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Mixed exterior Laplace’s problem

Chérif Amrouche∗, Florian Bonzom

Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des Pays
de l’Adour, IPRA, Avenue de l’Université, 64000 Pau cedex, France

Abstract
In [3], authors study Dirichlet and Neumann problems for the Laplace operator
in exterior domains of Rn. This paper extends this study to the resolution of a
mixed exterior Laplace’s problem. Here, we give existence, unicity and
regularity results in Lp’s theory with 1 < p <∞, in weighted Sobolev spaces.

Keywords : Weighted Sobolev spaces ; Laplacian ; Mixed boundary conditions ;
Poincaré type inequality

1 Introduction and preliminaries
Let ω0 and ω1 be two compact, disconnected and not empty regions of Rn,
n ≥ 2, with Lipschitz-continuous boundaries, respectively, Γ0 and Γ1 and let Ω
be the complement of ω0 ∪ ω1. We set Γ = Γ0 ∪ Γ1 = ∂Ω.
This paper is devoted to solve the following problem :

(P)


−∆u = f in Ω,
u = g0 on Γ0,
∂u

∂n
= g1 on Γ1.

Since these problems are setted in an exterior domain, we must complete their
statements with adequate asymptotic conditions at infinity. We have chosen to
impose such conditions by setting our problem in weighted Sobolev spaces
where the growth or decay of functions at infinity are expressed by means of
weights. These weighted Sobolev spaces provide a correct functional setting for
the exterior Laplace equation, in particular because the functions in these
spaces satisfy an optimal weighted Poincaré type inequality. This gives them a
great advantage over the two families of spaces currently used for the Laplace
operator, namely, the completion of D(Ω) for the norm of the gradient in
Lp(Ω) and the subspace in Lp

loc(Ω) of functions whose gradients belong to
Lp(Ω). On one hand, when p ≥ n, some very treacherous Cauchy sequences
exist in D(Ω) that do not converge to distributions, a behaviour carefully
described in 1954 by Deny and Lions (cf. [5]) but unfortunately overlooked by
many authors. These sequences are eliminated in our spaces because we equip
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them with the full Sobolev norm instead of the norm of the gradient alone. On
the other hand, this full Sobolev norm avoids the imprecision at infinity
inherent to the Lp

loc norm. In an unbounded region, it is important to describe
sharply the behaviour of functions at infinity and not just their gradient. This
is vital from the mathematical point of view, not only because it permits to
characterize easily the data from which we can solve our problems, but also
because the analysis done here for one exponent of the weight extends readily
to a wide range of real exponents. This is even more crucial from the
numerical point of view because in most formulations, the function itself is the
primary unknown that engineers discretize, the gradient being only secondary
and usually deduced from the function values.
This paper is organized as follows. Sections 2, 3 and 4 are devoted to the study
of questions of existence and unicity of the solution respectively in cases p = 2,
p > 2 and p < 2 and the section 5 deals with different behaviours at the
infinity of the solution according to the data.
We complete this introduction with a short review of the weighted Sobolev
spaces and their isomorphisms that we shall use in the sequel. For any integer
q we denote by Pq the space of polynomials in n variables, smaller than or
equal to q, with the convention that Pq is reduced to {0} when q is negative.
For any real number p ∈ ]1,+∞[, we denote by p′ the dual exponent of p :

1
p

+
1
p′

= 1.

Let x = (x1, . . . , xn) be a typical point of Rn and let
r = |x| = (x2

1 + · · ·+ x2
n)1/2 denote its distance to the origin. We shall use two

basic weights :

ρ(r) = (1 + r2)1/2 and lg r = ln(2 + r2)

Then, for any nonnegative integers n and m and real numbers p > 1, α and β,
setting

k = k(m,n, p, α) =


−1 if

n

p
+ α /∈ {1, . . . ,m},

m− n

p
− α if

n

p
+ α ∈ {1, . . . ,m},

we define the following space :

Wm,p
α,β (Ω) = {u ∈ D′(Ω);

∀λ ∈ Nn : 0 6 |λ| 6 k, ρα−m+|λ|(lg r)β−1Dλu ∈ Lp(Ω);

∀λ ∈ Nn : k + 1 6 |λ| 6 m, ρα−m+|λ|(lg r)βDλu ∈ Lp(Ω)}.

It is a reflexive Banach space equipped with its natural norm :

‖u‖W m,p
α,β (Ω) = (

∑
06|λ|6k

‖ρα−m+|λ|(lg r)β−1Dλu‖p
Lp(Ω)

+
∑

k+16|λ|6m

‖ρα−m+|λ|(lg r)βDλu‖p
Lp(Ω))

1/p.
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We also define the semi-norm :

|u|W m,p
α,β (Ω) = (

∑
|λ|=m

‖ρα(lg r)βDλu‖p
Lp(Ω))

1/p.

When β = 0, we agree to drop the index β and denote simply the space by
Wm,p

α (Ω).
The weights defined previously are chosen so that the space D(Ω) is dense in
Wm,p

α,β (Ω) and so that theorem 1.1 below is satisfied.
The constants 1 and 2 in ρ(r) and lg r are added so that they do not modify
the behaviour of the functions near the origin, in case it belongs to Ω. Thus,
the functions of Wm,p

α,β (Ω) belong to Wm,p(O) on all bounded domains O
contained in Ω. As a consequence, the traces of these functions on Γ,
γ0, γ1, . . . , γm−1, satisfy the usual trace theorems (cf. Adams [1] or Nečas [8]).
This allows to define in particular the space

◦
W

m,p
α,β (Ω) = {v ∈Wm,p

α,β (Ω); γ0v = γ1v = · · · = γm−1v = 0}.

It can be proved that D(Ω) is dense in
◦
W

m,p
α,β (Ω) and therefore, its dual space,

W−m,p′

−α,−β(Ω) is a space of distributions.
If n ∈ N∗ is the dimension of spaces, we set E = En. Now, we define the space
Y p(Ω) = W−1,p

0 (Ω) ∩ Lp(Ω) equipped with the following norm :

‖u‖Y p(Ω) = (‖u‖p

W−1,p
0 (Ω)

+ ‖u‖p
Lp(Ω))

1/p.

