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Mixed exterior Laplace’s problem

Chérif Amrouche*, Florian Bonzom

Laboratoire de mathématiques appliquées, CNRS UMR 5142, Université de Pau et des Pays
de I’Adour, IPRA, Avenue de I’Université, 64000 Pau cedex, France

Abstract

In [3], authors study Dirichlet and Neumann problems for the Laplace operator
in exterior domains of R™. This paper extends this study to the resolution of a
mixed exterior Laplace’s problem. Here, we give existence, unicity and
regularity results in LP’s theory with 1 < p < 0o, in weighted Sobolev spaces.

Keywords : Weighted Sobolev spaces ; Laplacian ; Mixed boundary conditions;
Poincaré type inequality

1 Introduction and preliminaries

Let wg and wy be two compact, disconnected and not empty regions of R,

n > 2, with Lipschitz-continuous boundaries, respectively, I'y and I'; and let Q2
be the complement of wy Uwy. We set I' =T'g UT'; = 9.

This paper is devoted to solve the following problem :

—Au=f in{,
(P) %Z 9o on I'o,
a% =01 on Fl.

Since these problems are setted in an exterior domain, we must complete their
statements with adequate asymptotic conditions at infinity. We have chosen to
impose such conditions by setting our problem in weighted Sobolev spaces
where the growth or decay of functions at infinity are expressed by means of
weights. These weighted Sobolev spaces provide a correct functional setting for
the exterior Laplace equation, in particular because the functions in these
spaces satisfy an optimal weighted Poincaré type inequality. This gives them a
great advantage over the two families of spaces currently used for the Laplace
operator, namely, the completion of D(2) for the norm of the gradient in
LP(€2) and the subspace in L} () of functions whose gradients belong to
LP(€). On one hand, when p > n, some very treacherous Cauchy sequences
exist in D(Q) that do not converge to distributions, a behaviour carefully
described in 1954 by Deny and Lions (¢f. [5]) but unfortunately overlooked by

many authors. These sequences are eliminated in our spaces because we equip
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them with the full Sobolev norm instead of the norm of the gradient alone. On
the other hand, this full Sobolev norm avoids the imprecision at infinity
inherent to the L} = norm. In an unbounded region, it is important to describe
sharply the behaviour of functions at infinity and not just their gradient. This
is vital from the mathematical point of view, not only because it permits to
characterize easily the data from which we can solve our problems, but also
because the analysis done here for one exponent of the weight extends readily
to a wide range of real exponents. This is even more crucial from the
numerical point of view because in most formulations, the function itself is the
primary unknown that engineers discretize, the gradient being only secondary
and usually deduced from the function values.

This paper is organized as follows. Sections 2, 3 and 4 are devoted to the study
of questions of existence and unicity of the solution respectively in cases p = 2,
p> 2 and p < 2 and the section 5 deals with different behaviours at the
infinity of the solution according to the data.

We complete this introduction with a short review of the weighted Sobolev
spaces and their isomorphisms that we shall use in the sequel. For any integer
g we denote by P, the space of polynomials in n variables, smaller than or
equal to ¢, with the convention that P, is reduced to {0} when ¢ is negative.
For any real number p € |1, +o00[, we denote by p’ the dual exponent of p :

p p

Let ¢ = (1, ...,2,) be a typical point of R™ and let

r=|x| = (2 +--- + 22)Y/? denote its distance to the origin. We shall use two

basic weights :
p(r)y =01+ 7“2)1/2 and lg r = In(2+1?)

Then, for any nonnegative integers n and m and real numbers p > 1, a and 3,
setting

1 it 2 rad{1,...,m)
b
k=k(m,n,p,a)=

we define the following space :
Wog(Q) = {ueD'(Q);
YAEN":0< A <k, p* ™ (g r)P~1D € LP(Q);
VAe N k+1< |\ <m, p* ™ R(ig r)PD u e LP(Q)}.

It is a reflexive Banach space equipped with its natural norm :
lllwr ey = (3 o™= tg )P DMl
0<|AI<k

+ Z Hpa_m-i_w(lg T)BD/\U’”]I)JP(Q))l/p’
k+1<|M<m



We also define the semi-norm :

bz = (32 19"l 7 Dl )
[Al=

When g = 0, we agree to drop the index 3 and denote simply the space by
WmP(Q).
The weights defined previously are chosen so that the space D(f2) is dense in
W"5(Q) and so that theorem 1.1 below is satisfied.
The constants 1 and 2 in p(r) and lg r are added so that they do not modify
the behaviour of the functions near the origin, in case it belongs to 2. Thus,
the functions of W' () belong to W ?(0O) on all bounded domains O
contained in 2. As a consequence, the traces of these functions on I,
Y0, Y1y - -« » Ym—1, satisfy the usual trace theorems (cf. Adams [1] or Necas [§]).
This allows to define in particular the space

Waﬁ( )_{erm’p(9)§ W’OUZ’YWZ-“:vm,lv:O}.

It can be proved that D(Q) is dense in I/?/ 215((2) and therefore, its dual space,
Wﬁm’f/ﬂ(Q) is a space of distributions.

