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Abstract

The problem of the online identification of multi-input multi-output (MIMO) state-space models
in the framework of discrete-time subspace methods is considered in this paper. Several algorithms,
based on a recursive formulation of the MIMO output error state-space (MOESP) identification class,
are developed. The main goals of the proposed methods are to circumvent the huge complexity of
eigenvalues or singular values decomposition techniques used by the offline algorithm and to provide
consistent state-space matrices estimates in a noisy framework. The underlying principle consists
in using the relationship between array signal processing and subspace identification to adjust the
propagator method (originally developed in array signal processing) to track the subspace spanned by
the observability matrix. The problem of the (coloured) disturbances acting on the system is solved
by introducing an instrumental variable in the minimised cost functions. A particular attention is
paid to the algorithmic development and to the computational cost. The benefits of these algorithms
in comparison with existing methods are emphasised with a simulation study in time-invariant and
time-varying scenarios. matrices.
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1 Introduction

Subspace-based approach for system identification is a particular field of experimental modelling which
has reached a definite maturity from now on, as shown by numerous reference articles [16, 38, 36, 43, 2] and
various application papers [42, 15, 1, 26, 7]. Offline subspace identification methods are indeed attractive
since a state-space realization can be directly estimated from input/output (I/O) data without non linear
optimization (generally required by the prediction methods [17]). Furthermore, these techniques are
characterised by the use of robust numerical tools such as the RQ factorization and the singular values
decomposition (SVD). Interesting from a numerical point of view, the batch subspace model identification
(SMI) algorithms are not usable for online implementation because of the SVD computational complexity.
Indeed, in many online identification scenarios, it is important to update the model as time goes on with
a reduced computational cost. Consequently, it was necessary to find SVD alternative algorithms in
order to apply the subspace concept in a recursive framework. First, some works proposed adaptations of
SMI methods in order to update the SVD [39, 4]. Unfortunately, these techniques had the drawback of
requiring that the disturbances acting on the system outputs were spatially and temporally white, which
is obviously restrictive in practice. Then, recursive subspace model identification (RSMI) methods based
on the Yang’s criterion and the projection approximation subspace tracking (PAST) cost function [44]
were introduced. These specific techniques were developed to track the subspace spanned by the extended
observability matrix in a coloured disturbances framework [11, 20, 30, 19]. More precisely, instrumental
variable adaptations of the PAST technique to the problem of RSMI were considered, the focus being
computational efficiency [11] or estimation accuracy [20, 30]. More recently, in order to provide solutions
to the approximation induced by the reduction of the fourth order Yang’s criterion to a quadratic cost
function, new developments in the RSMI class of algorithms have been put forward [23, 21, 24]. The
proposed methods are based on the adaptation of a particular array signal processing technique to the
recursive subspace identification problem: the propagator [27]. The main advantage of this approach over
the previous conception lies in the use of a linear operator and quadratic criteria which lead to recursive
least squares implementations for the algorithms. This characteristic has newly allowed the analysis of
the convergence properties of the developed techniques for the recursive update of the subspace estimates
[25]. It has also been used with success to online track the modal parameters of airplanes during test
flights [6].

As shown in the following, all the propagator-based techniques are made up of two stages:

1. the online update of a particular vector named the observation vector,

2. the recursive estimation of the extended observability matrix from the online update of the propa-
gator.

An extensive literature is already dedicated to the problem of the observation vector estimation
[11, 20, 30, 21, 12]. Therefore, only a brief overview of the main approaches will be introduced in the
following. On the other hand, new results concerning the observability matrix estimation phase have
been proposed since 2003 [22, 19, 21, 24], mostly based on the propagator [27]. Thus, the main goal of
this paper consists in introducing these recent recursive propagator-based subspace methods in a unified
framework. More precisely, several (new) algorithms, based on particular unconstrained and quadratic
cost functions, are introduced and compared in a performance and numerical complexity point of view.