We easily check that Y p(Ω) is complete.
We introduce the partition of unity (we use the lemma of Urysohn) :

ψ1, ψ2 ∈ C∞(Rn), 0 ≤ ψ1, ψ2 ≤ 1, ψ1 + ψ2 = 1 in Rn,

ψ1 = 1 in BR, supp ψ1 ⊂ BR+1,

where R > 0 is such that ω0 ∪ ω1 ⊂ BR.
For any v ∈W 1,p′

0 (Ω), we set v1 = ψ1v and v2 = ψ2v. We have supp
v1 ⊂ ΩR+1 = BR+1 ∩ Ω ans so v1 ∈W 1,p′(ΩR+1). Furthermore v2 = 0 on Γ

because ψ2 = 0 on ΩR = BR ∩ Ω, so v2 ∈
◦
W

1,p′

0 (Ω). For f ∈ Y p(Ω), we set :

∀v ∈W 1,p′

0 (Ω), Tf (v) =
∫

ΩR+1

fv1 dx + < f, v2 >,

where < ., . > denotes the duality pairing between W−1,p
0 (Ω) and

◦
W

1,p′

0 (Ω).
We easily notice that Tf is well defined, linear and we check that :

∀ϕ ∈ D(Ω), Tf (ϕ) =
∫

Ω

fϕ dx, (1)

and for any f ∈ Y p(Ω) and v ∈W 1,p′

0 (Ω),

|Tf (v)| ≤ C ‖f‖Y p(Ω) ‖v‖W 1,p′
0 (Ω)

, (2)

where C > 0 is a constant which does not depend of f and v.
The next results are demonstrated by Amrouche, Girault and Giroire [2] and
[3] and will be used in the sequel.
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Theorem 1.1. Let α and β be two real numbers and m ≥ 1 an integer not
satisfying simultaneously :

n

p
+ α ∈ {1, . . . ,m} and (β − 1)p = −1

Let q′ = min(q,m− 1), where q is the highest degree of the polynomials
contained in Wm,p

α,β (Ω). Then :
i) the semi-norm | . |W m,p

α,β (Ω) defined on Wm,p
α,β (Ω)/Pq′ is a norm equivalent to

the quotient norm.
ii) the semi-norm | . |W m,p

α,β (Ω) is a norm on
◦
W

m,p
α,β (Ω), which is equivalent to

the full norm ‖ . ‖W m,p
α,β (Ω).

Theorem 1.2. The following Laplace operators are isomorphisms :

i) ∆ : W 1,p
0 (Rn)/P[1−n/p] → W−1,p

0 (Rn) ⊥ P[1−n/p′],

ii) ∆ : W 2,p
1 (Rn)/P[1−n/p] → W 0,p

1 (Rn) ⊥ P[1−n/p′],

iii) ∆ : W
2, n

n−1
1 (Rn)/P2−n → (W

0, n
n−1

1 (Rn) ∩W−1, n
n−1

0 (Rn)) ⊥ R,

where the symbol ⊥ has the following meaning : for E and F two spaces such
that E ⊂ F ,

F ′ ⊥ E = {f ∈ F ′, ∀x ∈ E, < f, x >F ′,F = 0}.

Proposition 1.3. Assume that p > 2 and f ∈W−1,p
0 (Rn) with compact

support and satisfying, if n = 2, the compatibility condition

< f, 1 >W−1,2
0 (R2),W 1,2

0 (R2)= 0.

Then, the problem
−∆u = f in Rn,

has a solution u ∈W 1,2
0 (Rn) ∩ W 1,p

0 (Rn), unique up to an additive constant if
n = 2.

2 Case p=2
We begin to introduce the space

V2 = {v ∈W 1,2
0 (Ω), v = 0 on Γ0}.

and to establish a Poincaré type inequality :

Proposition 2.1. There exists a constant C > 0 such that :

∀u ∈ V2, ‖u‖W 1,2
0 (Ω) ≤ C |u|W 1,2

0 (Ω).

Proof - We use an absurd argument ; so, assume that

∀n ∈ N∗, ∃ wn ∈ V2, ‖wn‖W 1,2
0 (Ω) > n |wn|W 1,2

0 (Ω).
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Then the sequence defined by un =
wn

‖wn‖W 1,2
0 (Ω)

satisfy

‖un‖W 1,2
0 (Ω) = 1 and |un|W 1,2

0 (Ω) <
1
n
. (3)

Here, we define an other partition of unity :

ϕ1, ϕ2 ∈ C∞(Rn), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in Rn,

ϕ1 = 1 in BR1 , supp ϕ1 ⊂ BR1+1,

where R1 > 0 is such that ω1 ⊂ BR1 and ω0 ∩BR1+1 = ∅. We set u1
n = ϕ1un

and u2
n = ϕ2un, so that un = u1

n + u2
n. We deduce by (3) the existence of

u ∈ V2 such that :

un ⇀ u in W 1,2
0 (Ω) and ∇u = 0 in Ω.

As Ω is connected and u ∈ V2, then u = 0 in Ω and

un ⇀ 0 in W 1,2
0 (Ω). (4)

Thanks to the Rellich’s compactness theorem, un → 0 in L2(ΩR1+1) and
thanks to (3), we easily deduce that u1

n → 0 in W 1,2
0 (Ω). Now, we prove that

u2
n → 0 in W 1,2

0 (Ω). First, we notice that u2
n ∈

◦
W

1,2
0 (Ω). Setting Ω0 = Ω \BR1

and Ω′ = Ω0 ∪ ω0, we call again u2
n the restriction of u2

n to Ω0 and we define :

ũ2
n = u2

n on Ω0, ũ2
n = 0 on ω0

We easily check that ũ2
n ∈

◦
W

1,2
0 (Ω′) with ‖ũ2

n‖W 1,2
0 (Ω′) = ‖u2

n‖W 1,2
0 (Ω0)

.
Noticing that Ω′ = Bc

R1
and applying a result established by Giroire [6], we

have :
‖ũ2

n‖W 1,2
0 (Ω′) ≤ C |ũ2

n|W 1,2
0 (Ω′).

We easily show that |ũ2
n|W 1,2

0 (Ω′) → 0, so in particular ‖u2
n‖W 1,2

0 (Ω0)
→ 0. To

finish, like Ω0 = Ω \ ΩR1 and u2
n = 0 on ΩR1 , we have :

‖u2
n‖W 1,2

0 (Ω) = ‖u2
n‖W 1,2

0 (Ω0)
→ 0. So, u2

n → 0 in W 1,2
0 (Ω) which implies that

un = u1
n + u2

n → 0 in W 1,2
0 (Ω), and which contradicts (3). In consequence, we

have the result searched. �

Theorem 2.2. For any f ∈ Y 2(Ω), g0 ∈ H
1
2 (Γ0) and g1 ∈ H− 1

2 (Γ1), there
exists a unique u ∈W 1,2

0 (Ω) solution of the problem (P) and a constant C > 0
such that

‖u‖W 1,2
0 (Ω) ≤ C( ‖f‖Y 2(Ω) + ‖g0‖

H
1
2 (Γ0)

+ ‖g1‖
H− 1

2 (Γ1)
).

Proof - First, according to [3], there exists a unique u0 ∈W 1,2
0 (Ω1) where

Ω1 = Ω ∪ ω1, solution of :

(PD)

{
∆u0 = 0 in Ω1,

u0 = g0 on Γ0,
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and checking
‖u0|Ω‖W 1,2

0 (Ω) ≤ C ‖g0‖
H

1
2 (Γ0)

.

We notice that like u0|Ω ∈W 1,2
0 (Ω) and 0 = ∆u0 ∈ L2(Ω), then

∂u0

∂n
∈ H− 1

2 (Γ1). Moreover, we know that there exists a unique v ∈ V2 solution
of the following problem (FV) :

(FV) ∀w ∈ V2, a(v, w) = L(w),

where for v, w ∈ V2,

a(v, w) =
∫

Ω

∇v · ∇w dx and L(w) = Tf (w) + < g1 −
∂u0

∂n
, w >Γ1 ,

and where < ., . >Γ1 is the duality pairing H− 1
2 (Γ1),H

1
2 (Γ1). Indeed, this

result is a simply consequence of the Lax-Milgram theorem and of the
propriety 2.1 which shows that the form a is coercive.
Then, we easily check that this solution v ∈W 1,2

0 (Ω) satisfies

(P ′)


−∆v = f in Ω,
v = 0 on Γ0,
∂v

∂n
= g1 −

∂u0

∂n
on Γ1,

and
‖v‖W 1,2

0 (Ω) ≤ C (‖f‖Y 2(Ω) + ‖g1 −
∂u0

∂n
‖

H− 1
2 (Γ1)

).