—a,

If n € N* is the dimension of spaces, we set E = E™. Now, we define the space
YP(Q) = WP (Q) N LP(Q) equipped with the following norm :

lellysi@) = (el sp gy + Nl )7

We easily check that Y?(Q) is complete.
We introduce the partition of unity (we use the lemma of Urysohn) :

P1, o € C(R™), 0 <4y, <1, 91+ = 1in R",
Y1 =1in Bg, supp ¢1 C Bryi,

where R > 0 is such that wg Uw; C Bg.
For any v € W(l)’p (Q), we set v1 = v and vy = Pyv. We have supp
vy C Qry1 = Bry1NQ ans so vg € Wl’p'(QRH). Furthermore v9 = 0 on I

because ¢, =0 on Qp = BRNQ, so vy € W é’p/(Q). For f € YP(Q), we set :

\RS W[l)’p/(Q), Ty (v) :/ forde + < fvg >,
QRr41

where < .,. > denotes the duality pairing between Wy () and W é’p/(Q).
We easily notice that T is well defined, linear and we check that :

Ve € D@, Tye) = [ fodo. M)
and for any f € YP(Q) and v € W(l)’p (Q),

T50)] < € [Fllywc@) Nollyaor @)

where C' > 0 is a constant which does not depend of f and v.
The next results are demonstrated by Amrouche, Girault and Giroire [2] and
[3] and will be used in the sequel.



Theorem 1.1. Let a and (8 be two real numbers and m > 1 an integer not
satisfying simultaneously :

%—Fae{l,...,m} and (B—1)p=-1

Let ¢ = min(q, m — 1), where q is the highest degree of the polynomials
contained in W5 (Q). Then :
i) the semi-norm | . \ngg(ﬂ) defined on W77 (Q) /Py is a norm equivalent to
the quotient norm.

o
ii) the semi-norm | . |WZL’-,[§(Q) is a norm on W 75 (), which is equivalent to
the full norm || . HWT,b(Q)'

Theorem 1.2. The following Laplace operators are isomorphisms :

i) A WEP(R™/Ph_nsp] — WoP(R™) L Py pjps
“) A W%p(Rn)/’P[l—n/p] - th)yp(Rn)J-’P[l—n/p’]a
i) A WYTT(RY)/Pa — (WTTRY AW, T (RY) LR,

where the symbol L has the following meaning : for E and F two spaces such
that E C F,

F/J_EZ{fEFI, VreFE, < f,x >Fr F= 0}.

Proposition 1.3. Assume that p > 2 and f € W5 "P(R™) with compact
support and satisfying, if n = 2, the compatibility condition

<f1 ZWil(R2), W (R2) T 0.

Then, the problem
—Au = f in R,

has a solution u € W5 (R™) N WP (R™), unique up to an additive constant if
n=2.
2 Case p=2
We begin to introduce the space
Vo={ve W), v=0 onTIy}.

and to establish a Poincaré type inequality :
Proposition 2.1. There exists a constant C > 0 such that :

Vu eV, lullyrzg)y < C lulyrz g
Proof- We use an absurd argument ; so, assume that

Vn e N*, Jw, € Vs, HwnHW(l),2(Q) >n |wn|W(1),z(Q).



W,

Then the sequence defined by u,, = satisfy

HwnHWé’z(Q)

1
||un||W(1Jz(Q) =1 and |un|W(1)2(Q) < g (3)

Here, we define an other partition of unity :

@1, p2 € CF(R"), 0 < 1,02 <1, p1 + 92 =1in R",
p1=11in Bg,, supp 1 C Bg,+1,
where Ry > 0 is such that w; C Bg, and wg N Bgr,+1 = 0. We set u}l = Y1Un

and u2 = pau,, so that u,, = ul + u2. We deduce by (3) the existence of
u € V5 such that :

U, — uwin Wy (Q) and Vu=0in Q.
As Q is connected and u € V5, then v =0 in ©Q and
u, — 0 in W2(Q). (4)
Thanks to the Rellich’s compactness theorem, u,, — 0 in L?(Q2g, 1) and
thanks to (3), we easily deduce that u} — 0 in W{*(Q). Now, we prove that
u? — 0 in W5 (Q). First, we notice that u2 € W 02(2). Setting Qo = Q\ Bg,
and ' = Qy U wp, we call again u?2 the restriction of u2 to 2y and we define :

2 _ .2
n = Upn

U, on €, ﬂizOonwo

. ~ °. 1,2 . ~
We easily check thaiu% € W o () with [[i3[lyy1.2 o) = ||u%||Wé,2(QO).
Noticing that 2" = B and applying a result established by Giroire [6], we
have :

@5 w120 £ C a2
We easily show that W%Wé*“(ﬂ') — 0, so in particular Huiné,z(Qo) — 0. To
finish, like Qp = Q\ Qr, and u2 =0 on Qg,, we have :
. 1,2 . . .
HuiHW(lj,z(Q) = ||ui||Wé,2(QO) — 0. So, u2 — 0 in W5*(Q2) which implies that
U, = ul +u2 — 0 in W§*(Q), and which contradicts (3). In consequence, we
have the result searched. O

Theorem 2.2. For any f € Y2(Q), go € H2(Ty) and g € H~2(T'y), there
exists a unique u € W(IJ’Q(Q) solution of the problem (P) and a constant C > 0
such that

el < CCIva@) + gl g ) + Nl )

