
monotone increasing theorem from classical pluripotential theory, we infer
’yff,;( = 0 on B, and the conclusion follows from the fact that B is arbitrary.
O

By using a basic fact about measure theory and the second integral esti-
mate of lemma we get

/Q: /Q: /eW?«Q < /ew’fm < Ce swx Vi |
KO

K KO X

Set A :=supy V. If Ax > 1set ¢ := A;(lllf}(. Then 0 < Yo < Arvy
and so ¢ € P,[0,1]. By corollary we deduce

{y}" A" = A" / QLTI / Yo < {7}" Cap,(K),
K K
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thus —aAx < —a/Cap, (K )™ by the bigness assumption on the current
v. If Ag <1 then ¥, € P,[0,1] and so

1= {’Y}n/’Y\%K < Cap, (K ) < Cap,(X) =1.
K

In both cases we reach the required conclusion. O

Proof of theorem P.1], part A.

We can assume supy ¥ = 0. Let U := {¢p < s}, s <0,t€[0,1], s+t <0,
¢ € Py[—1,0] and set V := {¢p —s —t < te}. Then we have inclusions
Us CV C Ugyt. By using the Degenerate Comparison Principle we infer

t"/vZS/%S/%&S/%ZS/ﬂ,
Us Us \%4 1%

Us+t

thus combining this with Holder inequality in Orlicz spaces (7.J), formula
([2) in Appendix A and lemma P.§ we obtain

t%ﬂ%@)g{ﬂ"/ﬁﬁzh}"/fa

Us+t Us+t
< el a0 Myt v
B {7 Col fll prognte Lix)
log" "¢ (1 + 1/ Volg(Us+))
- {3 Cooll Fll rogn+e Lix)

1Ogn+6 (1 + e_ac_lea/caPV(US+t)l/">

< Cey(k/a) {3} 1F | progn+e Lix) Caps (Use) "9/

(Here k > 0 is a constant such that k™ 'a/z < log(1 + e=*C~'e®/*) for all
x € (0,1]). So if we set § :=¢/n and

B := Cl[" (ko) L ()"

we deduce that the function a(s) := Cap,y(Us)l/", s < 0, satisfies the hy-
pothesis of lemma R.7. (We use here the inequality (7.I]) in appendix A.)
Consider now the function x(t) := KsBt°, with constant Kj := e(3 4 2/6).
Remember also the uniform capacity estimate a(s) < C (—s)~%/™ of lemma
B3 Let now 1 > 1 be arbitrary. We claim that a(S,) = 0 for

—S, = C"(KsBn)™° +1.
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The fact that the function a is left continuous (by formula (B-1))) will imply
that a(S1) = 0 also. Remark that S, is a solution of the equation

C(=8, =)~ /" =),

where £~ is the inverse of the function x. So if we assume by contradiction

that a(S,) > 0 we deduce by lemmas .7 and
1< k(a(S, +1)) <K(C(=S, - 1)) =nt <1,

which is a contradiction. Thus if we set —I := max{s < 0 | a(s) = 0}
we obtain [ < =57 < C"(K(;B)"/‘s + 1, which by arranging the coefficients
yields the right hand side of the estimate in statement A of theorem R.1].
Moreover by definition Cap.(U_r) = 0, thus Volo(U_7) = 0 by lemma .§.
The fact that the current + has continuous local potentials implies that the
function 1 is upper semicontinuous, so the set U_; is open, thus empty.
This implies the required conclusion. O

Proof of part B.
Set a := max{||¢| = (X), ||[¥||L~ (X)}, consider § € P,[0,1], s > 0, ¢t € [0,1]
and set

Then the obvious inequality 0 < —lfr—aw < % implies the inclusions
{p—1v<—s—t} CV C{p—1 < —s}. Thus by applying the Degenerate
Comparison Principle as in [[Kol] we obtain

tm / " </ t (4 t "
(I4+a)" o= 1+a” 1+a)
p—p<—s—t \%4
/'VZ < / Yep -

1% p—<—s

IN

By inverting the roles of ¢ and 1 in the previous inequality and by summing

up we get
tn
wrap | s [ ueon

lo—tp|>s+t lo—1|>s

By taking the supremum over # we obtain the capacity estimate

e, (o vl >s+0<Ara ) [ (90 @9
lo—v|>s

15



for all s >0, t € [0,1]. Set Us := {|p — 9| > s} C X. By combining lemma
P.§ with a computation similar to the one in the proof of part A we obtain

tn Cap’Y(U8+t) S (1 + a’)n{f)/}_ncéo Hf + g”LlOgn-Fso L(X) Capv(Us)(""'aO)/"

< B" Cap,y(Us)("JrE“)/" )

where the constant B > 0 depends on the same quantities as the constant
Cy in statement (B) of theorem R.1. We deduce that the function a(s) :=
Capy(U_s)l/", s < 0, satisfies the hypothesis of lemma P.7 with § = £q/n.
On the other hand, the capacity estimate (R.§) combined with Holder’s
inequality in Orlicz spaces implies for all ¢ € [0, 1] the inequalities

1 Cap(lp— ¥ > 2) < (L+a) "y} / (f +9)9

lo—1|>t

1 n —n
< %/I@—M(hﬁ)ﬁ
X
< A e ol + 9l 2y
4K n
< A e 29)

t

Claim 2.11 If [|¢ — ¥[lpy(x) < 1/2, then there exists a constant Cy > 0
such that

||30 - ¢||ExpL(X) < Ca/IOg HSD - w‘|211(x) .

Proof. We assume [|¢ — 9| 11(x) > 0, otherwise there is nothing to prove.
Set Cy. o := k(e?¥F —1)/(2a), k > 0. Then for all k > 0 and all = € [0, 2a/k]
the inequality e® — 1 < C}, 4« holds. Thus the inequality |¢ —|/k < 2a/k

implies
/ <e|e0*¢\/k _ 1) 0< C&a/@ 0.
X X

We get from there the implication

I =¥llx) =k Cra =l = bllepron <k, (2.10)

since by definition
i = bl oo =int S k>0 | [ (et - 1) o<1
X
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So if we set p(k) := k/Cj,q > 0 we deduce by the implication (R.1()

e — Yl ey < " (le = ®line) (2.11)

where =1 : Rug — Rsq is the inverse function of u. Explicitly u=!(y) =

2a/log(1 + 2a/y), for all y > 0. Now there exists a constant C, > 0 such
that u=1(y) < C,/log(1/y) for all y € (0,1/2]. This combined with (R.11])
implies the conclusion. O

Combining claim with the estimate (R.9) we infer the capacity esti-
mate

C B —1/n
a(=t) < i (log e = vl ly)) (2.12)

where the constant C' > 0 depends on the same quantities as the constant
Cy in statement B. Set now Cy := C"(2KsB)™% > 0 (with K5 > 0 as in the
proof of part (A) and define

—ag

ti=Cs (log o — ¥z x))

The hypothesis t € (0,1] combined with the hypothesis of claim forces
the condition || — |11 (x) < min{1/2, e~“2}. Moreover t is solution of the

equation
C -1 71/” 1 t
t1+—1/n <10g‘|90—¢”,;1(x)> =K <§> )

where £7! is the inverse of the function s introduced in the proof of part A.
We claim that a(—2t) = 0. Otherwise, by lemma P.7 and inequality (R.12),
we infer

0 <t<rla(—t)) <r(r1(t/2) =1/2,

which is absurd. We deduce Volg(|p — ¥| > 2t) = 0 by lemma R.§. We
prove now that the set Uy = {|p — 1| > 2t} C X is empty, which will imply
the desired C%-stability estimate. The fact that |¢ — 1| < 2t a.e over X,
implies \fB(wvr)(go — 1) dA| < 2t for all coordinate open balls B(z,r) C X.
(The symbol fB means mean value operator.) By elementary properties of
plurisubharmonic functions follows

p(z) —P(r) = lim (p —9)dA,

r—0+t B(x,r)
for all x € X. We infer |¢ — 1| < 2t over X. O
Corollary 2.12 Let (X,w) be a polarized compact connected Kdhler mani-

fold of complex dimension n, let Q > 0 be a smooth volume form, let v >0
be a big closed smooth (1,1)-form. Let also f € Llog"™ L(X), § > 0, such
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that [ 7" = [x [Q and (f-)eso C C®°(X) be a family converging to f in
the Llog"™? L(X)-norm as € — 0 and satisfying the integral condition

/7+6w /fs (2.13)

X

Let A > 0 be a real number. Then the unique solution of the non degenerate
complex Monge-Ampére equation

(4 ew + 100, )" = f.erVeQ, (2.14)

given by the Aubin-Yau solution of the Calabi conjecture (which in the case
A = 0 is normalized by maxx . = 0) satisfies the uniform C°-estimate

[¢ellcoxy < C(6,7,Q) Ls(f)s + 1.