It is important to stress on the fact that most of the methods used for subspace tracking in array signal
processing [3, 32, 44] assume that the noise acting on the antenna is white. The propagator method [27],
which will be adapted in the following, does not depart from this condition. Now, in system identification,
this hypothesis is seldom satisfied in practice. The problem of the state-space matrices estimation in the
presence of output measurement disturbances and process noise will be thereby analysed. More precisely,
to provide unbiased estimates in a general noisy framework, instrumental variables will be used either in
the online observation vector estimation step or in the recursive propagator updating phase. A specific
attention will be paid to the computational cost of these two alternatives.

The outline of this paper is as follows: in Section 2, the system model is introduced, the main notations
are defined, the general assumptions are stated and a short description of the analogy between recursive
subspace identification and subspace tracking in array signal processing is proposed. This analogy allows
to display both steps composing the developed recursive subspace identification approach. Section 3 is
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dedicated to the online estimation of the observation vector from the new I/O data thanks to the use
of some specific RQ factorization updates. The problem of the recursive computation of the propagator
and, by extension of a basis of the observability subspace, is studied in Section 4. The adaptation of the
propagator method in the recursive identification framework is more precisely considered. The necessity to
apply a particular permutation matrix and instrumental variables to consistently and recursively identify
MIMO systems in the presence of disturbances is also analysed. This study leads to the development
of several algorithms, the numerical complexity of which is examined. In Section 5, the performances of
these new techniques are emphasised from numerical simulations. Section 6 concludes the paper.

2 Notations and problem formulation

Consider the following finite dimensional causal linear time-invariant state-space model

x(t + 1) = Ax(t) + Bu(t) + w(t) (1a)

y(t) = Cx(t) + Du(t) + v(t) (1b)

with nu inputs u, ny outputs y, a nx dimensional state vector x, a process noise sequence w and output
measurement disturbances v. Assume furthermore that

• the system is asymptotically stable and observable,

• there is no feedback from y to u,

• both perturbation vectors are stationary zero mean white Gaussian noise such that

E

{[
w(i)
v(i)

]
[
wT (j) vT (j)

]
}

=

[
Rw Rwv

Rvw Rv

]

δ(i, j) (2)

where δ(i, j) denotes the Kronecker delta function and E {•} the mathematical expectation,

• v and w are independent of the initial state x(0).

In the following, with some abuse of notations, the cross-covariance matrix will be noted as Rab =
E

{
a(k)bT (k)

}
and estimates of signal correlations will be denoted by R̂ab(t) =

∑t
k=1 βt−ka(k)bT (k)

where 0 < β ≤ 1 is a forgetting factor.
The goal of the RSMI methods consists in online estimating the system matrices [A,B,C,D] at each

new I/O data acquisition. The algorithms developed in this paper are based on the MIMO Output Error
State-sPace (MOESP) class approach [40, 41, 37, 38]. The key problem of these subspace identification
schemes is the consistent estimation of the extended observability matrix column space defined as (f is a
user fixed integer chosen such that f > nx [13])

Γf =
[

CT (CA)
T · · ·

(
CAf−1

)T
]T

from measured I/O samples. It is indeed relatively straightforward to extract the state-space matrices
(up to a similarity transformation) from Γf by exploiting particular properties of this matrix such that
its shift invariance (see e.g. [13, Chapter 6] for an overview of the the state-space matrices estimation
techniques). The starting point of the MOESP schemes for the estimation of the column space of Γf is
the so called ”data equation” [38]

Yf (τ) = ΓfX(τ) + HfUf (τ) + GfWf (τ) + Vf (τ)
︸ ︷︷ ︸

Bf (τ)

where Uf , Yf , Wf and Vf are Hankel matrices defined as follows

Uf (τ) =








u(t) · · · u(t + M − 1)
u(t + 1) · · · u(t + M)

...
. . .

