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ABSTRACT

We present the first interferometric NIR observations of the LBV η Carinae with high spectral resolution.
The observations were carried out with three 8.2 m VLTI Unit Telescopes in the K-band. The raw data are
spectrally dispersed interferograms obtained with spectral resolutions of 1,500 (MR-K mode) and 12,000 (HR-
K mode). The observations were performed in the wavelength range around both the He I 2.059µm and the
Brγ 2.166 µm emission lines. The spectrally dispersed AMBER interferograms allow the investigation of the
wavelength dependence of the visibility, differential phase, and closure phase of η Car. In the K-band continuum,
a diameter of 4.0±0.2 mas (Gaussian FWHM) was measured for η Car’s optically thick wind region, whereas the
Brγ and He I emission line regions are larger. If we fit Hillier et al.1 model visibilities to the observed AMBER
visibilities, we obtain 50% encircled-energy diameters of 4.3, 6.5 and 9.6 mas in the 2.17µm continuum, the He
I, and the Brγ emission lines, respectively. In the continuum near the Brγ line, an elongation along a position
angle of 128o

± 15o was found, consistent with previous VLTI/VINCI measurements.2 We find good agreement
between the measured visibilities and the predictions of the radiative transfer model of Hillier et al.1 For the
interpretation of the non-zero differential and closure phases measured within the Brγ line, we present a simple
geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of
anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar
regions.

Keywords: Stars: individual: η Carinae – Stars: mass-loss, emission-line, circumstellar matter, winds, outflows
– Infrared: stars – Techniques: interferometric, high angular resolution, spectroscopic

∗ Based on observations obtained with the VLTI interferometer of the European Southern Observatory (ESO), Chile
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1. INTRODUCTION

η Car is one of the most luminous (L ∼ 4 × 106 L⊙) and most massive (M ∼ 100M⊙) unstable Luminous
Blue Variables suffering from an extremly high mass loss at a rate of ∼ 10−3 M⊙yr−1.3 It is surrounded by the
expanding bipolar Homunculus nebula ejected during the Great Eruption in 1843. The inclination of the polar
axis of the Homunculus nebula with the line-of-sight is ∼ 41o with the southern pole pointing towards us.4 The
first measurements of structures in the innermost sub-arcsecond region of the Homunculus were obtained by
speckle-interferometric observations.5,6 These observations revealed a central object (component A) plus three
compact and unusually bright objects (components B, C, and D) at distances ranging from approximately 0.1

′′

to
0.2

′′

. Recent observations of η Car by Chesneau et al.7 using NACO and VLTI/MIDI revealed a butterfly-shaped
dust environment at 3.74 and 4.05µm and resolved the dusty emission from the individual speckle objects with
unprecedented angular resolution in the NIR.

Spectroscopic studies of the Homunculus nebula8,9 showed that the wind of η Car is latitude-dependent. Van
Boeckel et al.2 resolved the optically thick, aspheric wind region with NIR interferometry using the VLTI/VINCI
instrument. They measured a size of 5 mas (50% encircled energy diameter), an axis ratio of 1.25 ± 0.05, and
a position angle (PA) of the major axis of 134o

± 7o, and derived a mass-loss rate of 1.6 × 10−3 M⊙/yr−1.
This aspheric wind can be explained by models for line-driven winds from luminous hot stars rotating near
their critical speed.10,11 The models predict a higher wind speed and density along the polar axis than in the
equatorial plane. Van Boeckel et al.2 showed that the K broad-band observations obtained with VINCI are in
agreement with the predictions from the detailed spectroscopic model by Hillier et al.1 The Hillier et al. model
was developed to explain STIS HST spectra.

A variety of observations suggest that the central source of η Car is a binary. Daminelli et al.12 first noticed
the 5.5-year periodicity in the spectroscopic changes of this object, which has been confirmed by several other
studies since then.13–17 On the other hand, to date, the binary nature of the central object in η Car is still a
matter of debate.18–21 HST STIS observations show that the He I lines are strongly variable and blue-shifted
throughout most of the 5.54 year variability period. These observations cannot be explained in the context of a
spherical wind model. It now appears likely that the He I emission lines originate in the bow shock and ionization
zone, associated with the wind-wind interaction zone in a binary system.22,23 Very recent FUSE observations of
η Car seem to have revealed a hot star component.24

2. AMBER OBSERVATIONS AND DATA PROCESSING

AMBER26–28 is the near-infrared (J , H, K band) beam-combiner instrument of ESO’s Very Large Telescope
Interferometer. AMBER allows the measurement of visibilities, differential visibilities, differential phases, and
closure phases.29 AMBER offers three spectroscopic modes: low (LR mode; R=λ/∆λ=75), medium (MR mode;
R=1,500), and high (HR mode; R=12,000) spectral resolutions. The fibers in AMBER limit the field-of-view to
the diameter of the fibers on the sky (∼ 60mas). In AMBER the light is spectrally dispersed using a prism or
grating. The AMBER detector is a Hawaii array detector with 512×512 pixels.