Proof. The existence of a regularizing family f. of f in Llog™*? L(X) follows
from [Ra-Rd] page 364 or [[w-Md], theorem 4.12.2, page 79. We can always
assume the integral condition (R.13) otherwise we multiply f. by a constant
¢ > 0 which converges to 1 by the normalizing condition [ " = [, fQ.
We distinguish two cases.

Case A = 0. The hypothesis (C1) and (C2a) of statement (C) of theo-
rem R.1] are obviously satisfied for the family (7 +ew).. We deduce that the
constant C; = C1(§, v +ew, ) > 0 in the statement of theorem P.J, A
does not blow up as € — 07. Moreover the uniform estimate

holds for all ¢ € (0,1). Thus by theorem P.I, A we obtain the required
uniform estimate ||¢c|co(x) < C = C (6,7, ) Ls(f)s + 1.

Case )\ > 0. We start by proving the following lemma, which is a particular
case of a more general result due to Yau (see [Yau], sect. 6, page 376).

Lemma 2.13 Let (X,w) be a polarized compact Kdihler manifold of complex
dimension n, let h be a smooth function such that fX w" = fX elw™ and let
@ € P, be the unique solution of the complex Monge-Ampére equation

(w + i00p)"™ = ehTAeun | (2.16)

A > 0. Consider also two solutions ¢, " € P, of the complex Monge-
Ampere equation (w + i00¢)" = ehw™ such that miny ¢’ = 0 = maxx ¢".

Then " < o < .

Proof. The argument is a simplification, in our particular case, of Yau’s origi-
nal argument for the proof of Theorem 4, sect. 6 in [Fad]. Set o}, := ¢/, ¢f) :=
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¢" and consider the solutions ¢, ¢ of the complex Monge-Ampere equa-
tions given by the iteration

(w+1i00p))" = MO =051 | (2.17)
(w+1i00¢])" = MOV =0f1 (2.18)

Notice that we can solve these equations even if the terms eh_%—l, e
are not normalized, see Lemma 2 page 378 in [Yay]. Set L := XA + 1 and
consider

(w+iddP, )" = Mt =90 AP0 n > LlP1—0) oy — eL(v’rw{))(w_,_iag%)n_
At a maximum point of ¢} — ¢f, we have the inequality
(w +i00p))" > (w + 100" .

By plugging this into the previous one, we deduce ¢} < ¢f,. We now prove
by induction the inequality ¢} < ¢’ ;. In fact by dividing (R.I7); with
(RI7);-1 we get

. A / n
((w+—i—';(8§39,0j)) — L= )= (P1—wj ) > L0 1)
W 1009 4 n

At a maximum point of ¢ — ¢} ; we find again the inequality
(w +1i00¢,)" < (w + 00, )" .

Combining this with the previous one we deduce 30; < gpg_l. By applying a

quite similar argument to (R.1§) we obtain also ¢} ; < ¢7. We also prove

by induction the inequality ¢ < ¢/, which is true by definition in the case

j = 0. By dividing (.17); with (m)j we get

0, _I\n

W+ 800G)" _ oo ~(ha o) < HP )

(w4 188@;’ ) -

by the induction hypothesis ¢ | < ¢’ ;. At a minimum point of ¢} — ¢
we get

(W +i005)" > (w4 100¢] )",
hence cp;' < <p;». As a conclusion, we have proved the sequence of inequalities

o S 91 <@ <@ < < (2.19)
We now prove a uniform estimate for the Laplacian of the potentials <p;».
The inequalities imply 0 < 2n + Awgpg < C Bj, where B; > 0 satisfies
the uniform estimate

1

0> Cl Bjm — <2n + m)?X Aw(p;»1> B]_1 — CQ, (220)
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Cy, C1 > 0, which is obtained by applying the maximum principle in a
similar way as in Yau’s proof of the second order estimate for the solution
of the Calabi conjecture [Yau]. (It can also be obtained by setting § = [ =
h = 0 in step (L.B) in the proof of theorem [.1], see Appendix C. In the case
n = 1 the uniform estimate 0 < 2n + Ay} < C’ follows immediately from
the inequalities (R.19).) Fix now a constant Cy > 0 such that the inequality

Cra" P T > (Cy + 20z — Cs,
hold for all z > 0. This implies by (R.20) the estimate

2(2n + Aup;) < 2C B; < <2n + max AM}—l) +C,

thus
2n + max Ayl < 277 <2n + max Awpé) + Oy,

by iteration. By taking the derivative in the Green Formula (see [[Aulf], Th.
4.13 page 108) we get the identity

dx‘p; = = /dew(xa ) Aw‘p; w" )
X
which implies the estimate |Vo¢'l, < Cymaxx A,p; < K. By applying
the complex version of the Evans-Krylov theory [[[iJ] we deduce the uni-
form estimate [¢[|c2.ax)y < K’. This combined with (B17) implies that
the monotone sequence (<p;) j converges in the C?>-topology to the unique
solution ¢ of the complex Monge-Ampere equation (R.1). Then the con-
clusion follows from the inequalities (R.19). O

Consider now the solutions ., ¥”, minx 1. = 0 = maxx ¥ of the complex
Monge-Ampere equation (R.14) for A = 0. By applying lemma we de-
duce ¢! < 1p. < 4L for all € > 0. By the argument in the case A = 0, we
infer [[Vl]lcocxys 192 ]lcocxy < C, thus [[¢:]lcoxy < C. O

3 The domain of definition of the complex Monge-
Ampere operator.

In the situation we have to consider, the relevant class of currents which can
be used as the input of Monge-Ampere operators is defined as follows.

Definition 3.1 On a complex manifold, we consider the class BT of closed
positive (1,1)-currents © whose exterior products ©F, 0 < k < n, can be
defined inductively in the sense of Bedford-Taylor, namely, if © = 00
on any open set, then yOF is locally of finite mass and OF+1 = i99(yOF)
for k <mn.
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Notice that the local finiteness of the mass of ¥OF is independent of
the choice of the psh potential 1, and that this assumption allows indeed
to compute inductively i90(yOF) in the sense of currents. Now, if y is a
(1,1)-cohomology class, we set

BT, = BTN . (3.1)

Let v > 0 be a closed positive (1, 1)-current with continuous local potentials.
We define corresponding classes of potentials

PBT, = {oeP,|ly+iddpec BTy},
PBT)

{¢ € PBT, | s;pgon}.

Let ¢ € PBT, with zero Lelong numbers. It is well known from the work
of the first author work [Dem3] (which becomes drastically simple in this
particular case), that there exists a family (¢z)e>0, e € Pytew N C(X),
such that ¢. | ¢ as e | 07. In the case the Lelong numbers of ¢ are not
zero we can chose R > 0 sufficiently big such that 0 < v + Rw + i00¢p, for
all e € (0,1) and . | ¢ as e — 0. We have the following crucial result.

Theorem 3.2 (Degenerate monotone convergence result).

Let (X,w) be a polarized compact Kdihler manifold of complex dimension n
and let v, T be closed positive (1, 1)-currents with continuous (resp. bounded)
local potentials. Then the following statements hold true.

(A) For allp e PBT,, ¢ <0 and k,1 >0, k+1<n,k<n-—1

/—gpvf, AT' A" < 400, and %];H AT =T 75,“ .

X

(B) Let ¢ € PBT,, ¢ < 0 with zero Lelong numbers and ¢, € Pyiew N
C™(X), such that p. | ¢ as e — 0T. Then for all k,1 > 0, k+1 < n,
k<n-1

0e (Vg +ew)  NTH— o AT, (3.2)

(Vp. +ew)F AT — 7£+1 AT, (3.3)

weakly as € — 0T,
(C) Let ¢ € PBT,, ¢ <0 and ¢; € Pyiro NC(X) such that v. | ¢ as
e — 0%, Then for allk,1 >0, k+1<n, k<n-1

0e (Vo + Bw)F AT — ¢ (5 + Rw)F AT, (3.4)

(V- + Rw)kH AT — (7 + Rw)k—H AT, (3.5)

weakly as € — 0T,
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As follows immediately from the proof, the statement of this theorem still
holds if we replace T' with a product Tj A.... AT}, where the currents T} have
the same properties as T. As a matter of fact, we wrote the statement in
the previous special case only for the sake of notation simplicity. However
during the proof it is useful to consider that statements concerning terms
involving T" are still valid if we replace T? with v" A T,

Proof. The convergence statement (B.J) follows from (B.2) by using the
weak continuity of the i00 operator. The argument for statement (B) is the
same as for (C).