...
u(t + f − 1) · · · u(t + f + M − 2)








with

{
M >> f > nx

τ = t + M − 1,
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where Hf and Gf are the block Toeplitz matrices of the impulse response respectively from u to y and
from w to y

Hf =










D 0 · · · 0

CB D · · · 0

CAB CB · · · 0
...

...
. . .

...

CAf−2B CAf−3B · · · D










, Gf =










0 0 · · · 0

C 0 · · · 0

CA C · · · 0
...

...
. . .

...

CAf−2 CAf−3 · · · 0










and where X =
[
x(t) · · · x(t + M − 1)

]
. On the basis of this data equation, it is easy to show that

spancol {Yf} ⊆ spancol {Γf} + spancol {Hf} + spancol {Bf} . (3)

The identification problem is then to isolate spancol {Γf} from the knowledge of spancol {Yf}. A number
of versions of MOESP were developed in order to work out accurate estimates of the column space of
the observability matrix from the available I/O data. The algorithms mainly differ according to the
assumptions on the disturbances acting on the system generating the data [38, 5].

The problem studied in this paper is the recursive extraction of spancol {Γf}. In order to avoid the
use of classic burdensome tools such as the SVD, it is proposed to adapt particular SVD alternatives,
initially used in array signal processing [14]. This approach can be implicitly justified by the fact that the
mathematical problem in both fields is the same: to track some eigencomponents of particular matrices
by adapting specific subspaces with the last observations. More precisely, in subspace tracking in array
signal processing [14], the considered problem consists in recursively determining the directions of arrival
θ by online estimating the column subspace of the steering matrix Γ(θ) from the following data generation
model

z(t) = Γ(θ)s(t) + b(t) (4)

where z is the output of the nz sensors of the antenna array, s the vector of the ns signal waveforms and
b the additive noise. In order to explicitly show the analogy between recursive subspace identification
and subspace tracking in array signal processing, it is essential to rewrite the state-space system (1) in an
equivalent way to the model (4). For that, notice that Eq. (4) contains an output vector z composed of
spatially stacked signals. Since, in identification, the available data are only temporal observations, it is
therefore necessary to introduce a temporal window similar to the spatial one used in subspace tracking

yf (t) =
[
yT (t) · · · yT (t + f − 1)

]T ∈ R
nyf×1.

It is also easy to verify the following relation (the stacked vectors of the input and the disturbances are
defined in the same way as yf )

yf (t) = Γfx(t) + Hfuf (t) + bf (t) (5)

with bf (t) = Gfwf (t)+vf (t). The connection between subspace identification and array signal processing
becomes apparent by writing

zf (t) = yf (t) − Hfuf (t) = Γfx(t) + bf (t).

This relation stresses on both steps required to recursively estimate the extended observability matrix1

(and by extension the state-space matrices):

1. the update of the ”observation vector” zf from the I/O measurements

zf (t) = yf (t) − Hfuf (t), (6)

2. the estimation of a basis of Γf from this observation vector

zf (t) = Γfx(t) + bf (t). (7)

Both stages are now considered. The main developments concern the second step. It is important to
note that it will be necessary to propose noise treatment phase so as to get consistent estimates whatever
the disturbances acting on the system are. It will be more precisely shown that the introduction of an
instrumental variable leads to the elimination of the noise effects.

1Notice that Hf is unknown at time t since the state-space matrices used in its construction are still not estimated.
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3 Recursive estimation of the observation vector: an overview

The first step of any RSMI technique is the determination of the observation vector at each new data
acquisition. By analyzing Eq. (6), it is obvious that the unknown variable is the Toeplitz matrix Hf .
This fact is the key point of the observation vector updating. Two solutions can be considered to estimate
zf :

• to build Hf from the matrices estimated at the previous instant and explicitly compute the sub-

traction yf (t) − Ĥf (t − 1)uf (t);

• to directly estimate the observation vector from the new measured I/O data without explicitly
resorting to Hf .