Proof- First, according to [3], there exists a unique ug € Wy*(91) where
Q = QU wy, solution of :

Aug=0 1in Q
(PD){ Ug m {4,

ug=go only,



and checking

luojellwsz@) = C llgoll 43 -

We notice that like ugio, € W§(€2) and 0 = Aug € L*(Q2), then

ou . . .
2 ecH *%(I‘l). Moreover, we know that there exists a unique v € V; solution

n
of the following problem (FV) :
(FV) Yw € Va, a(v,w) = L(w),

where for v, w € V5,

a(v,w) = / Vv -Vw dx and L(w)=Tf(w) + < g1 — %,w >ry,
Q

and where < .,. >r, is the duality pairing H~2 ('), H2 (I';). Indeed, this
result is a simply consequence of the Lax-Milgram theorem and of the
propriety 2.1 which shows that the form a is coercive.

Then, we easily check that this solution v € W (Q) satisfies

—Av=f in Q,
(7)/) v=20 on Fo,

0
P g - onr
g1 on D

and 9
Ug
ol < C (v + o = 52 ly )
Finally, the function u = ugq + v is the solution of (P) and the estimate
searched is a consequence of the two previous inequalities. O

3 Casep > 2

We propose the following approach : first we solve the harmonic problem, this
will enable us to establish an "inf-sup" condition which in turn will solve the
full problem thanks to the theorem of Babuska-Brezzi.

In all this section we suppose p > 2 (except for the subsection 3.5. where we
suppose p > 2) and T' of class C1!.

3.1 Resolution of the harmonic problem

1. 1
Let go be in w7 p(I‘O) and g1 bein W * p(Fl). Here, we consider the
problem : find u in WP (Q) N W§2(€) solution of

Au=0 in €,
(Po) Ua: 90 on Iy,
% =g onl}y.

1, 1,
Theorem 3.1. For any gy € W (Ty) and g1 € W © (T'1), there exists a
unique u € WP () NW52(Q), solution of (Py), and we have :

) ()

0

Il o + Wz <€ Clooll g+ ol -

1
»P (Fl)



Proof- By [3], we know there exists ug € Wy (1) N W§2(€) solution of
(Pp), where we remind that Q; = Q Uw;, with the following estimate :

lollwyr gy + o llwzzny < O llgoll ampr - “

We notice that like ugq € Wé’p(Q) and 0 = Aug € LP(Q), we have

1
% ew *"(I'1). Moreover
8u0
I, 0 2o <Cllgoll -1,
n w ? o (Iy) W P (L)

Then, we are going to show that there exists a unique v in Wé’Q(Q) N Wé’p(Q)
solution of the following problem :

Av=0 in €,
/ v=0 on Iy,
(Po) Ov Oug
87’"/ =431 — 6711 on Fl.

with the estimate :

) (7)

[ollwir @) +1lvlwizq) < C( ||90||W17% .

+ _1
,p(F ) ||91||W }D,p(rl)
8UQ _1 .
Asp>2,¢1 — I € H~2(T";) and thanks to theorem 2.2, there exists a
n

unique v € W§?(Q) solution of (P[,) and checking (7) with p = 2. There stays
to show that v € WP (Q). For this, we use the partition of the unity
previously defined :

o1, p2 € CF(R"), 0< 1,02 <1, o1 + 92 =1in R,
o1 =1in Bg,, supp ¢1 C Bg,+1,
where Ry > 0 is such that wy C Bg, and wo N Br,+1 = 0. We set v1 = ¢qv,
v9 = ov and
Uy = v in Q, 13 =0 in wy.

o
We remind that vy € W 52(€2) and so that 63 € W§*(Q;). Moreover, we have :

—Avy = Avy = v Ay + 2V - Vo := f1 in Q.
Setting B _
flzflinQ, flz()inwl,

it is obvious that fvl € L*(Qy) with supp ]?1 C Qpg,+1 and that —Avy = fl in
Q.

Now, we set s = U5 and we are going to show that s € W(l)’p(Ql). For this, we
define an other partition of the unity :

517 62 S COO(Rn)v 0 S 51762 S ]-7 51 +£2 =1lin Rn»
& =1in Br,, supp & C Bry+i,



where Ry > 0 is such that wy C Bg, and w; N Br,+1 = 0. We set s1 = &1s and
so = &35, and we notice that :

—Asy = f1+Asy = fi +5 A& +2VE - Vs = F in Q4.

Finally, we set :

~ So in Ql, - F in Ql,
82_{0 in wq, and F_{O in wg.

We have §3 € W, (R™) because s € W () F € L*(R") with supp
F CQpry+1 N Qr,+1, and also —Asy = F in R™.

i) Case 2 <p <

n2 andn >3 orp>2andn=2.

Thanks to the injections of Sobolev, , we have F € Wy P(R™). In
consequence, thanks to the theorem 1.2 i), (there is no condition of
compatlblhty because p > 2), we show that 5, € WP (R™) and so
59 € WP(€) and we easily check that :

8u0

- (®)

_ - '
||52HW(1,"’(R")/P[1,%] < Clg— w e

Outside of Br,+1, £&1 = 0 s0 s = sg and the trace of sy on 0Bp,+1 belongs to
Wlf%’p(BBROH). So s checks :
—As = fl in Qp,4+1, s=s2 0n0Bg,y1, s=0onTy.