Proof of (A). We denote by Aj; the assertion (A) in the statement of
the theorem for the relative indices (k,l). We prove statements Ay, | =
0,...,n — k by using an induction on £ = 0,...,n — 1. We remark that claim
.5 asserts statement (A) in full generality for £ = 0. So we assume state-
ment Ay_q,. and we prove Ay, | = 0,...,n — k by using an induction on
. We remark that Ay o hold by hypothesis ¢ € PBT,. So we assume Ay
and we prove Ag;y1. In fact let ¢, := max{p,c} € P,, ¢ € Rey. By the
result of Greene-Wu [[Gr-Wu| let (¢c.c)e>05 Pee € Prytew NC°(X) such that
ee | o as e — 01 and write T = 6 + i00u, with @ smooth, § < Kw and
u bounded with infx v = 0. By using the monotone convergence theorem,
the symmetry of the wedge product provided by the inductive hypothesis in
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k and Stokes formula, we expand the integral

/—80%]2 A THL p n—k—1-1
X

= lim hm+ /—gpc,€ %’Z ATHL A k=il

c——00 g—(

X
. : I+1 k —k—1-1
= CBI—IIOO 11m+ —pee T A Yo A"
e—0
X
. : l k —k—1-1
= CBI—IIOO 11m+ —Pee O NT Ny Aw"
e—0
X

— lim  lim [ p..i00u AT' A 7:2 ARt
c——00 g—01
X

IN

lim lim —Qc.e %]; AT A Kwn =k
c——00 g—01
X

— lim  lim [ wi00p.. A %]; ATEA k=it
c——00 g—01
X

= K/—gpvf,/\Tl/\w"_k_l
X

_ Ii i A k /\Tl A n—k—Il—1
oy EE(?Jr /U(’)’%,E +ew) T w
X

+ lim lim [ u(y+ew)A ’yf, AT A w1
c——00 g—0*t
X

IN

K/—wyzATlAw"_k_l+supu/'y/\*yf,/\Tl/\w"_l_l < 400,
X
X

by the inductive hypothesis in [. We now prove the symmetry relation

VAT = T AT (3.6)

The decreasing monotone convergence theorem implies

lim (e — ®) 'y:f, AT AWkt =0,

CcC— — 00

X
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which means the convergence of the mass ||(¢. — @) 7 A TH|,(X) — 0 as
¢ — —oo. In particular

peve NTH — @yg AT,

weakly as ¢ — —oo. So by the weak continuity of the i00 operator we
deduce

Yoo NYENTH— B AT (3.7)

weakly as ¢ — —oo. The symmetry of the wedge product provided by the
inductive hypothesis in k£ implies

7¢0A7£AT1 = 7¢CATIA7$ = Tl/\’y%/\’yfz

By the other hand (B.7), , combined with the weak continuity of the i99
operator implies, by an induction on [

1
Tl/\mpc/\wf,—>Tl/\7:Z+ ,

weakly as ¢ — —oo. This combined with (B.7) implies the required symme-

try (B.9).

Proof of (B). For all K = 0,...,n —1 and Il = 0,...,n — k we consider
the following statement By ;: for all p =0, ...,k

P2 N (Vg + W) P AT — 0y AT, (3.8)
100, N Ve N (Ve + )P AT — 100 A 75;‘ AT, (3.9)
VN (g +ew) PTEATH — A5 AT (3.10)
PYE N (Yp, +ew) P AT — yb AT (3.11)

weakly as ¢ — 0%. We remark that (B9 follows from (B.§) by the weak
continuity of the 90 operator. By combining (B.9) with the weak continuity
of the i00 operator we obtain

(fYSOE + 8(")) N Vg A (7906 + Ew)kip A Tl — fYal;Jrl A Tl 9

weakly as ¢ — 07. On the other hand the symmetry of the wedge product
proved in part (A) of the theorem implies

k—p+1 l
= WA (Y. +ew)TPHAT
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In this way we deduce (B.10). The statements By o are true by the proof of
claim R.J. We now prove by induction on k = 0,...,n — 1 that statements
By, 1 =0,...,n — k hold true. In fact we prove the following claim.

Claim 3.3 If B; e hold true for all j = 0,...,k — 1, then By hold also true
foralll=0,...n —k.

As pointed out before in order to prove By is sufficient to show (B.§) and

(B-11). The proof of (B.11)) is quite similar to the proof of (B.§) that we now
explain. We first prove by induction on s =0, ..., k — p the inequality

—pe Y5 A (V. + ew)F P ATEA PR

gowp“/\(%,s%—ew)k p=s AT A R

IA
% x\ S

—_

(0 — @) A (Yo + ew)PTTEA Y AT AR

ﬁ
Il
o

+
—

»
|
—

_ /6807304_71/\ 7(,05 —}—a,u)k p—r— 1/\Tl/\w" k— l+1 (312)
X

T

Il
o

Inequality (B.13) is obviously true for s = 0. (Here we adopt the usual
convention of neglecting a sum when it runs over an empty set of indices.)
Before proceding to the proof of the inequality (B.12), we need to point out
two useful remarks.

1) Let a be a smooth closed real (g, q)-form, R be a closed positive (r,r)-
current, v > 0 be a measurable function such that fX vR AW < 4o00.
This implies that the currents i00v A R := i00(v R) and i00v A a A R :=
i00(va A R) are well defined. Then the Leibnitz formula implies

aNiddv AR =i0dv ANa AR. (3.13)
2) Thanks to part (A) of the theorem we have

/ @75” A 7h ATHA WPl 4 o
X

forall h=0,....k —p—r— 1. By (B.13) this implies

/ Spfng”’ (thg + a‘u)k‘*pfrfl A Tl A wnfkflJrl < 400,
X
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so the current
S = gowfé‘”’ A (Y. + au)k*p*”*l AT

is well defined and we can define the current
i00p N ’yg” A (Yp. +ew)fi P AT = 100S

Then the integration by parts formula

/i@égpe AS AR = /gpe i00S N Wk
X X

can be written explicitly as

/iag% A SD%;;M A (Yo, )kl A Tl p gkl
X

= /gp€ 000 NETT A (vp. + ew)FTPTrmLATEA TR (3.14)
X

We suppose now the inequality (B.13) true for s and we prove it for s + 1.
We start by expanding, thanks to formula (B.13), the integral

L= /“PV{Zﬂ A (Yoo +ew)F P8 AT A WM

—<P’Yf>+8 Ay +ew) A (yp. + ew)k—P=s =1 A L A
~p T N80z A (o, +ew) P TIAT! AW
—ep B A (. 4 ew)fPsm L AT p kL

(p,yg-i—s A (7905 + Ew)k—p—s—l A ~y A Tl A wn—k—l

100, N cp’yﬁ“ A (Yp. + ew)FPmsTL AL A Rl

I
M R M M M
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By applying the integration by parts formula (B.14) to the last integral we
deduce

Ve y A ,.Yers A ('7305 + gw)kfpfsfl A Tl A wnfkfl
<p'yf;+s A (Vg + escu)k*pfsf1 Ay AT AWk

{-_‘(p"prrs A (’Ysos + gw)kfpfsfl A Tl A wnfkflJrl )

|
M— S S~

By combining the symmetry of the wedge product proved in part (A) with
formula (B.13) we get

YANETEA (Y, +ew) PTIEATE =y A (g, +ew) P ATEA AR

= (Y. +ew) P T A Y AT AARTS

— ,ngrs (7905 _}_a‘u)kfpfsfl A~y /\Tl )

By plugging this into the previous expression of I we obtain

I = / 8067<p+s+1 A (’Ysos +€w)k p—s—1 /\Tl AW k—I

)V A (Y. + ew) TP AY AT AW

+
\x\x

5(,0’)’90+S/\ 7¢g+5w)k p—s— 1/\Tl/\wn k— l+1

which implies mequahty (B13) for s + 1. For s = k — p the inequality (B.19)
rewrites as

/ —Qe VA (Yo, +ew) TP AT AR < / —oE AT AW

X X
k—1

+ /(cp6 —©) 75 A (Ve + ew)F LAY AT AR
T=p %
k—1

_ /5@%0 ’7¢p5+€w)k r— 1/\Tl W k— l+1

<
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By using the convergence inductive hypothesis (B.§) e (B11) jo i Bje for
j <k —1 we deduce

lim sup / —P VB A (Ve + ew)F P AT A R

e—0t

< /—gofyf, AT AW < 400, (3.15)
X

by statement A. (We can always arrange ¢. < 0 for all € € (0, 1) by changing
@ into p—C'.) Thus by weak compactness of the mass there exists a sequence
(aj)j, gl 01 and a current of order zero © € D,'%kilmikil(X) such that

P A O, +10) 7 AT — 0,

weakly as j — 4o00. So for any smooth and strongly positive form « of
bidegree (n — k —I,n — k — 1), we have

Pe; Vo N (WE], +ejw)" PAT' Na — O A,
weakly as j — +o00. The fact that ¢, | ¢ and
VN (o, + @) PAT N — Af AT A,
weakly as j — 400, by the convergence inductive hypothesis (B.10),_; ;.
implies
ONa Sgowi/\Tl/\a,

thanks to lemma (3.9), page 189 in [Deml]]. Thus © < ap'yf;/\Tl . Combining
this with the inequality (B.14) we obtain

/@ AWt hl < /80%]2 AT A ok
X X

< lim iIJ}f / e Vo N (Ve + ew) TP ATEA R
e—0
X

< lim [ @98 A (%,Ej +ejw)F P AT AR

j—+oo
X
= [enwr,
X
We deduce Tr, (¢ 7!2 AT! —©) = 0, which implies gpvg AT' = O since
0< <p'yf§ AT! — ©. This proves statement By . O
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We introduce also the subsets

PBT, = {@GPBTQ/]/—gp’yZ<+oo}+RCPBT7,
X

ﬁBTg = {pePBT, | supp =0}.
X

Without changes in the proof of theorem B.4 we get the following corollary.