The first idea was suggested by T. Gustafsson in 1997 [10]. He proposed to approximate Hf at time
t by its estimate at time t− 1 built from the system matrices calculated during the previous recursion. A
particular matrix construction rule is formulated in [10] to reduce the computation cost. This approach is
however based on an approximation which may turn out to be not fully reliable, more particularly when
the system often and quickly changes.

The second solution rests on a recursive adaptation of a similar problem considered in offline subspace
identification: to remove spancol {Hf} from the subspace spancol {Yf} (see Eq. (3)). In batch subspace
identification, this problem can be solved by applying an orthogonal projection of the row space of Yf

onto the complement of the row space of Uf i.e. YfΠU⊥

f
with ΠU⊥

f
= Inuf − UT

f

(

UfUf
T
)−1

Uf

[40, 41]. This projection can be computed in a stable and efficient way thanks to the following RQ
factorization [

Uf

Yf

]

=

[
R11 0

R21 R22

] [
Q1

Q2

]

(8)

and we have YfΠU⊥

f
= R22Q2 [37]. Hence, the recursive calculation of the observation vector can be

realised by developing techniques which online update YfΠU⊥

f
. Several algorithms have been proposed

to reach this goal [29, 20]. The method considered in the following, firstly proposed by M. Verhaegen
and E. Deprettere [39] and extended by M. Lovera [20], is based on the updating of the RQ factorization
(8) with Givens rotations [9]. This approach has the advantage to exhibit good numerical performances
with respect to the round of error in comparison with other methods [29] based on the matrix inversion
lemma [9].

3.1 Updating of the ordinary MOESP RQ factorization

The basic idea of this approach is to consider the RQ decomposition (8) of the offline ordinary
MOESP scheme [37] and its update at each new acquisition. For that purpose, consider the following RQ
factorization [

Uf (τ)
Yf (τ)

]

=

[
R11(τ) 0

R21(τ) R22(τ)

] [
Q1(τ)
Q2(τ)

]

.

When a new I/O couple {u(τ + 1),y(τ + 1)} is acquired, this decomposition can be updated as2

[√
λ

[
R11(τ) 0

R21(τ) R22(τ)

]
uf (τ + 1)
yf (τ + 1)

]




Q1(τ) 0

Q2(τ) 0

0 1



 .

A sequence of Givens rotations RotG can then be used to annihilate the stacked input vector uf and
bring back the R factor to a block lower triangular form

[√
λ

[
R11(τ) 0

R21(τ) R22(τ)

]
uf (τ + 1)
yf (τ + 1)

]

RotG(τ + 1) =

[
R11(τ + 1) 0 0

R21(τ + 1)
√

λR22(τ) z̆f (τ + 1)

]

.

z̆f is the vector obtained by modifying yf in order to include the information contained in uf and
[
RT

11 RT
21

]T
. It is possible to prove that z̆f (t) = ±zf (t). [21] .

2The forgetting factor λ is introduced to weight the past informations.

5



Remark 1 The theoretical growth size of the R factor is not a problem in practice. Indeed, R11 and
R21 are only used to estimate zf . Thus, there is no need to update R22. The computational complexity
of this partial RQ factorization update is O

((
nu

2 + ny

)
nuf2

)
.

This technique leads to unbiased estimates only if the output measurement noise v is white and
the process noise w is null. Since this condition can be too restrictive in practice, the development of
a recursive version of the PI/PO MOESP RQ factorization has been suggested in [20] to estimate an
asymptotically noise purged observation vector in a coloured noisy framework.