Consequently, (see Lions and Magenes [7] ), s € WP(Qpg,4+1) and :

Isllwir@rge) < C (fillw-1r@py ) + ||82||W17%,p(6BR0+1)

We deduce of this that s € WP (Q;); and with (8) and (9), we have :

ou
Iohwgoy < Clor— 22y, (10)

2n
—92

The argument used above with p =

ii) Case n > 3 and p >
n

2n 1,;285
) shows that s € W' "7 (1) and we

use the same demonstration that i) with s € WO’” -2 (©4) instead of
s € W4 (Q1). So, we obtain the result for n =3, n =4 and n = 5 if

2n 2n
p< 1’ ; then we take instead of ot and we start again ; so we

reach for all dimension, all values of p.
Consequently, we have s = v, € WP(Qy), vy € WHP(Q) and

8U0

an - (11)

v P < C 1 .
| 2||W(1] @ = lgr — ;’p(rl)
Outside of Bg, 11, ¢1 = 0 and v = v2 and the trace of v2 on OBg,+1 belongs
to W1*%’P(8331+1). So v checks :

81} 8u0

Av=01in Qg,+1, v =y on 0BR, 41, I glf%onfl



In consequence, (see Lions and Magenes [7] ), v € W1P(Qg, 41) and :

3u0
ol @,y < € (1= F

) (12)

+ ||U2||W17%YP(8BR1+1)

[
w Py

1

We deduce of this that v € W§?(€) and with (11) and (12), we have :

6U0
”UHW(I)”’(Q) < Cllg- I

I, ")’

Then, we easily check (7). Finally the function

u=ugq +vE We2(2) NWEP(Q) suits and with (6) and (7), we have (5).
O

3.2 An “inf-sup” condition
Setting for any p > 1,
V, ={ve WyP(), v=0onTo}.

we notice that, equipped with the norm || V.|| zs(q), V} is a reflexive Banach
space. In this subsection, we are interested in the existence of § > 0 a constant
such that :
Vv - Vuw de
inf sup £ > f

WEV, yeV, HVUHLP(Q)”VU’HLP’(Q)
w#0  v#£0

We define :
ﬁp (Q)={zeL?(Q),divz=0inQ, z-n=0o0nT4}

Proposition 3.2. For any g € L¥(QQ), there exists z € ﬁp (Q) and p €V,
such that :

g=Vy+z,

Velrr@) < C lgllzr )
where C' > 0 is a constant which depends only on Q and p.

Proof- Let g be in LP(§2) and g the extension by 0 of g in R™; so we have
g € LP(R™) and thanks to a result established in [2],
divg € Wy "P(R™) L Py, with

I div glly -rr ey < Cllgller@n = C llgllzr@)-

According to the theorem 1.2 i), we know there exists v € WP (R™) such that
Av = div g in R", and we show that ||Vv| r@n)y < C1 ||g]|Lr(@). So, we have :

g—VveLP(R") and div(g—Vv)=0 inR".
-1, -1,
Consequently, (g —Vv)-necW ” (I'1) and vjp, € W (To). Here, we
apply the results of the theorem 3.1. There exists a unique
w e WyP(2) NWy2(Q) solution of :

=

Aw=0in Q, w=—von Iy, g—::(ngvfnonI‘l,



and we show that |[Vw| r) < Co [|g]zr()-
Finally the functions ¢ = vjq + w and z = g — V¢ comply with the question.
O

Theorem 3.3. There exists a constant 8 > 0 such that

Vv - Vw dzx
inf sup &2 > p (13)
weVy vev, [Vollpr@) IVl gy g
w#0  y£0

Proof- Let w be in V}y with w # 0. We notice that Vw # 0 because otherwise
w is constant in the connected open region €2, ie w = 0 in ) because w = 0 on
I'y. We have

/Vw-g dex
IVl gy = sup L2
L@ geLP(Q) ”gHLP(Q)
g7#0

We easily check that for any z € H, (Q) and any v € V,/, we have

/ z - Vv dx = 0, what means that superior boundary defined above can not
Q

be reached for a g € H, (). Let g be in LP(Q?) with g # 0. We can suppose

that g ¢ H, (©2) and thanks to the proposition 3.2, there exists z € H, (Q)
and ¢ € Vj,, with Vo # 0 such that g = 2z + Ve and [|[Vo| zro) < C |gllLr@)-
Thus,

/Vw-gd:n /Vw-Vapdw Vw -V dx
Q 0 0
= < = < (C sup H0——
lgllLe o) IVeollLe @) gae#v,, Vel L@
©#0

This is checked for any g in L?(f2), so :

/Vw-gdw /Vw-Vgodw
IVwllpor ) = sup =t < C sup =t
B serro) gl eev, [IVelrr (o)
g#0 P#0
1
We deduce the estimate (13) with = —= >0. O

c
3.3 The full problem

We remind here the following result :

Theorem 3.4. Let X and M be two reflexive Banach spaces and X' and M’
their dual spaces. Let b be a bilinear form defined and continuous on X X M,
let Be L(X;M') and B € L(M,X’) be the operators defined by :

Yo e X, Ywe M, b(v,w) =< Bv,w> = <v,B'w>

The following statements are equivalent :

10



b
i) There exists 3 > 0, such that inf sup ﬂ
weM yex [|vlxlw]las
w70 v#0

> p.