Finally, the function u = u0|Ω + v is the solution of (P) and the estimate
searched is a consequence of the two previous inequalities. �

3 Case p > 2
We propose the following approach : first we solve the harmonic problem, this
will enable us to establish an "inf-sup" condition which in turn will solve the
full problem thanks to the theorem of Babuška-Brezzi.
In all this section we suppose p > 2 (except for the subsection 3.5. where we
suppose p ≥ 2) and Γ of class C1,1.

3.1 Resolution of the harmonic problem

Let g0 be in W
1− 1

p
,p

(Γ0) and g1 be in W
− 1

p
,p

(Γ1). Here, we consider the
problem : find u in W 1,p

0 (Ω) ∩W 1,2
0 (Ω) solution of

(P0)


∆u = 0 in Ω,
u = g0 on Γ0,
∂u

∂n
= g1 on Γ1.

Theorem 3.1. For any g0 ∈W
1− 1

p
,p

(Γ0) and g1 ∈W
− 1

p
,p

(Γ1), there exists a
unique u ∈W 1,p

0 (Ω) ∩W 1,2
0 (Ω), solution of (P0), and we have :

‖u‖W 1,p
0 (Ω) + ‖u‖W 1,2

0 (Ω) ≤ C ( ‖g0‖
W

1− 1
p

,p
(Γ0)

+ ‖g1‖
W

− 1
p

,p
(Γ1)

). (5)
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Proof - By [3], we know there exists u0 ∈W 1,p
0 (Ω1) ∩W 1,2

0 (Ω1) solution of
(PD), where we remind that Ω1 = Ω ∪ ω1, with the following estimate :

‖u0‖W 1,p
0 (Ω1)

+ ‖u0‖W 1,2
0 (Ω1)

6 C ‖g0‖
W

1− 1
p

,p
(Γ0)

. (6)

We notice that like u0|Ω ∈W 1,p
0 (Ω) and 0 = ∆u0 ∈ Lp(Ω), we have

∂u0

∂n
∈W

− 1
p

,p

(Γ1). Moreover

‖∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
≤ C ‖g0‖

W
1− 1

p
,p

(Γ0)

Then, we are going to show that there exists a unique v in W 1,2
0 (Ω) ∩W 1,p

0 (Ω)
solution of the following problem :

(P ′0)


∆v = 0 in Ω,
v = 0 on Γ0,
∂v

∂n
= g1 −

∂u0

∂n
on Γ1.

with the estimate :

‖v‖W 1,p
0 (Ω) + ‖v‖W 1,2

0 (Ω) 6 C ( ‖g0‖
W

1− 1
p

,p
(Γ0)

+ ‖g1‖
W

− 1
p

,p
(Γ1)

). (7)

As p > 2, g1 −
∂u0

∂n
∈ H− 1

2 (Γ1) and thanks to theorem 2.2, there exists a

unique v ∈W 1,2
0 (Ω) solution of (P ′0) and checking (7) with p = 2. There stays

to show that v ∈W 1,p
0 (Ω). For this, we use the partition of the unity

previously defined :

ϕ1, ϕ2 ∈ C∞(Rn), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in Rn,

ϕ1 = 1 in BR1 , supp ϕ1 ⊂ BR1+1,

where R1 > 0 is such that ω1 ⊂ BR1 and ω0 ∩BR1+1 = ∅. We set v1 = ϕ1v,
v2 = ϕ2v and

ṽ2 = v2 in Ω, ṽ2 = 0 in ω1.

We remind that v2 ∈
◦
W

1,2
0 (Ω) and so that ṽ2 ∈W 1,2

0 (Ω1). Moreover, we have :

−∆v2 = ∆v1 = v ∆ψ1 + 2∇ψ1 · ∇v := f1 in Ω.

Setting
f̃1 = f1 in Ω, f̃1 = 0 in ω1,

it is obvious that f̃1 ∈ L2(Ω1) with supp f̃1 ⊂ ΩR1+1 and that −∆ṽ2 = f̃1 in
Ω1.
Now, we set s = ṽ2 and we are going to show that s ∈W 1,p

0 (Ω1). For this, we
define an other partition of the unity :

ξ1, ξ2 ∈ C∞(Rn), 0 ≤ ξ1, ξ2 ≤ 1, ξ1 + ξ2 = 1 in Rn,

ξ1 = 1 in BR0 , supp ξ1 ⊂ BR0+1,
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where R0 > 0 is such that ω0 ⊂ BR0 and ω1 ∩BR0+1 = ∅. We set s1 = ξ1s and
s2 = ξ2s, and we notice that :

−∆s2 = f̃1 + ∆s1 = f̃1 + s ∆ξ1 + 2∇ξ1 · ∇s := F in Ω1.

Finally, we set :

s̃2 =
{
s2 in Ω1,
0 in ω0,

and F̃ =
{
F in Ω1,
0 in ω0.

We have s̃2 ∈W 1,2
0 (Rn) because s2 ∈

◦
W

1,2
0 (Ω1), F̃ ∈ L2(Rn) with supp

F̃ ⊂ ΩR0+1 ∩ ΩR1+1, and also −∆s̃2 = F̃ in Rn.

i) Case 2 < p ≤ 2n
n− 2

and n ≥ 3 or p > 2 and n = 2.

Thanks to the injections of Sobolev, , we have F̃ ∈W−1,p
0 (Rn). In

consequence, thanks to the theorem 1.2 i), (there is no condition of
compatibility because p > 2), we show that s̃2 ∈W 1,p

0 (Rn) and so
s2 ∈W 1,p

0 (Ω1) and we easily check that :

‖s̃2‖W 1,p
0 (Rn)/P[1−n

p
]
≤ C ‖g1 −

∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
. (8)

Outside of BR0+1, ξ1 = 0 so s = s2 and the trace of s2 on ∂BR0+1 belongs to
W 1− 1

p ,p(∂BR0+1). So s checks :

−∆s = f̃1 in ΩR0+1, s = s2 on ∂BR0+1, s = 0 on Γ0.

Consequently, (see Lions and Magenes [7] ), s ∈W 1,p(ΩR0+1) and :

‖s‖W 1,p(ΩR0+1) ≤ C (‖f̃1‖W−1,p(ΩR0+1) + ‖s2‖
W

1− 1
p

,p
(∂BR0+1)

) (9)

We deduce of this that s ∈W 1,p
0 (Ω1) ; and with (8) and (9), we have :

‖s‖W 1,p
0 (Ω1)

≤ C ‖g1 −
∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
. (10)

ii) Case n ≥ 3 and p >
2n
n− 2

.