3.2 Updating of the PI/PO MOESP RQ factorization

The basic idea of the method is based on the same steps as in the previous paragraph i.e. updating
a particular RQ factorization at each time instant by applying Givens rotations. More precisely, in the
batch subspace identification framework, when w ≡ 0 and v is an ergodic sequence independent of the
input signal or when (v,w) are ergodic sequences satisfying (2), the cancellation of spancol {Hf} and
spancol {Bf} from spancol {Yf} is achieved by introducing the RQ decomposition [38]





Uf

Ξ

Yf



 =





R11 0 0

R21 R22 0

R31 R32 R33









Q1

Q2

Q3





where Ξ is an instrumental variable3 such that limM→∞
1
M BfΞ

T = 0 and rank
{
XΞT

}
= nx. Indeed, it

is nowadays well known that, under these assumptions [38]

lim
M→∞

1√
M

R32Q2 = lim
M→∞

1√
M

ΓfX. (9)

When a new I/O couple is acquired, this decomposition is completed as follows



√

λ





R11(τ) 0 0

R21(τ) R22(τ) 0

R31(τ) R32(τ) R33(τ)





uf (τ + 1)
ξ(τ + 1)
yf (τ + 1)









Q1(τ) 0

Q2(τ) 0

0 1



 .

As in Subsection 3.1, Givens rotations can be used to update this factorization. More precisely, two
sequences of Givens rotations are applied to bring back the R factor to the following block lower triangular
form




√

λ





R11(τ) 0 0

R21(τ) R22(τ) 0

R31(τ) R32(τ) R33(τ)





uf (τ + 1)
ξ(τ + 1)
yf (τ + 1)



RotG1(τ + 1)RotG2(τ + 1) =





R11(τ + 1)
R21(τ + 1)
R31(τ + 1)

0
√

λ

[
R22(τ)
R32(τ)

0

0

R33(τ)

]
0

ξ̌(τ + 1)
žf (τ + 1)



RotG2(τ + 1) =





R11(τ + 1) 0 0 0

R21(τ + 1) R22(τ + 1) 0 0

R31(τ + 1) R32(τ + 1)
√

λR33(τ) ˇ̌zf (τ + 1)



 . (10)

In order to stress on the importance of this update for RSMI, it is necessary to show the link between
the signal subspace and the vectors žf and ˇ̌zf . This can be realised by noticing first of all that [18]

R32(t)R
T
32(t) = λR32(t − 1)RT

32(t − 1) + žf (t)žT
f (t) − ˇ̌zf (t)ˇ̌z

T
f (t).

Now, according to Eq. (9), we have

lim
M→∞

1

M
R32R

T
32 = lim

M→∞

1

M
ΓfXXT ΓT

f .

3The instruments are chosen as past inputs in the PI scheme while past inputs and past outputs are used in the PO
scheme [38].
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Then, it follows that

E

{

žf (t)žT
f (t) − ˇ̌zf (t)ˇ̌z

T
f (t)

}

= ΓfRxΓ
T
f .

This last Eq. points out that Eq. (10) asymptotically leads to a covariance matrix from which the subspace
spanned by the columns of the extended observability matrix can be extracted. In the following, this
covariance matrix will be denoted as Rzf

. In practice, the sample covariance matrix R̂zf
is updated via

the recursive formulation

R̂zf
(t) = λR̂zf

(t − 1) + žf (t)žT
f (t) − ˇ̌zf (t)ˇ̌zT

f (t). (11)

Remark 2 As previously, there is no need to totally complete the PI/PO MOESP RQ factorization in

practice. The complexity of this update technique is in O
((

nuf+nξ

2 + nyf
)

(nuf + nξ)
)

.

4 Recursive estimation of an observability matrix basis

The previous section has introduced two recursive algorithms to update the observation vector. The
second step of the recursive subspace identification methods developed in this paper consists in online
estimating a basis of the observability subspace. The estimation algorithms proposed in the following
are based on the adaptation of a particular array signal processing technique: the propagator method
[27]. This technique has the advantage of supplying a decomposition of the observation space into two
complementary subspaces via the use of a simple linear operator. Furthermore, its adjustment to the
recursive identification problem leads to quadratic criteria needing neither approximation nor constraint.
Several recursive algorithms can be developed according to the hypotheses fixed on the signals acting
on the system. Seven of them will be introduced in this section. It will be more precisely emphasised
that most of them can consistently estimate a basis of the observability subspace of systems subjected to
coloured unknown disturbances.