1
ii) The operator B is an isomorphism from X/Ker B to M’ and E 15 the

continuity constant of B~1.

1
iii) The operator B’ is an isomorphism from M to X' 1 Ker B and 3 18 the

continuity constant of B’ 1.

Here, we apply this theorem with X =V,, M =V, and :
b(v,w) = / Vo - Vw dx.
Q

According to (13),
B is an isomorphism from V,,/Ker B to (V). (14)

1,
Then, we define for f € Y?(Q) and g € W " (I'y) the linear form T by
Yw e Vy, T(w)=T(w) + < g,w>r,,

Sl 1
where < .,. >p, denotes the duality pairing between W 7 (I'y), W' 7P (Ty).
We check that T' € (V,y)" and thanks to (14), we deduce the existence of
v € Vj, unique up to an element of Ker B, such that Bv =T, ie :

(FV) Yw € Vy, /Vv~Vw de =Tf(w) + < g,w >r, .
Q

pr
Corollary 3.5. For any f € YP(Q) and g€ W 7 (T'1), there exists a unique
ve WiP(Q)/Ker B, solution of

0
—Av=finQ, v=0on Iy, a—Z:gonl"l.

and checking the following inequality :

)- (15)

Proof- As we have done in the theorem 2.2, we show that the solution of the
problem (FV) is also solution of this problem. O

v P < C P + _1
lolbwyraymer 5 < € (e + ol o

1, 1,
Theorem 3.6. For any f € YP(Q), go € W (Ty) and g1 € W * (T1),
there exists a unique u € WP (Q)/Ker B, solution of (P) and there exists a
constant C > 0 such that :

).

Il gysmer 5 < OIS Nvoay + ool o+l -

1
P
0 P (1)

Proof- First of all, thanks to [3], we know there exists a unique
ug € W(l)’p(Ql) where €; = QU wy, solution of (P ) and checking

lwollwgriay < Cllgol st (16)

Thanks to corollary 3.5, we deduce that there exists a unique
v e WP(Q)/Ker B, solution of (P'). Finally, the function u = uglg 4 v is
solution of (P) and the estimate comes from (15) and (16). O

11



3.4 Characterization of the kernel of the operator B
We set :

MEQ)={v e WiP(Q); Av=0 inQ, v=0 on FO’% =0 onT4}.

Thanks to the density of D(Q) in W l (), we easily check that

Ker B = M§(9Q).
1
Now, we characterize M{ (£2). For this, first of all, we define : pg = U * (mér‘),
1
where U = —In(r) is the fundamental solution of Laplace’s equation in R?
T
and dr is the distribution defined by :

Yo € D(R?), <5p,<p>:/<pdcr
r

Proposition 3.7. We have the following statements :

i) If p < n, then M§(Q2) = {0}.

ii) If p > n > 3, then ME(Q) = {c(A — 1), ¢ € R} where X is the only solution
in Wy2(Q) NWP(Q) of the following problem (P,) :

AX=0in Q, A=1on Iy, @:Oonfl.
on
iii) If p > n =2, then ME(Q) = {c(u — po), ¢ € R} where u is the only
solution in W () N WP (Q) of the following problem (P,) :

. 0 0
Ap=0in Q, p = po on Iy, 8—22%0]{11"1.

Proof- Let z € M} () and let n be the trace of z on I'y. We have

1
new ’ p(Fl). We know there exists a unique £ € W2 (u,), where «; is the
interior of the compact wi, checking :

AL =0in Wi, &E=nonlj.
Let Z be defined by
Z=2inQ, z=¢inw;, z=0Iin wp.
It is obvious that Z € W P(R™) and AZ € W P (R™). Moreover, for any

v € D(R™), we have :

AZ B 0z o€
< Az, ¢ >pr(rn) DRr)= — < '’ >, — < ¥ >Ty -
We set h = AZz. Then, h € Wal’p(]R”) and h has a compact support. At this
stage, the discussion splits into two parts according to the dimension n :
i) Case n > 3. Thanks to the proposition 1.3, we know there exists a unique w
such that :
we WPR") NW2(R") and Aw = h in R™.
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The difference Z — w is in W§?(R™) and is harmonic in R”. If p < n, then

w = Z in R, the restriction of w to Q is in WP(Q) N W 2(Q), and like z = w
in ©, the section 2 implies that w = 0 in Q i.e M{(Q2) = {0}.

If p>n>3, we have w = 2 + ¢ in R” so w € W§P(Q) N W () is the only
solution of the problem :

Aw=01in Q, w=con Iy, 6—w:OonF1.
on

Consequently ME(Q) = {¢(A — 1), ¢ € R} where A is the solution of (P;).
ii) Case n = 2. The problem

Aw =h in R?,

does not have a solution in VV(I)’2 (R?) unless h satisfies the necessary condition
< h,1 > = 0. In this case, with the arguments above, we obtain z = ¢(A — 1).
However, when n = 2, the constant functions are in WP (Q) N W2 (Q) so
A=1¢e WP (Q) nW§?(Q) is solution of (P,). So z = 0, which is the trivial
case. Thus, we suppose that < h,1 > % 0 and we consider the problem :

Aw=h — < h,1>Apy inR2 (17)
We know that pg € Wé’q(RQ) for any ¢ > 2 and moreover
Apg =0 in Q UJOqul and < Apg,1 >=1.