The argument used above with p =
2n
n− 2

shows that s ∈W 1, 2n
n−2

0 (Ω1) and we

use the same demonstration that i) with s ∈W 1, 2n
n−2

0 (Ω1) instead of
s ∈W 1,2

0 (Ω1). So, we obtain the result for n = 3, n = 4 and n = 5 if

p <
2n
n− 4

; then we take
2n
n− 4

instead of
2n
n− 2

, and we start again ; so we
reach for all dimension, all values of p.
Consequently, we have s = ṽ2 ∈W 1,p

0 (Ω1), v2 ∈W 1,p
0 (Ω) and

‖v2‖W 1,p
0 (Ω) ≤ C ‖g1 −

∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
. (11)

Outside of BR1+1, ϕ1 = 0 and v = v2 and the trace of v2 on ∂BR1+1 belongs
to W 1− 1

p ,p(∂BR1+1). So v checks :

∆v = 0 in ΩR1+1, v = v2 on ∂BR1+1,
∂v

∂n
= g1 −

∂u0

∂n
on Γ1.
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In consequence, (see Lions and Magenes [7] ), v ∈W 1,p(ΩR1+1) and :

‖v‖W 1,p(ΩR1+1) ≤ C (‖ g1 −
∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
+ ‖v2‖

W
1− 1

p
,p

(∂BR1+1)
) (12)

We deduce of this that v ∈W 1,p
0 (Ω) and with (11) and (12), we have :

‖v‖W 1,p
0 (Ω) ≤ C ‖ g1 −

∂u0

∂n
‖

W
− 1

p
,p

(Γ1)
.

Then, we easily check (7). Finally the function
u = u0|Ω + v ∈W 1,2

0 (Ω) ∩W 1,p
0 (Ω) suits and with (6) and (7), we have (5).

�

3.2 An “inf-sup” condition
Setting for any p > 1,

Vp = {v ∈W 1,p
0 (Ω), v = 0 on Γ0}.

we notice that, equipped with the norm ‖∇.‖Lp(Ω), Vp is a reflexive Banach
space. In this subsection, we are interested in the existence of β > 0 a constant
such that :

inf
w∈Vp′
w 6=0

sup
v∈Vp

v 6=0

∫
Ω

∇v · ∇w dx

‖∇v‖Lp(Ω)‖∇w‖Lp′ (Ω)

≥ β

We define :
◦
Hp (Ω) = {z ∈ Lp(Ω), div z = 0 in Ω, z · n = 0 on Γ1}

Proposition 3.2. For any g ∈ Lp(Ω), there exists z ∈
◦
Hp (Ω) and ϕ ∈ Vp,

such that :

g = ∇ϕ+ z,

‖∇ϕ‖Lp(Ω) ≤ C ‖g‖Lp(Ω)

where C > 0 is a constant which depends only on Ω and p.

Proof - Let g be in Lp(Ω) and g̃ the extension by 0 of g in Rn ; so we have
g̃ ∈ Lp(Rn) and thanks to a result established in [2],
div g̃ ∈W−1,p

0 (Rn) ⊥ P[1−n/p′] with

‖ div g̃‖W−1,p
0 (Rn) ≤ C ‖g̃‖Lp(Rn) = C ‖g‖Lp(Ω).

According to the theorem 1.2 i), we know there exists v ∈W 1,p
0 (Rn) such that

∆v = div g̃ in Rn, and we show that ‖∇v‖Lp(Rn) ≤ C1 ‖g‖Lp(Ω). So, we have :

g̃ −∇v ∈ Lp(Rn) and div(g̃ −∇v) = 0 in Rn.

Consequently, (g −∇v) · n ∈W
− 1

p
,p

(Γ1) and v|Γ0 ∈W
1− 1

p
,p

(Γ0). Here, we
apply the results of the theorem 3.1. There exists a unique
w ∈W 1,p

0 (Ω) ∩W 1,2
0 (Ω) solution of :

∆w = 0 in Ω, w = −v on Γ0,
∂w

∂n
= (g −∇v) · n on Γ1,

9



and we show that ‖∇w‖Lp(Ω) ≤ C2 ‖g‖Lp(Ω).
Finally the functions ϕ = v|Ω + w and z = g −∇ϕ comply with the question.
�

Theorem 3.3. There exists a constant β > 0 such that

inf
w∈Vp′
w 6=0

sup
v∈Vp

v 6=0

∫
Ω

∇v · ∇w dx

‖∇v‖Lp(Ω)‖∇w‖Lp′ (Ω)

≥ β (13)

Proof - Let w be in Vp′ with w 6= 0. We notice that ∇w 6= 0 because otherwise
w is constant in the connected open region Ω, ie w = 0 in Ω because w = 0 on
Γ0. We have

‖∇w‖Lp′ (Ω) = sup
g∈Lp(Ω)

g 6=0

∫
Ω

∇w · g dx

‖g‖Lp(Ω)
.

We easily check that for any z ∈
◦
Hp (Ω) and any v ∈ Vp′ , we have∫

Ω

z · ∇v dx = 0, what means that superior boundary defined above can not

be reached for a g ∈
◦
Hp (Ω). Let g be in Lp(Ω) with g 6= 0. We can suppose

that g /∈
◦
Hp (Ω) and thanks to the proposition 3.2, there exists z ∈

◦
Hp (Ω)

and ϕ ∈ Vp, with ∇ϕ 6= 0 such that g = z +∇ϕ and ‖∇ϕ‖Lp(Ω) ≤ C ‖g‖Lp(Ω).
Thus, ∫

Ω

∇w · g dx

‖g‖Lp(Ω)
≤ C

∫
Ω

∇w · ∇ϕ dx

‖∇ϕ‖Lp(Ω)
≤ C sup

ϕ∈Vp

ϕ 6=0

∫
Ω

∇w · ∇ϕ dx

‖∇ϕ‖Lp(Ω)
.

This is checked for any g in Lp(Ω), so :

‖∇w‖Lp′ (Ω) = sup
g∈Lp(Ω)

g 6=0

∫
Ω

∇w · g dx

‖g‖Lp(Ω)
≤ C sup

ϕ∈Vp

ϕ 6=0

∫
Ω

∇w · ∇ϕ dx

‖∇ϕ‖Lp(Ω)
.

We deduce the estimate (13) with β =
1
C
> 0. �

3.3 The full problem
We remind here the following result :

Theorem 3.4. Let X and M be two reflexive Banach spaces and X ′ and M ′

their dual spaces. Let b be a bilinear form defined and continuous on X ×M ,
let B ∈ L(X;M ′) and B′ ∈ L(M,X ′) be the operators defined by :

∀v ∈ X, ∀w ∈M, b(v, w) = < Bv,w > = < v,B′w >

The following statements are equivalent :

10



i) There exists β > 0, such that inf
w∈M
w 6=0

sup
v∈X
v 6=0

b(v, w)
‖v‖X‖w‖M

≥ β.

ii) The operator B is an isomorphism from X/Ker B to M ′ and
1
β

is the

continuity constant of B−1.

iii) The operator B′ is an isomorphism from M to X ′ ⊥ Ker B and
1
β

is the

continuity constant of B′−1.

Here, we apply this theorem with X = Vp, M = Vp′ and :

b(v, w) =
∫

Ω

∇v · ∇w dx.