Corollary 3.4 For all ¢ € 75BTW © <0, the assertions A), B) and C) of
theorem [3.3 hold for all k =0, ..., n.

Let now © be a closed positive (n — 1, — 1)-current and consider the L2
space

L*(X,0) = ac I'(X,AMT%) | /ia/\d/\@ < +oo ,

X /Gfa.e

equipped with the hermitian product (o, 8)g = [y ia A B A ©, which is
well defined by the polarization identity. The ©-almost everywhere equality
relation is defined by: a ~ (3 iff

/i(a—ﬁ)/\(a—ﬁ)/\@:o.

X

Let o, o € L?(X,0). We say that the sequence oy, converges L?(X,0)-
weakly to « if

/ia/\B/\@z lim i, NBAO,

X k—+o0 ) x

for all 3 € L?(X,0). Let ¢ € 732 such that [, —p© A w < +oo. Then
one can define dp A © = 9(¢0). We write dp € L*(X,0) if there exists
a € L?(X,0) such that d(¢0) = a A O in the sense of currents. In this case
we write

/i&p/\égo/\@::/ia/\d/\@.
X X

With these notations we have the following corollary.

Corollary 3.5 Let (X,w) be a polarized compact Kihler manifold of com-
plex dimension n and let vy, T be closed positive (1,1)-currents with re-
spectively continuous, bounded local potentials, let © be a closed positive
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(n —1,n — 1)-current and consider ¢ € PBT,, ¢ <0, ¥ € P, N L=(X),
¥ < 0. Then for allk,l >0, k+1<n-—1,

/i@gp ANOp AYE AT AW F 171 < oo (3.16)
X
/z‘aszawA@ < +00. (3.17)
X

Moreover let (Spe)s>0, (¢€)5>0 C COO(X)’ Pe € ’P'erRw, e € P’erew such
that o, | @, V. | ¢ ase — 0. Then

lim [ i0(pe — @) AO(pe — @) A YeNT AW R =0, (3.18)
e—0
X

lirél+ i0(1e — ) NO(Ye — ) NO =0. (3.19)
X

Proof. By integrating by parts we obtain

/i@gpe A Ope A ’yf, AT A k==t
X

= — / e 100, A ’yf, AT A k==t
X

e (v + Rw) A 'y:f, AT A @kt

e (V. + Rw) A ’yf, ATEA W R

|
e M —

By the proof of theorem B.3, B we can take the limit, so

0 < lim+ i0pe A Op. N 7{2 ATEA Rt
—0
: X
= /SD (Y= 7) AEAT AW F 771 < oo, (3.20)

X

On the other hand the weak convergence of the sequence
©e %/; A Tl A wn—k—l—l . 3075; A Tl A wn—k—l—l ,
combined with the weak continuity of the 9 operator implies

Ope N %]; AT AW R 5 9o A 75, AT A @ h=t=t
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weakly as ¢ — 07. Then the L?(X, 'yf, A TEA w11 weak compactness
provided by (B-20) implies (B-1d) and the L?(X, 7!2 ATEA W R weak
convergence dp. — Op as € — 07. This implies

/i@gp A Op A ’yf; ATEA hi=t

X

e—0t
X

= lim /i@gpe A Op A ’yf; AT A k=it

= lim — e 1000 A ’yf; AT A k==t
e—0t+
X
= lirg+ —e (v — ’y¢) A 'yfz AT A ki1
e—
X

= / —0 (v = %) AYEAT ARt
X

= lim [ i0p. A Op. A 7!2 ANTEA Rt

e—07+
X
by identity (B.2(). This implies (B.1§) by elementary facts about Hilbert
spaces. The proof of (B.I7) and (B.19) is quite similar. O

The conclusion of the corollary B.j still holds true if we replace the cur-
rent ’yf; ATEA WP F=1=1 with a sum of currents

S Y G AT AR
k+l<n—1
where C},; € R such that Z > 0. We infer the linearity formula

/z’&p ANOPANE = Z Ch,i /i(?gp A Op A 7!2 AT A W R (3.21)
X k+l<n—1 X

4 Uniqueness of the solutions.

Theorem 4.1 Let X be a compact connected Kdhler manifold of complex
dimension n, let v be a closed positive (1,1)-current with continuous local
potentials, let 0 be a continuous closed positive (1, 1)-form such that {6™ = 0}
is a set of measure zero and vy > 0.

(A) Let i € PYNL®(X) and ¢ € PBTY such that

(7 4+ i00Y)"™ = (v +i00p)™ .
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Then ¢ = .
(B) Let,p € PyNL>®(X) such that

e M (y +i00Y)" = e N (y 4+ i0p)" .
with A > 0. Then ¢ = .

Proof of A. The identity v} = 7, implies ¢ € 75BT9{ by claim R.§. Let ¢,
1. be as in the statement of corollary B.J and set u := 1) — ¢, u. = 1), — @..
Let us also recall the formula

k—1
ak_ﬁk:(a_ﬂ)/\zal/\ﬂkflfl.
=0

From this we deduce

—u(y,; —75) = lim /—us(m’z —-7)

I
—

e—0t
X
n—1
_ : _ ¥ l n—{—1
= sli%h Z / U 100U N Yy A g
n—1
_ : : 3 l n—{—1
= sli%L Z /z@ue/\au/\ww AN
=0 %
n—1
. 5 1 -
= /z@u/\@u/\ww/\yg =1, (4.1)
=0 %

since Qu. — Ou in L*(X, ’yfp A 'ygflfl) by corollary B.§. Inspired by an idea
of S. Blocki [Bloll], we will prove by induction on k = 0,...,n — 1 that

/i@u/\éu/\ﬁp/\ﬁ,/\vkzo (4.2)
b

for all 7,5 > 0, 7+ s =n—k — 1. For k = 0 this follows from ({.1]). So we
assume ([.F) for k — 1 and we prove it for k. In fact consider the identity

k—1 b1
7= Ah =i A AL AT andset Zi= Al AqSAY AL AL
=0 =0
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By applying several times corollary B.§ and by integrating by parts we derive

IN

. ) r s k _ 1; . ) r s k
/zau/\(?u/\vw/\%,/\w _513& i0ue N Ou N vy Ny Ay
X X

lim /i@us A 5(u7£)+k ANvg) — /i@us A O(uidop N E)
e—07t
L X X

lim / iOuz A Ou A fy;”“ AYS + / Uz 100U N\ 100 N =

e—0t

L X X
/i@u/\@u/\'ylfk/\'y; — lim /ugiaaw/\(mp—%p)/\E
e—0t

X X
I+ lim, /iaueAé[w(W—w)Aa]
E—
X

= lim /i@ug/\&/}/\mp/\E—/iaue/\al/}/\%p/\E

e—0t
X X
= /i@u/\aw/\mp/\E—/iau/\aw/\'yw/\E. (4.3)
X X

Set x = @ or x = ®. Then the Cauchy-Schwartz inequality implies

<

/z'au/\aszfyXAE
X
1/2 1/2
/z'auAau/wx/\E /i@zp/\aw/\fyx/\E =0,
X X

by the inductive hypothesis. This combined with (f.J) implies ([£2) for k.
So at the end of the induction we get

O:/iau/\au/\’yn_lZ/i@u/\@u/\@"_120,
X X

by the linearity formula (B.21]). This implies ¢ = 9 by elementary properties
of plurisubharmonic functions.
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Proof of B. By applying the comparison principle as in [E-G-7]| we get

[ [aw= [ ey,

p<tp p<tp <t

which implies f@ <t %Z = 0 since eM¥~%) < 1. This implies that the inequal-
ity ¢ > 9 holds ~;;-almost everywhere, thus the inequality

Yy =V > 7,
holds ~;;-almost everywhere. By symmetry we also deduce that ~; > 77
holds ~g-almost everywhere. The fact that the potentials ¢ and ¢ satisfies

Vg = eMe¥yn (4.4)

implies that a property holds Wfp‘—almost everywhere if and only if it holds
Yp-almost everywhere. We infer Y = Vs hence ¢ —p = Const by part (A),
and equality ([.4) now implies ¢ = ¢. O

5 Generalized Kodaira lemma.

We first recall a few standard definitions of algebraic and analytic geometry
which will be useful in our situation.