The right-hand side of (17) is orthogonal to constants, has compact support
and belongs to W Lp (R?). So, thanks to proposition 1.3, the problem (17) has
a solution (unique up to an additive constant) w € Wy *(R?) N WP (R?).
Moreover, the function w + < h,1 > pg — Z is harmonic in R?. So, there exists
¢ > 0 such that w + < h,1 > po — z = ¢. The restriction of w to € is in

LP(Q) N W () and w = ¢ + wy where wy is the only solution in

My §
W () N WoP(2) of the problem :
0 0
Aw; =0in 2, wy; =— < h,1 > pg on Iy, ﬂ:—<h71>ﬂonl“1.
on on
The function y being the only solution in W§2(€2) N W P(Q) of the problem
(P,). We have ME(Q) = {c(1 — p0), ¢ € R}. O

3.5 A regularity result

We suppose, in this subsection, that p > 2. Here, we propose to study the
question of the regularity of the solutions when the data are more regular.
More precisely, we suppose that :

go € W25 P(Ty), g1 € W sP(Ty) and fe X0P(Q)

where n
0, .
Wlp(Q) lfp?én—l’

x0ry=¢ 1 B ,
WiP(Q)NWy P(Q)  otherwise,

equipped with its natural norm : (we remind that W{?(Q) is included in
Wy P(Q) if and only if WP () € W5 (), this last inclusion taking place
if and only if p # Ll)

n—

13



Theorem 3.8. For any
go € WQ_%’p(FO), g1 € Wl_%’p(Fl), and f € XVP(Q), there exists a unique
uwe WP (Q)/MP(Q) solution of (P), and we have :

ullyzre ) mz@) < C (fllxorq) + ”g()”vvz’%*”(ro) + ||91||W17%,p(n)) (18)

Proof- For p > 2 and go € WQi%’p(I‘o), we have, thanks to [3] that the
solution ug € WP () (where Q; = QUw;) of the problem (P,)) is in
W3P(€) and it checks :

(19)

||U0||W§~P(Ql) <C ||90||W27%,p(110)-

ou
now, we notice that a—o € Wlf%’p(Fl) because ug € W2P(Qy). Thus, as
n

0
feX%(Q) cYP(Q) and g — % EW'BP(I) CW
corollary 3.5 when p > 2 and the theorem 2.2 when p = 2, there exists, for
p > 2, a unique v € WP (Q) solution of the problem (P’). It stays to show
that v € W?(Q) and that

7" (1), applying the

o2 @z < € U xory + Mgoll o + 191l a g )- (200

For this, we follow the same reasoning as theorem 3.1 using theorem 1.2 ii) if
n

PF

bounded open regions (see Lions and Magenes [7] for instance).

Finally, the function u = ug|o + v € WTP(Q) is solution of (P) and the
estimate (18) is a consequence of (19) and (20). O

and theorem 1.2 iii) otherwise, and using regularity results in

4 Casep < 2

We are going to proceed in two steps. First of all, thanks to an argument of
duality, which allows us to use results of the previous section, we solve the
problem in the case where f = 0 and g; = 0. The sum of the solution of this
problem and of a solution of a Neumann problem will permit us to solve the
general problem (P).

In all the section, we suppose that p < 2 and that T is of class C1.

4.1 Case where f =0 and ¢g; =0.

1,
Let g € W (T'o) checking the condition of compatibility
' 0z
Vze Mj(Q), < 0 >p,= 0, (21)

—1 -1y
where <, >r, denotes the duality pairing W ¥ (T), W (To).
With this hypothesis, we consider the problem : find v € W(l)’p (2) solution of :

Av=0 in Q,
(Q) %: 9o on Iy,
% =0 onl}y.

14



and this other problem (Q') : find v € WP(Q) such that for any u € X,/ (Q)

U
satisfying v = 0 on I'g and — = 0 on I'7, we have :

on

ou
T_pu(v) =—< 90 >T (22)

where , )
Xy (Q) ={ueWyP (Q), Auc L (Q)}.
We easily check that the problem (Q) is equivalent to the problem (Q’).

iy
Theorem 4.1. For any go € W p(FO) satisfying the compatibility condition
(21), there exists a unique v € W () solution of the problem (Q) and we

have the following estimate :

v D < 1, .

| ||w§ Q) = H90||W1 L (o)

Proof- Let f be in Y7 (Q). It is obvious that Ty € (W4P())". Like p/ > 2,
thanks to the theorem 3.6, we know there exists a unique

uwe WyP (Q)/ME () such that

—Au=finQ, u=0on Ty, g—Z:OOHI‘l,

checking
Hu”W[l)’P'(Q)/Mg'(Q) < C HTf||(W(1)p(Q))/ (23)