According to (13),

B is an isomorphism from Vp/Ker B to (Vp′)′. (14)

Then, we define for f ∈ Y p(Ω) and g ∈W
− 1

p
,p

(Γ1) the linear form T by

∀w ∈ Vp′ , T (w) = Tf (w) + < g,w >Γ1 ,

where < ., . >Γ1 denotes the duality pairing between W
− 1

p
,p

(Γ1),W
1− 1

p′ ,p′(Γ1).
We check that T ∈ (Vp′)′ and thanks to (14), we deduce the existence of
v ∈ Vp, unique up to an element of Ker B, such that Bv = T , ie :

(FV) ∀w ∈ Vp′ ,

∫
Ω

∇v · ∇w dx = Tf (w) + < g,w >Γ1 .

Corollary 3.5. For any f ∈ Y p(Ω) and g ∈W
− 1

p
,p

(Γ1), there exists a unique
v ∈W 1,p

0 (Ω)/Ker B, solution of

−∆v = f in Ω, v = 0 on Γ0,
∂v

∂n
= g on Γ1.

and checking the following inequality :

‖v‖W 1,p
0 (Ω)/Ker B ≤ C (‖f‖Y p(Ω) + ‖g‖

W
− 1

p
,p

(Γ1)
). (15)

Proof - As we have done in the theorem 2.2, we show that the solution of the
problem (FV) is also solution of this problem. �

Theorem 3.6. For any f ∈ Y p(Ω), g0 ∈W
1− 1

p
,p

(Γ0) and g1 ∈W
− 1

p
,p

(Γ1),
there exists a unique u ∈W 1,p

0 (Ω)/Ker B, solution of (P) and there exists a
constant C > 0 such that :

‖u‖W 1,p
0 (Ω)/Ker B ≤ C( ‖f‖Y p(Ω) + ‖g0‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
− 1

p
,p

(Γ1)
).

Proof - First of all, thanks to [3], we know there exists a unique
u0 ∈W 1,p

0 (Ω1) where Ω1 = Ω ∪ ω1, solution of (PD) and checking

‖u0‖W 1,p
0 (Ω1)

≤ C‖g0‖
W

1− 1
p

,p
(Γ0)

. (16)

Thanks to corollary 3.5, we deduce that there exists a unique
v ∈W 1,p

0 (Ω)/Ker B, solution of (P ′). Finally, the function u = u0|Ω + v is
solution of (P) and the estimate comes from (15) and (16). �
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3.4 Characterization of the kernel of the operator B
We set :

Mp
0(Ω) = {v ∈W 1,p

0 (Ω); ∆v = 0 in Ω, v = 0 on Γ0,
∂v

∂n
= 0 on Γ1}.

Thanks to the density of D(Ω) in W 1,p′

0 (Ω), we easily check that

Ker B = Mp
0(Ω).

Now, we characterize Mp
0(Ω). For this, first of all, we define : µ0 = U ∗ (

1
|Γ|
δΓ),

where U =
1
2π

ln(r) is the fundamental solution of Laplace’s equation in R2

and δΓ is the distribution defined by :

∀ϕ ∈ D(R2), < δΓ, ϕ > =
∫

Γ

ϕ dσ

Proposition 3.7. We have the following statements :
i) If p < n, then Mp

0(Ω) = {0}.
ii) If p ≥ n ≥ 3, then Mp

0(Ω) = {c(λ− 1), c ∈ R} where λ is the only solution
in W 1,2

0 (Ω) ∩W 1,p
0 (Ω) of the following problem (P1) :

∆λ = 0 in Ω, λ = 1 on Γ0,
∂λ

∂n
= 0 on Γ1.

iii) If p > n = 2, then Mp
0(Ω) = {c(µ− µ0), c ∈ R} where µ is the only

solution in W 1,2
0 (Ω) ∩W 1,p

0 (Ω) of the following problem (P2) :

∆µ = 0 in Ω, µ = µ0 on Γ0,
∂µ

∂n
=
∂µ0

∂n
on Γ1.

Proof - Let z ∈Mp
0(Ω) and let η be the trace of z on Γ1. We have

η ∈W
− 1

p
,p

(Γ1). We know there exists a unique ξ ∈W 1,p(
◦
ω1), where

◦
ω1 is the

interior of the compact ω1, checking :

∆ξ = 0 in
◦
ω1, ξ = η on Γ1.

Let z̃ be defined by

z̃ = z in Ω, z̃ = ξ in ω1, z̃ = 0 in ω0.

It is obvious that z̃ ∈W 1,p
0 (Rn) and ∆z̃ ∈W−1,p

0 (Rn). Moreover, for any
ϕ ∈ D(Rn), we have :

< ∆z̃, ϕ >D′(Rn),D(Rn)= − <
∂z

∂n
, ϕ >Γ0 − <

∂ξ

∂n
, ϕ >Γ1 .

We set h = ∆z̃. Then, h ∈W−1,p
0 (Rn) and h has a compact support. At this

stage, the discussion splits into two parts according to the dimension n :
i) Case n ≥ 3. Thanks to the proposition 1.3, we know there exists a unique w
such that :

w ∈W 1,p
0 (Rn) ∩W 1,2

0 (Rn) and ∆w = h in Rn.
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The difference z̃ − w is in W 1,p
0 (Rn) and is harmonic in Rn. If p < n, then

w = z̃ in Rn, the restriction of w to Ω is in W 1,p
0 (Ω) ∩W 1,2

0 (Ω), and like z = w
in Ω, the section 2 implies that w = 0 in Ω i.e Mp

0(Ω) = {0}.
If p ≥ n ≥ 3, we have w = z̃ + c in Rn so w ∈W 1,p

0 (Ω) ∩W 1,2
0 (Ω) is the only

solution of the problem :

∆w = 0 in Ω, w = c on Γ0,
∂w

∂n
= 0 on Γ1.

Consequently Mp
0(Ω) = {c(λ− 1), c ∈ R} where λ is the solution of (P1).

ii) Case n = 2. The problem

∆w = h in R2,

does not have a solution in W 1,2
0 (R2) unless h satisfies the necessary condition

< h, 1 > = 0. In this case, with the arguments above, we obtain z = c(λ− 1).
However, when n = 2, the constant functions are in W 1,p

0 (Ω) ∩W 1,2
0 (Ω) so

λ = 1 ∈W 1,p
0 (Ω) ∩W 1,2

0 (Ω) is solution of (P1). So z = 0, which is the trivial
case. Thus, we suppose that < h, 1 > 6= 0 and we consider the problem :

∆w = h − < h, 1 > ∆µ0 in R2. (17)

We know that µ0 ∈W 1,q
0 (R2) for any q > 2 and moreover

∆µ0 = 0 in Ω ∪ ◦
ω0 ∪

◦
ω1 and < ∆µ0, 1 >= 1.

The right-hand side of (17) is orthogonal to constants, has compact support
and belongs to W−1,p

0 (R2). So, thanks to proposition 1.3, the problem (17) has
a solution (unique up to an additive constant) w ∈W 1,2

0 (R2) ∩W 1,p
0 (R2).