Definition 5.1 Let (X,w) be a compact Kahler manifold.

(A) A modification of X is a bimeromorphic morphism p : X — X of
compact complex manifolds with connected fibers. Then there is a smallest
analytic set Z C X such that the restriction p: X ~ = (Z) = X ~ Z is a
biholomorphism; we say that Exc(u) = p~1(Z) is the exceptional locus of .
(B) A class x € HY1(X,R) is called big if there exist a current T € x such
that T > ew, for some € > 0.

By a result of [De-Pd], a nef class x on a compact Kihler manifold is big if
and only if [, x™ > 0. By the proof of theorem 3.4 in [De-Pd] we obtain the
following generalization of Kodaira’s lemma.

Lemma 5.2 Let X be a compact Kdihler manifold and x € HY(X,R) be
a big class. Then there exist a modification i : X — X of X, an effective

integral divisor D on X with support |D| D Exc(p) and such that the class
wx — 0{D} is Kdhler for some ¢ € Qxg.

We associate to x the set I, of couples (u, D) satisfying the generalized
Kodaira lemma .9 and the complex analytic set

Sc= () wlDl). (5.1)

(M?D)eIX

34



A trivial approximation argument shows that the set ¥, depends only on the
half line R x. In the case the class x is Kéhler, (I,0) € I, thus 3, = (. In
the case the class x is integral (or rational), the set ¥, can be characterized
as follows.

Lemma 5.3 Let L be a big line bundle over a compact Kdhler manifold.
Then the class x := c1(L) satisfies

SB(L) C %, = N |E|, (5.2)

EeDivt(X), §€Qx,
x—6{E} ample

where SB(L) is the stable base locus of L, i.e. the intersection of the base
loct of all line bundles kL, and E runs over all effective integral divisors

of X.

Proof. First notice that the existence of a big line bundle implies that X is
Moishezon. This combined with the assumption that X is Kéhler shows that
X must in fact be projective (see [Mo]], and also [Pet]]], [Petd] for a simple
proof). The inclusion SB(L) C ¥, in (-9) is quite easy: Let (u, D) € I,.
Then Kodaira’s theorem implies that {a} = p*x — p{D}, p € Qs is a
Q-ample class on X and so the integer multiples ka are base point free for
k large enough. Therefore the base locus of ku*L is contained in |D|. This
shows that SB(L) is contained in the intersection of the sets u(|D|), which
is precisely equal to X, by definition. Now, if H is an ample divisor on X,
we have

w(x —e{H}) = p{D} +{a} —e{p"H}
and, again, a — eu*H is ample for € € Qg small. We infer that the base
locus of k(L —eH) is contained in X, for k large and sufficiently divisible. If
we pick any divisor F in the linear system of k(L —eH), then L — %E =cH
is an ample class, and the intersection of all these divisors F is contained
in X,. Therefore
N |E| C .

EeDivt(X), 6€Qx,
x—0{E} ample

The opposite inclusion is obvious. O

The following lemma gives us an important class of densities which will
be allowable as the right hand side of degenerate complex Monge-Ampere
equations.

Lemma 5.4 Let X be a compact complex manifold, let Q > 0 be a smooth
volume form and let o; € H°(X,E;), . € H'(X,F,), j = 1,...,N, r =
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. M be, non identically zero, holomorphic sections of some holomorphic
vector bundles over X such that the integral condition

N M
/ [T - TT Il @ < +oo
Y J=1 r=1

holds for some real numbers l; > 0, h, > 0. Then the integrand function
belongs to some LP space, p > 1, and for A > Ag > 0 large enough, the
family of functions

M

Hwﬂ TP +e ™. cefo)

r=1

converges in LP-norm to the function Go when ¢ — 0. In fact, for N # 0
and l; > 0, one can take Ay := (D, h)/(min; ;).

Proof. By blowing-up the coherent ideals generated by the components of
any of the sections o, 7, we obtain a modification f : X — X such that
the pull-back of these ideals by pu is a divisorial ideal. Using Hironaka’s
desingularization theorem, we can even assume that all divisors obtained in
this way form a family of normal crossing divisors in X. Then each square
loj o uf? (resp. |7 o u|?) can be written as the square |2%|? (resp. [27|?) of
a monomial in suitable local coordinates U on a neighborhood of any point
of X, up to invertible factors. The Jacobian of x can also be assumed to be
equal to a monomial 27, up to an invertible factor. In restriction to such a
neighborhood U, the convergence of the integral is equivalent to that of

N M
/ 22 TT 1= P T 1% 172 de.
i j=1 r=1

Notice also that X can be covered by finitely many such neighborhoods,
by compactness. Now it is clear that if the integral is convergent, then the
integrand must be in some LP, p > 1, because the integrability condition
is precisely that each coordinate z; appears with an exponent > —1 in the
n-tuple v+ > ljo; — > hy3; (so that we can still replace I}, h, with pl;, ph,
with p close to 1). In order to prove the convergence of the functions G; in
the LP norm we distinguish two cases. In the case where [; = 0 for all j, the
claim follows immediately from the monotone convergence theorem. The
other possible case is I; > 0 for all j. In this case the convergence statement
will follow if we can prove that for A large enough the functions

N M
P TTA P +eMs [T07 1P+
j=1 r=1
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converge in LP-norm as € — 0. This is trivial my monotonicity when N = 0.
When N > 0 and [; > 0, we have

N N M
H(|Zaj|2—|—€A)lj < C(H(|Zaj|2lj+€Aminlj)’ H(|Zﬁr|2+€)7hr < ethr,

j=1 7j=1 r=1

so it is sufficient to take A > (3 h,)/(minl;) to obtain the desired uniform
LP-integrability in e. (]

6 Existence and higher order regularity of the so-
lutions.

We are ready to prove the following fundamental existence theorem.

Theorem 6.1 Let X be a compact connected Kdhler manifold of complex
dimension n > 2, let w > 0 be a big closed smooth (1,1)-form such that
{w™ = 0} is a set of measure zero and let Q > 0 be a smooth volume form.
Consider also 0; € H(X,E;), 7 € HY(X,F,), j=1,..,N, r =1,.,M
be non identically zero holomorphic sections of some holomorphic vector
bundles over X, such that the integral condition

N M
/ | G2 N R /w" (6.1)
r=1

x J=1 = X

holds for some real numbers l; > 0, h. > 0. Then there exists a unique
solution p € PBT,, of the degenerate complex Monge-Ampére equation

N M
(w+i000)" = [ [ loj/ - [[ ImI" X0, A >0, (6.2)
j=1 r=1

which in the case A = 0 is normalized by 0 = supy ¢. Moreover there ez-
ists a complex analytic set ¥, C X depending only on the (1,1)-cohomology
class of w possessing the following properties.

(A) The set X, is empty if and only if the (1,1)-cohomology class of w
1s Kdahler.

(B) If L is a holomorphic line bundle over X such that {w} = 2mwci(L)
then the set ¥, contains the stable base locus of L.

(C) If we define the complex analytic sets
S =%,U (U{Tr = O}) , S=5U U{O’j =0},
r J
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then o € P, N L¥(X) N COX ~ £,) N C*(X ~ §') N C¥(X . S), for all
aec(0,1).

Proof.

Step I. We first assume the existence of an effective divisor D and § > 0
small such that {w} —d{D} is a Kéhler class. We infer from the classic Ko-
daira’s lemma that this is the case if X is projective and {w} € H'1(X,Q)
is big and nef (as follows from the assumptions of theorem [.I)). So by
using the Lelong-Poincaré formula we deduce the existence of a smooth her-
mitian metric on O(D) such that 0 < ws = w — 276[D] + §i00 log |s|? with
div(s) = D. By convention we will put 6 = 0 if w > 0 and we will denote
by |D| the support of the divisor D.

(I.A) Setup of Step I.

As will be clear from the proof, we can assume without any lost of generality
N = M = 1. Let a > 0 be a Kéhler metric, let £ € (0,1) and let c. be a
normalizing constant for the integral condition

02 A\l
X X

with A := (h + 1)/I. The condition (B.1) combined with lemma .4 implies
c- — 0, when € — 0T. Consider the standard solutions p. € C*°(X) of the
complex Monge-Ampere equations

(lof* + )
(|72 +¢)h

given by the Aubin-Yau solution of the Calabi conjecture. As usual, in the
case A = 0, we normalize the solution (. with the condition 0 = maxx ..
Notice that the integral condition (p.3) implies that a non identically zero
solution ¢, changes signs in the case A > 0. By combining lemma [.4 with
the estimate of corollary we deduce a uniform bound for the oscillations,
Osc(p:) < C. Set now ws. 1= ws + e and 1, := ¢ — 6log |s|2. Then

(w+ea +i00p: )" = e M Q) (6.4)

0 < w+ea+i00p. = ws. + 100, (6.5)
over X \ |D|, and equation (6.4) can be rewritten as
(woe + 10D, )" = el FAVIoglslPHrve (6.6)
on X \ |D|, with F® := f¢41-a° — h-b°, and with
fei=ce +log(Q/uwg,), o = log(|o|* + EA) . b =log(|T]* +¢).