Let L be the linear form defined on (Wy?(Q)) by :

ou
L(Ty) = — < —,90 >, -
( f ) on go ~Tg
We are going to show that L is continuous. Let z be in Mg/(Q), then, thanks
O(u+ 2)
on
region of class C'1'! such that wy C § C Br where R is the radius associated to
the partition of the unity used in the definition of T;. We set Qg = 0\wy and
let p € WP(Qy) be such that ¢ = 0 on 90. We have :

0
to (21), we have < a—u7go >r,= < , 90 >T1, - Now, let 6 be an open
n

o(u+ z)
< 2D oo, | < IV Dl IVl +1 [ 0 Alut2) dal
Qo
But,
[ etz dal=| [ ¢ dudel = 1T su(@)
Qe QG

where @ € W§P(Q) is defined by = ¢ in Qp, @ =0in Q\ 6. In consequence,

(u+ z)

< 2 oo | < 9@+l | V0 i@+ 1T L w ey I€llwroan)-

Now, for any p € I/Vl_%’p(I‘o)7 we know there exists ¢ € W1P(€2p) such that
@ =ponI'yand ¢ =0 on 90 checking

)

Iellwrstn < C Nl gy

15



where C' > 0 is a constant which depends only on 2y and on u. So

u+ z)

< 2 oy | < C (V2w g+ 1T Ly ) ol

_1 .
»'P(To)
Thus, we deduce of (23) that

f ”8(u + 2)

———lwm gy < C Tl iy -
ey On (To) (W)

So
L(Ty)| = iu < C|T
[L(Ty)| = | < on 0 > < | fH(Wé”’(Q))’ lgoll -

1,
2" (D)

and the linear form L is continuous on (W*(£2))". Like the space WP (Q) is
reflexive, we can identify L to an element of Wé’p (Q), i.e there exists a unique
v e WP(Q) such that :

ou
Ti(v) = - < %,90 >Tos

and checking the estimate searched. In consequence, the function v is solution
of the problem (Q’) equivalent to the problem (Q). O

4.2 The general problem when p<2.

8=

1 P Yy
Let f € YP(Q), go € W (Ty) and gy € W 7 (T'1). We remind that we
search u € Wy () solution of the problem (P). Assuming that a such

solution u € WyP(Q) exists, for any ¢ € Mg/(Q), we have thanks to the
density of D(Q) in W (Q) :

Tf«o):/QVu-w i — < g1 >r, - (24)

Like D(Q) is also dense in W?(Q), we have, for any ¢ € Mgl Q) :

o
Vo -Vuder =< — . 25
| e vuds =< 200>, (25)
We deduce of (24) and (25) that if u € WP () is solution of the problem (P),
the data must checking the following condition of compatibility :

/ 0
Vo € MY (), Tr() = < 3590 >r, — < g1, >1, - (26)

Theorem 4.2. Letp <2, f € YP(Q), go € Wli;ﬁp(I‘o), g eWw E'p(I‘l) be
satisfying the condition of compatibility (26) if 1 < p < %, then there exists

a unique u € Wé’p(ﬂ) solution of the problem (P) and there exists C > 0 such
that

lllwyriey < OO lyniy + ol ooz )

v ol -
(To) w

1
P (Fl)
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Proof- First of all, we notice that the condition (26) is always satisfied if
% < p < 2 because in this case p’ < n and Mf)’l (©) = {0}. Let 0 be the
constant defined by :

Tf(].) + <gi,1>p, +<0,1>p,=0. (27)
According to [3], thanks to (27), there exists a unique w € Wy () such that :
—Aw = f in §, a—wzﬁonfo, 6—w:g1 onI';.
on on
Moreover, for any ¢ € ./\/lgl (Q), we have, thanks to (26), that
¢
< ain,go—w>roz 0. (28)

So, we can apply theorem 4.1 which assures existence of a unique v € Wé’p ()
such that :

0
Av=0in Q, v =gg —w on Iy, —v:00n1"17
on
satisfying
gy < € Cllhgocey + ool ooy ) (29)

Finally, the function u = v +w € W{P(Q) is the solution searched and the
inequality of continuous dependance comes from (29) and :

[wlwir@ < C (Iflvse+ il 3 ) O

1
» ()

4.3 A regularity result

We suppose, in this subsection, that p < 2. Here, we study the regularity of
solutions when the data are more regular.

Theorem 4.3. For any go € W2~ 5?(T), g1 € W' "5 P(Ty), f € X9P(Q)
satisfying the condition (26) if 1 < p < Ll’ there exists a unique
n—

u € W?’p(Q) solution of (P), and we have :

o < C (flxtna + g0l s + Ml o) (30

( (T'1)
Proof- We retake the proof of the theorem 4.2. We know, thanks to [3] that
the solution w € WP (Q) of the problem (Q,) is, in this case, in W37 (Q) and
checks :

)- (31)

[wlly2rq) < C (Ifllxor@) + ||91||W17%,p(m

IS
Now, we notice that, on I'g, go — w € WQ_%’p(Fo) cw ” p(Fo). Thus,
applying the theorem 4.2, the condition of compatibility (26) being checked if

l<p< %, there exists a unique v € W(l)’p(Q) solution of the problem
(Q,). Tt stays to show that v € W2P(Q) and that

oz < € U lxoriy + 190l oo + 91l s ) (32)
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For this, we follow the same reasonning that at the proposition 3.1 using the

theorem 1.2 ii) if p # n T and the theorem 1.2 iii) otherwise and also using
n—

regularity results in bounded open regions (see Lions and Magenes [7] for

instance).