Moreover, the function w + < h, 1 > µ0 − z̃ is harmonic in R2. So, there exists
c > 0 such that w + < h, 1 > µ0 − z̃ = c. The restriction of w to Ω is in
W 1,p

0 (Ω) ∩W 1,2
0 (Ω) and w = c+ w1 where w1 is the only solution in

W 1,2
0 (Ω) ∩W 1,p

0 (Ω) of the problem :

∆w1 = 0 in Ω, w1 = − < h, 1 > µ0 on Γ0,
∂w1

∂n
= − < h, 1 >

∂µ0

∂n
on Γ1.

The function µ being the only solution in W 1,2
0 (Ω) ∩W 1,p

0 (Ω) of the problem
(P2). We have Mp

0(Ω) = {c(µ− µ0), c ∈ R}. �

3.5 A regularity result
We suppose, in this subsection, that p ≥ 2. Here, we propose to study the
question of the regularity of the solutions when the data are more regular.
More precisely, we suppose that :

g0 ∈W 2− 1
p ,p(Γ0), g1 ∈W 1− 1

p ,p(Γ1) and f ∈ X0,p
1 (Ω)

where

X0,p
1 (Ω) =

{
W 0,p

1 (Ω) if p 6= n

n− 1
,

W 0,p
1 (Ω) ∩W−1,p

0 (Ω) otherwise,

equipped with its natural norm : (we remind that W 0,p
1 (Ω) is included in

W−1,p
0 (Ω) if and only if W 1,p′

0 (Ω) ⊂W−1,p′

0 (Ω), this last inclusion taking place
if and only if p 6= n

n− 1
).
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Theorem 3.8. For any
g0 ∈W 2− 1

p ,p(Γ0), g1 ∈W 1− 1
p ,p(Γ1), and f ∈ X0,p

1 (Ω), there exists a unique
u ∈W 2,p

1 (Ω)/Mp
0(Ω) solution of (P), and we have :

‖u‖W 2,p
1 (Ω)/Mp

0(Ω) ≤ C (‖f‖X0,p
1 (Ω) + ‖g0‖

W
2− 1

p
,p

(Γ0)
+ ‖g1‖

W
1− 1

p
,p

(Γ1)
) (18)

Proof - For p ≥ 2 and g0 ∈W 2− 1
p ,p(Γ0), we have, thanks to [3] that the

solution u0 ∈W 1,p
0 (Ω1) (where Ω1 = Ω ∪ ω1) of the problem (PD) is in

W 2,p
1 (Ω1) and it checks :

‖u0‖W 2,p
1 (Ω1)

≤ C ‖g0‖
W

2− 1
p

,p
(Γ0)

. (19)

now, we notice that
∂u0

∂n
∈W 1− 1

p ,p(Γ1) because u0 ∈W 2,p
1 (Ω1). Thus, as

f ∈ X0,p
1 (Ω) ⊂ Y p(Ω) and g1 −

∂u0

∂n
∈W 1− 1

p ,p(Γ1) ⊂W
− 1

p
,p

(Γ1), applying the
corollary 3.5 when p > 2 and the theorem 2.2 when p = 2, there exists, for
p ≥ 2, a unique v ∈W 1,p

0 (Ω) solution of the problem (P ′). It stays to show
that v ∈W 2,p

1 (Ω) and that

‖v‖W 2,p
1 (Ω)/Mp

0(Ω) ≤ C (‖f‖X0,p
1 (Ω) + ‖g0‖

W
2− 1

p
,p

(Γ0)
+ ‖g1‖

W
1− 1

p
,p

(Γ1)
). (20)

For this, we follow the same reasoning as theorem 3.1 using theorem 1.2 ii) if
p 6= n

n− 1
and theorem 1.2 iii) otherwise, and using regularity results in

bounded open regions (see Lions and Magenes [7] for instance).
Finally, the function u = u0|Ω + v ∈W 2,p

1 (Ω) is solution of (P) and the
estimate (18) is a consequence of (19) and (20). �

4 Case p < 2
We are going to proceed in two steps. First of all, thanks to an argument of
duality, which allows us to use results of the previous section, we solve the
problem in the case where f = 0 and g1 = 0. The sum of the solution of this
problem and of a solution of a Neumann problem will permit us to solve the
general problem (P).
In all the section, we suppose that p < 2 and that Γ is of class C1,1.

4.1 Case where f = 0 and g1 = 0.

Let g0 ∈W
1− 1

p
,p

(Γ0) checking the condition of compatibility

∀z ∈Mp′

0 (Ω) , <
∂z

∂n
, g0 >Γ0= 0, (21)

where < , >Γ0 denotes the duality pairing W
−1
p′ ,p′(Γ0), W

1− 1
p

,p

(Γ0).
With this hypothesis, we consider the problem : find v ∈W 1,p

0 (Ω) solution of :

(Q)


∆v = 0 in Ω,
v = g0 on Γ0,
∂v

∂n
= 0 on Γ1.
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and this other problem (Q′) : find v ∈W 1,p
0 (Ω) such that for any u ∈ Xp′(Ω)

satisfying u = 0 on Γ0 and
∂u

∂n
= 0 on Γ1, we have :

T−∆u(v) = − <
∂u

∂n
, g0 >Γ0 (22)

where
Xp′(Ω) = {u ∈W 1,p′

0 (Ω), ∆u ∈ Lp′(Ω)}.
We easily check that the problem (Q) is equivalent to the problem (Q′).

Theorem 4.1. For any g0 ∈W
1− 1

p
,p

(Γ0) satisfying the compatibility condition
(21), there exists a unique v ∈W 1,p

0 (Ω) solution of the problem (Q) and we
have the following estimate :

‖v‖W 1,p
0 (Ω) ≤ ‖g0‖

W
1− 1

p
,p

(Γ0)
.

Proof - Let f be in Y p′(Ω). It is obvious that Tf ∈ (W 1,p
0 (Ω))′. Like p′ > 2,

thanks to the theorem 3.6, we know there exists a unique
u ∈W 1,p′

0 (Ω)/Mp′

0 (Ω) such that

−∆u = f in Ω, u = 0 on Γ0,
∂u

∂n
= 0 on Γ1,

checking
‖u‖

W 1,p′
0 (Ω)/Mp′

0 (Ω)
≤ C ‖Tf‖(W 1,p

0 (Ω))′ (23)

Let L be the linear form defined on (W 1,p
0 (Ω))′ by :

L(Tf ) = − <
∂u

∂n
, g0 >Γ0 .

We are going to show that L is continuous. Let z be in Mp′

0 (Ω), then, thanks

to (21), we have <
∂u

∂n
, g0 >Γ0= <

∂(u+ z)
∂n

, g0 >Γ0 . Now, let θ be an open

region of class C1,1 such that ω0 ⊂ θ ⊂ BR where R is the radius associated to
the partition of the unity used in the definition of Tf . We set Ωθ = θ\ω0 and
let ϕ ∈W 1,p(Ωθ) be such that ϕ = 0 on ∂θ. We have :

| < ∂(u+ z)
∂n

, ϕ >Γ0 | ≤ ‖∇(u+ z)‖Lp′ (Ωθ)‖∇ϕ‖Lp(Ωθ) + |
∫

Ωθ

ϕ ∆(u+ z) dx| .