(Here the superscripts in e are indices and not powers.) Let Cus. be the
Chern curvature form of the Kahler metric ws. > 0 and let
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= mi i C 2 p|52 .
Yoo =min min ws,- (€@, E @M)€l nlws.

(We remark that the minimum is always achieved by an easy compactness
argument, see e.g. [Kaff], chap II, sect. 5.1, theorem 5.1, page 107.) We
observe that the family of metrics (ws.). has bounded geometry for § fixed
and 0 < e < 1. In particular for all € € (0, 1]

Ve > Cs, 1] < Kos, Mws —w) +1i00f° > —Koswse -

Moreover we can assume i90a’ , i100b° > —Koswse , (see the Appendix B.)

(I.B) The Laplacian estimate.

This estimate is obtained as a combination of ideas of Yau, Blocki and Tsuji,
[Nad], [Blod], [[[J. Consider the continuous function A. : X — (0, +00)
given by the maximal eigenvalue of ws . + 901, with respect to the Kihler
metric wg e,

Ae(@) == max (w5 +i000:)(E, JOIE2, .

feTX,x N0z

i.e. we extend A. over |D| by continuity, as is permitted by (6.§). Consider
also the continuous function over X \ |D|,

A; :=log Az — ki) + hb®
with 0 < k:=2(1+h Kys/2 — K1) and
Ky :=min{-[A+ (1+1)Kos/(2n)], Cs} < —A.

The reason for this crucial choice will be clear in a moment. The singularity
of the function 1. implies the existence of a maximum of the function A, at
a certain point . € X ~ |D|. Let g be a smooth real valued function in a
neighborhood of z. in X \ |D| such that ws. = $09g, and let u := g + 2¢..
Then

_ i
Ws,e + 2681/)6 = 588u .
In the following calculations we use the notation v 7 := 8228% . Let (z1,...,2n)
be w;s .-geodesic holomorphic coordinates with center the point x. such that
the metric ws. + 1001, can be written in diagonal form in x.. Explicitly
Woe =5 D 1, 97 dzi A dzp, with

i .
G =01 — D Ol 2z + O(2P), gy unlae) = —CFF,
j?k
Coss o (we) = Z Cl]f dzj @ dz @ dzp, ® dz; .
dklr
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and %85u = %Zl w rdz A dz, with 0 < U7 < oo < upgp at the point z..
For every ¢ € C" we set g, ¢ := Y1917 G G Then
09u(E1, €01)

" -
A(z) = max ——————~ =max ﬁ,
() €€Txo\0: DOg(E10,€01)  [¢l=1 g, ¢

and so A (xz) = Un.n(ze), Z:Z < A.. We also set

s

A, = log D™ _ jah + hibe .

n,n

Then A, < A., with [15(355) = A.(x.). This implies that A, also reaches a
maximum at z., thus Ay, A, (xz) <0, where Ay,_ is the Laplacian respect to
the metric ws . +i00v.. All the subsequent computations in this part of the
proof will be made at the point z.. By the local expressions for the Ricci

tensor we obtain

2 N x
Opalogdet(u;z) = <“n,ﬁ,l,ﬁ =) unisv’ uﬁ,t@) u”

Lp EN
o 12
_ E :unynypyp _ Z |[un,pal
- Y
Up 5 Uy g
> DD g UppUaaq

and in a similar way 97, ; logdet(g;z) = >_, gnnpp- Then by differentiating
with respect to the operator 8,2%,71 the identity (p.6), which can be rewritten
as

log det(u; ;) = F° + A log |s|? + Au — g)/2 + log det(g; ),
we obtain

unvﬁvpvﬁ ’un,p,q‘Q o £
Z B Z - n,n + )‘[(w(s)n,n - an]/z
o Upp g UppUaq

+ la%,ﬁ - hb;,ﬁ + AMunn —1)/2 + Z In,np,p -
P

Combining this with the inequality Ay A (xz.) <0, we get

0 3 Aps _ < Unapp  |Unnpl n k/2 4 hby,; — gnm,p,p> k)2

- o Upp Up,p Un,pn  Upp u%m Up,p
_ Z |tn,p.ql” _Z |t

g UppUq,qUnn T Upp Uz g
I frg+ Al(Ws)nn — wnn —1]/2 + la;,ﬁ - hbfm

un,ﬁ
== k/24hbS - — gnaps

+ Z (gzn,p,p + / 271)7 gn,n,p,p> - (nk - )\)/2 )

p n7n p7p
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We observe at this point that the sum of the two first terms following the
second equality is nonnegative and the trivial inequality

_hban Zhb;,p N Z—hK()é/?
Un,n Upp » Up,p

By plugging these inequalities in the previous computations and by using
the definition of the constants k and Ky, we get

Ki-Cpp , —Ki+ Gy 1

0 > Bp — (nk—X)/2
B Zp: ( Un,n Upp Up,p> (n 4
> Z (C;gl_Kl)(un,ﬁ_up,ﬁ) +Zi — Gy,
» Up,p Un,n o Upp

where Cy > 0 and all the following constants are independents of €. Denote
by (21, ..., 7,) the real part of the complex coordinates (21, ..., z,). Then the
inequality C,7" = Cw&g(% ® a%p, % ® a%p)(xg) > 75 > Cs implies

1

1 U = n-l —Ape—Adlog|s|2—FE _1_
0> E ——Coz # _00:6 n—1 urrz;’zl_CO'
p p,p

Consider now the function B, := e?c = A.e #¥<th?"  Then . is also a

maximum point for B, over X \ |D| and the previous inequality can be
rewritten as

(k=X)e —A5 log |s|2 —hbE —F=

0 > e = () B, (x.)7T — Cy

_ _ 2_ ;. €_r€
(E=X)pe—dklog|s|“—la®—f ($)

_ . = ) Bo(z.)"T1 — Cy.

Then by the inequalities & — A > 0, [s]?> < C, a°® < C and |f¢] < Koy, it
follows the estimate

(=) miny ¢ L
0>CrenTt ‘ Be(:ve)"—l —Cy.
In conclusion we have found over X ~ |D| the estimates

0 < 2n+4 Ays pe — 6Ay;, log |s|2 = Try,, (ws,e + i00).)

: C ekcpg—(k—)\) miny e C ek Osc(pe)
Ktpe —hb 2 2
< 2nAc <2ne Be(z) < S[ZR([7Z + ) = [s[2k [72h
The last inequality follows from the fact that Aminy ¢. < 0, since a non
identically zero solution ¢. changes signs in the case A > 0. Then using the
inequality
{6Aw¢s,s log |5|2{ = |TrW6,5(w —ws)| <C
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over X ~ |D| we deduce the singular Laplacian estimate

s ek Osc(pe)

|S|25k |7-|2h +C.

—C < 2n+ Aw&s@s <

(I.C) Higher order estimates B
By the previous estimates we infer 0 < 2uy ;< Try,, (wHea+iddp.) < 2Y.,
forall I =1,...,n, with

Cs ek Osc(pe)
|s[20F (|7 > + &)

T, :=

The equation (f.4) rewrites as (w + ea + 100p.)" = el FA¢=wl . We

)

deduce ef" A% =TT, wp < Y2 tuy g, for all k = 1,..,n. The fact that
a non identically zero solution (. changes signs in the case A > 0 implies
Aminy ¢. > —AOsc(p). Thus

P Osc(pe) T;*" ws e <w-+ea+ i@é@g .

Then an elementary computation yields the singular estimate

Cgl |S|26k(n—1) |0_|2l |7_|2h(n—2) e—knOsc(gog) W e

Cs ek Osc(pe)

S w+€0&+265§05 S WW&&-.

Moreover the fact that ¢. € P 4o implies
2|6(§g05|w5’5 < Ay pe + 2Ty (w+ea).