Finally, u = w +v € W>?(Q) is the solution searched and by (31) and (32), we
have (30). O

5 Solutions in homogeneous spaces

In all the section we suppose that p < n.
Let vy be in R. It is frequent to meet in the litterature the following problem :
find v € D'(Q), with Vv € LP(Q) solution of

—Av=f inQ,
v = go on Iy,
R 0
( ) l =01 on Fl,
on
V= VU at infinity.

where the sense of the convergence v — v, is specified in the following
proposition (see [4]).

Proposition 5.1. We suppose that 1 <p <n and z € D'(Q) such that
Vz € LP(Q)). Then, there exists a unique constant zo, € R such that
2 — 200 € WP(Q), where zoo is defined by :

. 1 /
Zoo = lim —— z(olx|) do
|| ——+o00 |Sn‘ S ( | |)

Moreover, we have the following proprieties :

Z— 200 € L7775 (Q),

Lo S ClVEl @),

1 1
lim —/ z(olx]) — 20| do = lim —/ z(olx]) — zo|P do =0
ol TS sn‘ (o]]) | " S Snl (o]|) |

‘—>+OO

12 = Zoo

/ |2(ro) — 200|P do < Crp_”/ |Vz|P de.

Sn {xe Q,|z|>r}

Let z € D'(2) be such that Vz € LP(Q). So, we say that z — z. if and only
if :

lim i/ (2(0]a]) — 200) do = 0.
|Sn| Sn

|| —+o0

It is obvious that if z € D'(Q), Vz € LP(Q), then z — z is equivalent to
2= 2oo € L7 (Q) 0r t0 2 — 200 € WHP().

sP

Proposition 5.2. For any f € YP(Q), go € W (To), g1 €W ?7(T1) and
Voo € R, with 1 < p < n, there exists a unique v € D'(Q) with Vv € LP(Q)
solution of (R) and we have the following estimate :

Tl

Il = voollwy sy < € Cllfllyrie) +ligo = vooll - e T lonll 50 )

1
P 0 (T'y)
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Proof- The previous sections allow us to say that there exists a unique
u e WyP(Q) solution of

—Au=fin Q, u= gy — Vs on Iy, g—u
n

= g1 on I'y,

and checking
w ) (33)
T

u P < C P + — Vo 11, + 1

lulhwyriey < € CWbvoy + lao = vl iyl

It is obvious that u — 0. Thus, the function v = u + v belongs to D'(Q),

checks Vv € LP(Q) and v — ve. So, v is solution of (R) and the estimate
searched comes from the inequality (33). O

Now, let aso be in R™. We want to solve the following problem : find
2

v € D'(Q), such that for any i,j = 1,...,n, we have = LP(Q), solution
axic?xj
of
—Av=f in €,
] v=90 on Io,
R
( ) @ = a1 on Fl,
on

Vv — as at infinity.

Proposition 5.3. For any f € LP(Q), go € WQ_%’p( To), g1 € W! P’p( 1)
and aoo € R™, with 1 < p < n, there exists a unique v € D'(Q) with, for any

).

82
i,j=1,..,n, € LP(), solution of (R') and we have the following
O0x;0x;
estimate :
lo=aoo@lhys @ < U sy Hlg0—aorel o Hlgr—asonl iy

Proof- First of all, we set f the extension of f by 0 on R™. So, we have

f € LP(R™). Moreover, we know that A : W2’p(R")/P[2 n/p) — LP(R™) is an
isomorphism, so there exists u € VV2 P(R™) unique up to an additive constant,
such that —A% = f in R™. We have u U € W(z)’p(Q) and —Aujg = f in Q.
Thanks to the regularity results of the previous sections, we know there exists
a unique z € WP(Q) € WP (Q) solution of the problem

3]
i :gl—aoo-’n—(a—;i) on I'y.

an

Az=0in, z2=¢gy— Qoo —uon [y,

So the function u = u)g + 2 is in W2P(2) and is solution of the problem

Ju
on

—Au=finQ, u=gyp— Goo - x on Iy, =g1 — Qe M on 'y,

checking the following estimate :

[ullwzr ) < CUflr@) 1190 — @oo 2| .- +1l91 = oo -

Wl_%‘p(rl)).
(34)
We have also Vu € WP (Q) and Vu — 0. Now, we set v = u + Goo - . We

2 2
have v € D'(2) and Vi, j = 1,...,n, 892;3:3 823

1
" (To)

€ LP(Q) because
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u e WP (Q). Moreover Vv = Vi 4 Goo 50 VU — Goo. S0 v is solution of (R/)
and the estimate searched comes from (34). O

Remark : If we take f € XP(), we can show that for any gy € I/Vz_%’p(ljo)7
g1 € Wlf%’p(l“l), oo € R™ and by, € R, there exists a unique v € D'(QQ) with,

2
for any i,j =1,...,n, 0w € LP(9), solution of the following problem
8.Z‘i8$j
—Av=f in Q,
. V=40 on F07
R 0
(%) = - g1 on I'y,
on

VU — Qoo & — by — 0 at infinity.
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