But,

|
∫

Ωθ

ϕ ∆(u+ z) dx| = |
∫

Ωθ

ϕ ∆u dx| = |T−∆u(ϕ̃)|,

where ϕ̃ ∈W 1,p
0 (Ω) is defined by ϕ̃ = ϕ in Ωθ, ϕ̃ = 0 in Ω \ θ. In consequence,

| < ∂(u+ z)
∂n

, ϕ >Γ0 | ≤ ‖∇(u+z)‖Lp′ (Ωθ)‖∇ϕ‖Lp(Ωθ)+ ‖Tf‖(W 1,p
0 (Ω))′ ‖ϕ‖W 1,p(Ωθ).

Now, for any µ ∈W 1− 1
p ,p(Γ0), we know there exists ϕ ∈W 1,p(Ωθ) such that

ϕ = µ on Γ0 and ϕ = 0 on ∂θ checking

‖ϕ‖W 1,p(Ωθ) ≤ C ‖µ‖
W

1− 1
p

,p
(Γ0)

,

15



where C > 0 is a constant which depends only on Ωθ and on µ. So

| < ∂(u+ z)
∂n

, µ >Γ0 | ≤ C ( ‖∇(u+z)‖Lp′ (Ωθ)+ ‖Tf‖(W 1,p
0 (Ω))′ ) ‖µ‖

W
1− 1

p
,p

(Γ0)
.

Thus, we deduce of (23) that

inf
z∈Mp′

0 (Ω)

‖∂(u+ z)
∂n

‖W−1/p′,p′ (Γ0)
≤ C ‖Tf‖(W 1,p

0 (Ω))′ .

So
|L(Tf )| = | < ∂u

∂n
, g0 > | ≤ C ‖Tf‖(W 1,p

0 (Ω))′ ‖g0‖
W

1− 1
p

,p
(Γ0)

,

and the linear form L is continuous on (W 1,p
0 (Ω))′. Like the space W 1,p

0 (Ω) is
reflexive, we can identify L to an element of W 1,p

0 (Ω), i.e there exists a unique
v ∈W 1,p

0 (Ω) such that :

Tf (v) = − <
∂u

∂n
, g0 >Γ0 ,

and checking the estimate searched. In consequence, the function v is solution
of the problem (Q′) equivalent to the problem (Q). �

4.2 The general problem when p<2.

Let f ∈ Y p(Ω), g0 ∈W
1− 1

p
,p

(Γ0) and g1 ∈W
− 1

p
,p

(Γ1). We remind that we
search u ∈W 1,p

0 (Ω) solution of the problem (P). Assuming that a such
solution u ∈W 1,p

0 (Ω) exists, for any ϕ ∈Mp′

0 (Ω), we have thanks to the
density of D(Ω) in W 1,p′

0 (Ω) :

Tf (ϕ) =
∫

Ω

∇u · ∇ϕ dx − < g1, ϕ >Γ1 . (24)

Like D(Ω) is also dense in W 1,p
0 (Ω), we have, for any ϕ ∈Mp′

0 (Ω) :∫
Ω

∇ϕ · ∇u dx = <
∂ϕ

∂n
, g0 >Γ0 . (25)

We deduce of (24) and (25) that if u ∈W 1,p
0 (Ω) is solution of the problem (P),

the data must checking the following condition of compatibility :

∀ϕ ∈Mp′

0 (Ω), Tf (ϕ) = <
∂ϕ

∂n
, g0 >Γ0 − < g1, ϕ >Γ1 . (26)

Theorem 4.2. Let p < 2, f ∈ Y p(Ω), g0 ∈W
1− 1

p
,p

(Γ0), g1 ∈W
− 1

p
,p

(Γ1) be
satisfying the condition of compatibility (26) if 1 < p ≤ n

n− 1
, then there exists

a unique u ∈W 1,p
0 (Ω) solution of the problem (P) and there exists C > 0 such

that

‖u‖W 1,p
0 (Ω) ≤ C( ‖f‖Y p(Ω) + ‖g0‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
− 1

p
,p

(Γ1)
).
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Proof - First of all, we notice that the condition (26) is always satisfied if
n

n− 1
< p < 2 because in this case p′ < n and Mp′

0 (Ω) = {0}. Let θ be the
constant defined by :

Tf (1) + < g1, 1 >Γ1 + < θ, 1 >Γ0= 0. (27)

According to [3], thanks to (27), there exists a unique w ∈W 1,p
0 (Ω) such that :

−∆w = f in Ω,
∂w

∂n
= θ on Γ0,

∂w

∂n
= g1 on Γ1.

Moreover, for any ϕ ∈Mp′

0 (Ω), we have, thanks to (26), that

<
∂ϕ

∂n
, g0 − w >Γ0= 0. (28)

So, we can apply theorem 4.1 which assures existence of a unique v ∈W 1,p
0 (Ω)

such that :
∆v = 0 in Ω, v = g0 − w on Γ0,

∂v

∂n
= 0 on Γ1,

satisfying
‖v‖W 1,p

0 (Ω) ≤ C ( ‖w‖W 1,p
0 (Ω) + ‖g0‖

W
1− 1

p
,p

(Γ0)
). (29)

Finally, the function u = v + w ∈W 1,p
0 (Ω) is the solution searched and the

inequality of continuous dependance comes from (29) and :

‖w‖W 1,p
0 (Ω) ≤ C ( ‖f‖Y p(Ω) + ‖g1‖

W
− 1

p
,p

(Γ1)
). �

4.3 A regularity result
We suppose, in this subsection, that p < 2. Here, we study the regularity of
solutions when the data are more regular.

Theorem 4.3. For any g0 ∈W 2− 1
p ,p(Γ0), g1 ∈W 1− 1

p ,p(Γ1), f ∈ X0,p
1 (Ω)

satisfying the condition (26) if 1 < p <
n

n− 1
, there exists a unique

u ∈W 2,p
1 (Ω) solution of (P), and we have :

‖u‖W 2,p
1 (Ω) ≤ C (‖f‖X0,p

1 (Ω) + ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

1− 1
p

,p
(Γ1)

) (30)

Proof - We retake the proof of the theorem 4.2. We know, thanks to [3] that
the solution w ∈W 1,p

0 (Ω) of the problem (Q1) is, in this case, in W 2,p
1 (Ω) and

checks :
‖w‖W 2,p

1 (Ω) ≤ C (‖f‖X0,p
1 (Ω) + ‖g1‖

W
1− 1

p
,p

(Γ1)
). (31)

Now, we notice that, on Γ0, g0 − w ∈W 2− 1
p ,p(Γ0) ⊂W

1− 1
p

,p

(Γ0). Thus,
applying the theorem 4.2, the condition of compatibility (26) being checked if
1 < p <

n

n− 1
, there exists a unique v ∈W 1,p

0 (Ω) solution of the problem

(Q2). It stays to show that v ∈W 2,p
1 (Ω) and that

‖v‖W 2,p
1 (Ω) ≤ C (‖f‖X0,p

1 (Ω) + ‖g0‖
W

2− 1
p

,p
(Γ0)

+ ‖g1‖
W

1− 1
p

,p
(Γ1)

). (32)

17



For this, we follow the same reasonning that at the proposition 3.1 using the
theorem 1.2 ii) if p 6= n

n− 1
and the theorem 1.2 iii) otherwise and also using

regularity results in bounded open regions (see Lions and Magenes [7] for
instance).
Finally, u = w+ v ∈W 2,p

1 (Ω) is the solution searched and by (31) and (32), we
have (30). �

5 Solutions in homogeneous spaces
In all the section we suppose that p < n.
Let v∞ be in R. It is frequent to meet in the litterature the following problem :
find v ∈ D′(Ω), with ∇v ∈ Lp(Ω) solution of

(R)


−∆v = f in Ω,
v = g0 on Γ0,
∂v

∂n
= g1 on Γ1,

v ⇀ v∞ at infinity.

where the sense of the convergence v ⇀ v∞ is specified in the following
proposition (see [4]).