At this step of the proof we define

o= (] DI

{w}—6{D}>0
D>0, >0

(The final definition of ¥, will be given in step II.) Then by the standard
Schauder estimates [Gi-Tru] we find that for any coordinate compact set
K C X ~ 5’ there are uniform constants C > 0 such that

mIE(LX V| < Ck <mI?XASD€ + mI?X |90€|> :

Therefore, we can apply the complex version of Evans-Krylov theory [Tid] on
every compact set K C X \ S to get uniform constants Cx 2 > 0 such that

”‘PEHCZQ(K) < Ckp. Letnow U C X ~\.S be an open set and § € (’)(T)l(vo)(U)_
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By deriving with respect to the complex vector field £ the complex Monge-
Ampere equation (6.4), which we rewrite under the form

(w+ ea + 0. )" = eHetAPeqn |

with
H. :=c. +log(2/a™) + la® — hb®,

we obtain (see the proof of formula 11 in [Pa]])
A (&.¢c) =208 . pe = —Try, Le(w+ca) + Trq Lea + 26 . Ho . (6.8)

where A, and Tr,_ are respectively the Laplacian and the trace operators
with respect to the Kihler metric w + ca + i0dp. > 0. By the uniform
estimates (.7) and l¢ellc2o(xy < Ck 2 it follows that the operator A, is
uniformly elliptic with coefficients uniformly bounded in C“-norm at least,
over any compact set K C U. The right hand side of equation (.§) is also
uniformly bounded in C'*-norm at least, over K. By the standard regularity
theory for linear elliptic equations [[Gi-Trd] we deduce ||¢ . Cellc2oiy < Ok
for all € > 0. By conjugation the same holds for £ ... Thus we obtain the
uniform estimate |¢c||cs.e(x) < Ck 3

In its turn this estimate implies that the coefficients of the Laplacian A,
and the right hand side of equation (f.§) are uniformly bounded in C1<-
norm at least. By iteration we get the uniform estimates |[¢c || cra(x) < Ck
for all £ > 0 and r € N. We deduce that the family (¢:)e>0 C C®°(X N S)
is precompact in the smooth topology.

Chose now an exhaustion of X \ S by compact subsets K;. The precom-
pactness of the family (¢z)e>0 C C°°(X N S) in the smooth topology implies
the existence of a family of sequences (¢;;); C (¢z)e>0 such that (p;y1,) C
(pj.1)1 and @;; converges in the C°°(K;)-topology as | — 4o00. We obtain
in this way a function ¢ € (C*° N L*>®)(X \ S) such that w +i0d@ > 0 over
X\ S and solution of ([.9) over X \S. By theorem 5.24, page 54 in [Dem]]]
there exist a unique ¢ € P, N L°(X) such that ¢ = @ on X ~ S. This
implies that the global complex Monge-Ampere measure (w -+ i99p)™ does
not carry any mass on complex analytic sets. We infer that ¢ is a global
bounded solution of the complex Monge-Ampere equation (6.9) which be-
longs to the class P, N L®(X)NCYX N S)NC®(X \9).

(I.D) Uniqueness of the solution

We now prove now the uniqueness of the solution ¢ in the class P BT,. In
the case A = 0 this follows immediately from the theorem [} In the case
A > 0let v € PBT, be an other solution and let Gy > 0 be the integrand
in the first integral in (6.1)). The fact that ¢ € P,, implies that we can solve
the degenerate complex Monge-Ampere equation

(w + i00u)" = G ™ Q, (6.9)
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with the methods so far explained, so as to obtain a solution u € PINL®(X).
In fact, with the notations of lemma .4, we consider the solutions u. of the
non degenerate complex Monge-Ampere equations

(w + e+ i0u )" = G, M=Te Q)

with ¢ | ¥, ¥, € C®(X), . < C, i00. > —Kosws. and c. being
a normalizing constant converging to 0 as € — 0. Moreover by combining
lemma .4 with the dominated convergence theorem we infer that the family
G, eM=tc converges in LP-norm to Gpe*’. These conditions are sufficient
to provide the singular Laplacian estimate of step (I.B). Thus by replacing
the C'*°-compactness argument of step (I.C) with a similar one using the
C“-compactness we infer the existence of the solution w of the degenerate
complex Monge-Ampere equation (@)

By the uniqueness result in the case A = 0 we infer u = 1 — supx ¢, thus
1 € L>®(X). Then the required uniqueness follows immediately from theo-

rem [L] B.

Step 1I.
In this step we apply to the class {w} the considerations of section f]. In
fact let (p, D) € Ig,y. Then the integral condition (B.1]) implies

U< / pret = / (Go 2o p) - (A"Op) A (A"Dpr) = / (Goo ) |A"0p? 5

X X X

where o and 8 > 0 are hermitian forms respectively over X and X,

a™ - (A"Ou) A (A"0p)

ﬂn
Therefore by applying the fact that the class {p*w} — 0{D} is Kéhler, as in
step I, we can solve the degenerate complex Monge-Ampere equation

Q
|A"(9,u|iﬁ = and = (—n o M) g >0.

«

(1*w +i000)" = (G o ) [N"Opl% 5 *
so as to obtain a solution
P € Py NL¥(X)NCUX N (ID|Up1S) N O (X N (ID|Up~tSp)),

with
Sj = U{Tr =0}, and So := SHU U{aj =0}
r J

Remark that we have in fact |div(A"du)| C |[D| by our definition of the
set It,y. Moreover jip*w = 0, where j, : p~(q) — X, q € p(|D]) is
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the inclusion map. Thus ® o j, € Psh(u~'(qg)) since ® € Py, N LZ(X).
By hypothesis ;1= 1(g) is compact and connected, which implies that & is
constant along the fibers 1~ !(g). Therefore we can define ¢ := 7, ® € P, N
L>®(X). The fact that ¢ is bounded implies that the current (w-+i0d¢)"™ does
not carry any mass on complex analytic sets. Thus ¢ is the unique solution
in P, N L>(X) (see Theorem [.1) of the complex Monge-Ampere equation
(b-2) with the required C®, C*°-regularity over the adequate subsets of X ~\
©(]D]). With the notations of section f] we set finally ¥, := ¥y,y. Then the
conclusion (C) about the P, NL>®(X)NC*(X \S")NC>(X \ S) regularity
of the solution ¢ follows by letting (u, D) € Iy, vary. The proof of the
uniqueness of the solution ¢ in the class P BT, is the same as in step 1.
We remark now that if ¥, is empty then the class of w is Kéahler. In
fact, let us choose the volume form 2 > 0 so that fX w" = fX Q. By
the previous arguments we can find a unique solution ¢ of the equation
(w4 i00¢)" = Q > 0, which is smooth, thus w + i9d¢ > 0 is a Kihler
metric. This proves statement (A) of theorem f.I. Statement (B) follows
immediately from lemma [.3

The required C%(X \ X, )-regularity of the solution ¢ will follow immediately
from the following theorem O

Theorem 6.2 . Let X be a compact connected Kdhler manifold of complex
dimension n > 2, let w > 0 be a big closed smooth (1,1)-form such that
{w™ = 0} is a set of measure zero and let Q > 0 be a smooth volume form.
Let also f € Llog"™ L(X), § > 0 such that Jxw" =[x fQand X >0
be a real number. Then there exists a unique solution ¢ € PBT,, of the
degenerate complex Monge-Ampére equation

(w4 100p)" = f P, (6.10)

which in the case A = 0 is normalized by 0 = supy ¢. The solution ¢
is in the class P, N L>®(X) N CYX \ X,) and satisfies the CY-estimate
lellcoxy < C(6,w, Q) Iwﬁ(f)% + 1. Moreover the constant C(d,w,) > 0
stay bounded for perturbations of w > 0 as in the statement (C') of theorem

Proof. We consider a regularizing family (f;); C C*(X), f; > 0 of f in
Llog" ™ L(X). (The existence of such family follows from [Ra-Rd| page 364
or [fw-Mgd]|, theorem 4.12.2, page 79.) We can assume as usually fX w" =
Jx [i Q. By the proof of theorem 6.1 and the C%estimate in corollary
we deduce the existence of a unique solution of the degenerate complex
Monge-Ampere equation

(w +i0Dp))" = fj %10, (6.11)
with the properties ¢; € P, N L®(X) N C®(X \ X,) and
leillooce) < C = CEw, Q) Los(f)5 +1. (612)
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(With supy ¢; = 0 in the case A = 0.) We deduce in particular the uniform
estimate

1f i ||Llog"+5 L(X) < Ke)\CHfHLlogn+5 L(X)> (6.13)

for all j. (See [Ra-Rd| page 364 or [[lw-Mg], theorem 4.12.2, page 79.) On
the other hand the uniform estimate (f.19) implies by elementary properties
of plurisubharmonic functions, (see [Dem1]], chapter 1) the existence of a L'-
convergent subsequence (¢;); (which by abuse of notations we denote in the
same way). We can apply the C-stability estimate of theorem R.1, B to the
complex Monge-Ampere equation (f.11]) since we dispose of the estimates
(b.12) and (b.13). Notice in fact that thanks to the estimate (p.13) the
CV-stability estimate of theorem P.I, B apply even if in the case A > 0 the
solutions ¢; are not normalised by the supremum condition. We infer that
the sequence (ip;); is a Cauchy sequence in the C°(X)-norm, thus convergent
to some function ¢ € L®(X) N CY%X \ X,) such that w + i0d@ > 0 over
X N X,. This implies the convergence of the weak limits

(w+i00@)" = lim (w+iddp;)" = lim f;e*PiQ = f 1%Q,

j=Foo j=Foo
over X N\ 3,. The same argument in the proof of step (I.C) and step (I.D) in
the proof of theorem [.] implies that the function ¢ extends to a unique so-
lution ¢ € PBT,, of the degenerate complex Monge-Ampere equation (f.10)
with the requited regularity and with [¢[|cox) < C, as follows from ele-
mentary properties of plurisubharmonic functions. ]

Proof of theorem [[.3.