Our AMBER η Car observations were carried out on 2004 December 26, 2005 February 25, and 2005 Febru-
ary 26 with the three 8.2 m Unit Telescopes UT2, UT3, and UT4.25 Figure 2 (left) shows two AMBER raw
interferograms taken in the wavelength range around the Brγ line in HR (top) and MR (bottom) mode. In
the MR data sets, the Doppler-broadened Brγ line covers ∼ 8 spectral channels, whereas in HR mode, the line
is resolved by ∼ 50 spectral channels. With projected baseline lengths up to 89 m, an angular resolution of
∼5 mas was achieved in the K band. The MR-K observations were performed in the wavelength range around
both the He I 2.059 µm and the Brγ 2.166 µm emission lines. The HR-K observations were only performed in a
wavelength range around the Brγ line. The widths of the wavelength windows of the obtained MR-K and HR-K
observations are approximately 0.05µm and 0.02µm, respectively.

For the reduction of the AMBER data, we used version 2.4 of the amdlib† software package. This software
uses the P2VM (pixel-to-visibilities matrix) algorithm30 in order to extract complex visibilities for each baseline

†This software package is available from
http://amber.obs.ujf-grenoble.fr
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and each spectral channel of an AMBER interferogram. From these three complex visibilities, the amplitude
and the closure phase are derived.

3. RESULTS

Our AMBER observations of η Car were performed with the spectral resolutions of R = 1, 500 and R = 12, 000
in Dec. 2004 (φ = 0.268) and Feb. 2005 (φ = 0.299) in spectral windows around the He I and Brγ emission lines
at λ = 2.059 and 2.166µm, respectively. From the measurements, we obtained spectra, visibilities, differential
visibilities, differential phases, and closure phases. From the analysis of the data, we derived the following
results:25

In the K-band continuum, we resolved η Car’s optically thick wind. From a Gaussian fit of the K-band
continuum visibilities in the projected baseline range from 28–89 m, we obtained a FWHM diameter of 4.0± 0.2
mas.

When comparing the AMBER continuum visibilities with the NLTE radiative transfer model from Hillier et
al.,1 we find very good agreement between the model and observations. The best fit was obtained with a slightly
rescaled version of the original Hillier et al.1 model, corresponding to an observed FWHM diameter of 2.4 mas
and a 50% encircled-energy diameter of 4.3 mas at λ = 2.17µm. Taking the different FOVs into account, we
found good agreement between the AMBER measurements and previous VLTI/VINCI observations of η Car
presented by van Boeckel et al.2

If we fit Hillier et al.1 model visibilities to the observed AMBER emission line visibilities, we obtain 50%
encircled-energy diameters of 6.5 and 9.6 mas in He I and the Brγ emission lines, respectively.

In the continuum around the Brγ line, we found an elongation towards position angle 128o
± 15o with a

projected axis ratio of 1.21±0.08. This result confirms the earlier finding of van Boeckel et al.2 using VLTI/VINCI
and supports theoretical studies which predict an enhanced mass loss in polar direction for massive stars rotating
close to their critical rotation rate.11

For both the Brγ and the He I emission lines, we measured non-zero differential phases and non-zero closure
phases within the emission lines, indicating a complex, asymmetric object structure. We developed a physi-
cally motivated model,25 which shows that the asymmetries (DPs and CPs) measured within the wings of the
Brγ line are consistent with the geometry expected for an aspherical, latitude-dependent stellar wind. Addi-
tional VLTI/AMBER measurements and radiative transfer modeling will be required to determine the precise
parameters of such an inclined aspherical wind.
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Figure 1. Left: Spectrally dispersed VLTI/AMBER
Michelson interferograms of η Car. The two panels show
the spectrally dispersed fringe signal (IF) as well as the
photometric calibration signals from the three telescopes
(P1-P3) in high (HR, upper panel) and medium spec-
tral resolution mode (MR, lower panel). In both panels,
the bright regions are the Doppler-broadened Brγ emis-
sion line. Right: AMBER observables derived from our
η Car data around the Brγ line (MR mode, 2004 De-
cember 26; the HR mode and He I observations are de-
scribed in Weigelt et al25). The top panel shows the
spectrum as extracted from the interferometric channels,
followed by the derived calibrated visibilities and the dif-
ferential visibilities. In the two panels at the bottom, the
differential phase and the closure phase are presented.
The vertical grey line marks the rest-wavelength of Brγ
(λvac = 2.1661 µm). The left error bars correspond to
the total error estimated for the continuum wavelength
range, and the error bars towards the right visualizes the
total error for the wavelength range within the line (see
Weigelt et al.25 for more details).
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