Proposition 5.1. We suppose that 1 < p < n and z ∈ D′(Ω) such that
∇z ∈ Lp(Ω). Then, there exists a unique constant z∞ ∈ R such that
z − z∞ ∈W 1,p

0 (Ω), where z∞ is defined by :

z∞ = lim
|x|→+∞

1
|Sn|

∫
Sn

z(σ|x|) dσ

Moreover, we have the following proprieties :

z − z∞ ∈ L
np

n−p (Ω),
‖z − z∞‖

L
np

n−p (Ω)
≤ C‖∇z‖Lp(Ω),

lim
|x|→+∞

1
|Sn|

∫
Sn

|z(σ|x|)− z∞| dσ = lim
|x|→+∞

1
|Sn|

∫
Sn

|z(σ|x|)− z∞|p dσ = 0∫
Sn

|z(rσ)− z∞|p dσ ≤ Crp−n

∫
{x∈ Ω,|x|>r}

|∇z|p dx.

Let z ∈ D′(Ω) be such that ∇z ∈ Lp(Ω). So, we say that z ⇀ z∞ if and only
if :

lim
|x|→+∞

1
|Sn|

∫
Sn

(z(σ|x|)− z∞) dσ = 0.

It is obvious that if z ∈ D′(Ω), ∇z ∈ Lp(Ω), then z ⇀ z∞ is equivalent to
z − z∞ ∈ L

np
n−p (Ω) or to z − z∞ ∈W 1,p

0 (Ω).

Proposition 5.2. For any f ∈ Y p(Ω), g0 ∈W
1− 1

p
,p

(Γ0), g1 ∈W
− 1

p
,p

(Γ1) and
v∞ ∈ R, with 1 < p < n, there exists a unique v ∈ D′(Ω) with ∇v ∈ Lp(Ω)
solution of (R) and we have the following estimate :

‖v − v∞‖W 1,p
0 (Ω) ≤ C ( ‖f‖Y p(Ω) + ‖g0 − v∞‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
− 1

p
,p

(Γ1)
).
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Proof - The previous sections allow us to say that there exists a unique
u ∈W 1,p

0 (Ω) solution of

−∆u = f in Ω, u = g0 − v∞ on Γ0,
∂u

∂n
= g1 on Γ1,

and checking

‖u‖W 1,p
0 (Ω) ≤ C ( ‖f‖Y p(Ω) + ‖g0 − v∞‖

W
1− 1

p
,p

(Γ0)
+ ‖g1‖

W
− 1

p
,p

(Γ1)
). (33)

It is obvious that u ⇀ 0. Thus, the function v = u+ v∞ belongs to D′(Ω),
checks ∇v ∈ Lp(Ω) and v ⇀ v∞. So, v is solution of (R) and the estimate
searched comes from the inequality (33). �
Now, let a∞ be in Rn. We want to solve the following problem : find

v ∈ D′(Ω), such that for any i, j = 1, ..., n, we have
∂2v

∂xi∂xj
∈ Lp(Ω), solution

of

(R′)


−∆v = f in Ω,
v = g0 on Γ0,
∂v

∂n
= g1 on Γ1,

∇v ⇀ a∞ at infinity.

Proposition 5.3. For any f ∈ Lp(Ω), g0 ∈W 2− 1
p ,p(Γ0), g1 ∈W 1− 1

p ,p(Γ1)
and a∞ ∈ Rn, with 1 < p < n, there exists a unique v ∈ D′(Ω) with, for any

i, j = 1, ..., n,
∂2v

∂xi∂xj
∈ Lp(Ω), solution of (R′) and we have the following

estimate :

‖v−a∞·x‖W 2,p
0 (Ω) ≤ C(‖f‖Lp(Ω)+‖g0−a∞·x‖

W
2− 1

p
,p

(Γ0)
+‖g1−a∞·n‖

W
1− 1

p
,p

(Γ1)
).

Proof - First of all, we set f̃ the extension of f by 0 on Rn. So, we have
f̃ ∈ Lp(Rn). Moreover, we know that ∆ : W 2,p

0 (Rn)/P[2−n/p] → Lp(Rn) is an
isomorphism, so there exists ũ ∈W 2,p

0 (Rn) unique up to an additive constant,
such that −∆ũ = f̃ in Rn. We have ũ|Ω ∈W 2,p

0 (Ω) and −∆ũ|Ω = f in Ω.
Thanks to the regularity results of the previous sections, we know there exists
a unique z ∈W 2,p

1 (Ω) ⊂W 2,p
0 (Ω) solution of the problem

∆z = 0 in Ω, z = g0 − a∞ · x− ũ on Γ0,
∂z

∂n
= g1 − a∞ · n− (

∂ũ

∂n
) on Γ1.

So the function u = ũ|Ω + z is in W 2,p
0 (Ω) and is solution of the problem

−∆u = f in Ω, u = g0 − a∞ · x on Γ0,
∂u

∂n
= g1 − a∞ · n on Γ1,

checking the following estimate :

‖u‖W 2,p
0 (Ω) ≤ C(‖f‖Lp(Ω) +‖g0−a∞ ·x‖

W
2− 1

p
,p

(Γ0)
+‖g1−a∞ ·n‖

W
1− 1

p
,p

(Γ1)
).

(34)
We have also ∇u ∈W 1,p

0 (Ω) and ∇u ⇀ 0. Now, we set v = u+ a∞ · x. We

have v ∈ D′(Ω) and ∀i, j = 1, ..., n,
∂2v

∂xi∂xj
=

∂2u

∂xi∂xj
∈ Lp(Ω) because
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u ∈W 2,p
0 (Ω). Moreover ∇v = ∇u+ a∞ so ∇v ⇀ a∞. So v is solution of (R′)

and the estimate searched comes from (34). �

Remark : If we take f ∈ X0,p
1 (Ω), we can show that for any g0 ∈W 2− 1

p ,p(Γ0),
g1 ∈W 1− 1

p ,p(Γ1), a∞ ∈ Rn and b∞ ∈ R, there exists a unique v ∈ D′(Ω) with,

for any i, j = 1, ..., n,
∂2v

∂xi∂xj
∈ Lp(Ω), solution of the following problem

(R′′)


−∆v = f in Ω,
v = g0 on Γ0,
∂v

∂n
= g1 on Γ1,

v − a∞ · x− b∞ ⇀ 0 at infinity.
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