A result of Kawamata [Kaw]| claims that in our case the canonical bundle
is base point free. By Noetherianity, for all m > 0 sufficiently big, mKx
has no base points. So we can fix m such that the pluricanonical map
fm : X — CPV is defined. Consider also the semipositive and big Kihler
form wy, == f}wrs/m € 2mci(Kx), where wpg is the Fubini-Study metric
of CPY. Let also £ > 0 be a smooth volume form over X, Jx Q= [ywn
such that —w,, = Ric(Q). According to theorem [6.] we can find a unique
solution ¢ € P BT, of the degenerate complex Monge-Ampere equation

(W +1000)" = e¥ Q.

Moreover ¢ € P, NL®(X)NC®(X \ X, ), thus w, := wy,, +i0dyp is the

required unique Einstein current in the class BTI;grc1 (Kx)" O

7 Appendix

Appendix A. Basic facts about Orlicz spaces. Let P : R>y — R,
P(0) = 0, be a convex increasing function and € > 0 be a smooth volume
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form over a manifold M and let X C M be a Borel set of Q-finite volume.
According to [Ra-Rd] we introduce the vector space

P(Xy:=43f:X— o0 : 00
L (X)._{f.X RU {£00} |\ > 0 /XP(\f\/)\)Q<+ }

(with the usual identification of functions equal a.e.), equipped with the
norm

1 le e = inf{/\>0!/xP(\f\/>\)Q§1}.

The space LY (X) equipped with this norm is called the Orlicz space asso-
ciated with the convex function P. Moreover this norm is order preserving,
e |[fllLrxy < llgllor(xy if [f] < lgl ace. IE P(t) = [¢|P, p > 1, then L¥(X)
is the usual Lebesgue space. Other important examples of Orlicz spaces are
given by the functions P, := tlog®(e+t) and Q, := et — 1, @ > 1. We set
Llog® L(X) := L (X) and Exp"/® L(X) := L% (X). An important class
of Orlicz spaces is given by considering functions P satisfying the “doubling
property”: P(2t) < 2¢P(t) for some constant C' > 1. This is the case of the
functions [¢t|P and P,(t), but not the case of Q,(t). For functions satisfying

the doubling condition one has (see proposition 6 page 77 in d)

LP(X) = {f:XﬁRU{ioo}] /XP(\f\)Q<+oo} ,
and
71 _
[ PUSIholDR =1

for all f € LY (X) ~ {0}. So in the particular case of the function P,, one
obtains the inequality

It ) < [ 1f11087 (e + 1151 1) 2. (7.1)
X

since || fllz1(x) < [1fllL10ge L(x)- It is quite hard to get estimates of the norm
Exp!'/® L(X), however it is easy to obtain

1
1 a = ’

(7.2)

The relation between the Orlicz spaces Llog® L(X) and Exp'/® L(X) is
expressed by the Holder inequality (see [[w-Mg])

[ 199 < 20 1 lera 100 Wl - (73)
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which follows from the inequality xy < Cy(Pa(z) + Qa(y)) for all z,y > 0.
(Observe moreover that C; = 1.)

Appendix B. Computation of a complex Hessian. Let 0 € H(X, F)
be a holomorphic section of a holomorphic hermitian vector bundle (E,h)
and set S. := log(|o|? + ¢), for some ¢ > 0. We denote by {-,-} the exterior
product of E-valued forms respect to the hermitian metric h. We have

o i{ahJ, J}

0S. =
T Qo 1 e

)

since o is a holomorphic section. We compute now the complex hessian

088, — —iohoo}
lo|? +
_ —i{00h0,0} + i{Oho, Oho} - 1
= o te + i{Opo,0} NO 7‘0‘24_5
{00, 0n0} — {iCpho,0} B i{Opo,0} N{o,0n0}
- ol +& (ol + )2
~ (lo|* +&)i{Ono,0p0} — i{Oho,0} A{o,0n0} _ {iCgpo,0}
B (lo]? +e€)? of?> + ¢
i7(S.)

where Cg , € C%°(X, AV T* X ®End(E, E)) is the curvature tensor of (E, h).
We show that the (1,1)-form ¢7'(S:) is nonnegative. In fact by using twice
the Lagrange inequality

i{Oho, 0} Ao, 00} < |o*i{o,0,0n0}

(which is an equality in the case of line bundles), we get

ei{Opo, Opo} - gi{0ho,0} N{o,Opot €

T(S.) > —
TS 2 o reg 2 oP(oP+e? 0P

i0S-NOS. > 0.

Observe that the last form is smooth. Consequently, we find the inequalities

iwxziﬁm&M&—%%%?
> 5 i9S. NS — ||Crall L
it |O'|2 3 3 E,h h,w |O_|2 +€

where w is a positive (1, 1)-form.
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Appendix C. Proof of estimate (P2() in lemma R.13. We will ap-
ply the computations of step (I.B) in the proof of Theorem [.1] to the non
degenerate complex Monge-Ampeére equation

L= I
(w+ 283@9)” = MHle =%

In this setting, the notation of setup (I.A) in the proof of the Theorem .1
reduces to § =1 = h =0 and i00h > —Kow. By replacing the term f with
h—¢’;_, in the expansion of the term 3 A, 5/u, 5 in step (I.B) in the proof
of Theorem [6.1], we infer

—Ly! —hte | 1 ! _
0> o Wi (Pina .
’ Un,n
Thus
1 2n + maxx Ay’
0> Clu,z — — - Cp, (7.4)
4’U,n7ﬁ
by the estimates
o S 91 <@ <@ < < (7.5)

This estimate implies also that at the maximum point x; we have
wn (1) = Yy = M By(a5) > O3B

with Bj := maxx B; > 0. Then estimate (£.20) in lemma follows from
([-4) and the fact that

0<2n+ chp;- < el maxx @ B; < CBj,

which is itself a consequence of ([.j). O

Appendix D. Proof of the conjecture of Tian. Let (X,wx) be a polar-
ized compact Kéhler manifold of complex dimension n, let (Y, wy) be a com-
pact irreducible Kéhler space of complex dimension m < n, let 7 : X — Y
be a surjective holomorphic map and let 0 < f € Llog"™ L(X,w?%), for
some ¢ > 0 such that 1 = [, fw%. Set K; := {n*wy + twx}" > 0 for
t € (0,1). Consider the complex Monge-Ampeére equations

(T*wy + twx + 100" = K; f W' .
The hypothesis (C1) of statement (C) in theorem R.1] is obviously satisfied.
The hypothesis (C2b) is also satisfied since

-1
n—m

. (Trwy + twx)™ " e T'wy AWy
i S rorrl B A A I
yey zer—1(y)
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We deduce Osc(¢) < C < 400 for all ¢ € (0,1) by statements (C) and (A)
of theorem PR.1. This solves in full generality a conjecture of Tian stated in

(R4
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We wish to point out that in a quite recent preprint [Di-ZH] the au-
thors claim (in Theorem 1.1) boundedness and continuity of the solutions of
some particular type of degenerate complex Monge-Ampeére equations. No
proof of this claim seems to be provided. The authors also claim a stability
result which is not sufficient to imply the continuity of solutions in the de-
generate case. In fact a sequence of discontinuous functions converging in
L*°-norm does not have necessarily a continuous limit! Moreover the same
claim (Theorem 1.1) has been stated in [Zh]], [ZhT)], but again no proof of
continuity seem to be given (see page 12 in [Zhl]] and page 146 in [Zh3)]).
The arguments for the boundedness of the solutions in [Zh]], [EhJ are quite
informal in the degenerate case and seem impossible to follow.

Concerning the stability of the solutions, the continuity assumption is
quite natural and often available in the applications. In fact in the applica-
tions one works with smooth solutions provided by the Aubin-Yau solution of
the Calabi conjecture with respect to variable Kahler forms of type w+ca as
in the proof of theorem [.1]. This perturbation process is one of the reasons
of trouble for the continuity of the solutions. Moreover the stability with
respect to the data f considered in [Di-ZH] is not essential in this context
since one has L'-compactness of quasi-plurisubharmonic functions normal-
ized by the supremum condition. In fact a particular case of the stability
result, namely Theorem P.] B, implies the continuity of the solution of the
complex Monge-Ampere equation (w +i00¢)" = e*? f Q, whenever w > 0 is
a Kihler metric and f € Llog""® L.
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