4.1 Adaptation of the propagator method to identification

4.1.1 Problem formulation

Assume that {A,C} is observable. Then, since Γf ∈ R
nyf×nx with nyf > nx, the observability

matrix has, at least, nx linearly independent rows. Under the hypothesis that the order nx is a priori
known, it is possible to build a permutation matrix S ∈ R

nyf×nyf such that the extended observability
matrix can be decomposed in the following way

SΓf =

[
Γf1

Γf2

]
}R

nx×nx

}R
nyf−nx×nx

where Γf1 is the block of nx independent rows and Γf2 the matrix of the nyf−nx others. By construction,
Γf2 can be expressed as a linear combination of Γf1 . More particularly, there is a unique operator
Pf ∈ R

nx×nyf−nx named propagator [27] such that Γf2 = PT
f Γf1 . It is also easy to verify that

SΓf =

[
Γf1

Γf2

]

=

[
Γf1

PT
f Γf1

]

=

[
Inx

PT
f

]

︸ ︷︷ ︸

Eo

Γf1 .

This proves that the columns of SΓf are linear combinations of Eo. Now, since rank (Γf1) = nx,
spancol (SΓf ) = spancol (Eo) . This relation implies that it is possible to determine the observability
matrix in a particular basis from Eo. Hence, the computation of such a matrix only requires to estimate
the propagator. Thus, assuming that the order nx is a priori known and the system is observable, an
estimate of the subspace spanned by the observability matrix is available by estimating Pf . This prob-
lem is considered in the following paragraphs. However, before developing algorithms for the recursive
propagator computation, the problem of the data reorganization in order to make sure that the first nx

rows of the observability matrix are linearly independent has to be investigated.
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4.1.2 Discussion on the matrix S construction

The use of the propagator for the observability matrix estimation is based on the following challenge:
finding the permutation matrix S, without knowing Γf , such that the first nx rows of SΓf are linearly
independent. As long as observable MISO systems are considered, S can be trivially chosen as the identity
matrix since, in this case, the first nx rows of Γf are linearly independent by construction. For the general
MIMO class of systems, the selection of this matrix S becomes slightly complicated. In order to well
understand the problem, let denote the rows of the extended observability matrix related to the output
j as follows

γj =
[

cj AT cj · · ·
(
Af−1

)T
cj

]T

where cT
j refers to the jth row of C. If all the poles are observable from the output yj , (as it is for a

MISO system), then γj is necessarily of rank nx. But this property is far from being true for any output
j of a general MIMO system. In fact, some dynamics in the state vector could not be available through
yj. To find a solution to this problem, consider an auxiliary output ȳ defined as a combination of the
system outputs ȳ =

∑ny

j=1 αj yj with αj real numbers. The goal of this manipulation is to replace in the
identification procedure one of the outputs (for example y1) by this auxiliary output from which all the
poles of the system are observable. The selection of the coefficients αj must guarantee the observability
of all the system poles in ȳ, in other words γ̄ =

∑ny

j=1 αjγj has to be of full rank nx. The coefficients αj

can be generated randomly as nonzero real numbers. It could be noticed that a priori knowledge about
the repartition of the system dynamics can also be used for this choice.

After introducing this auxiliary output, the data equation (5) can be rewritten with some modifications
as follows

ȳf (t) = Γ̄fx(t) + H̄fuf (t) + b̄f (t)

with ȳf (t) is the new output vector in which ȳ(t) has been substituted for the first component and with

Γ̄f =








C̄

C̄A
...

C̄Af−1








and H̄f =










D̄ 0 · · · 0

C̄B D̄ · · · 0

C̄AB C̄B · · · 0
...

...
. . .

...
C̄Af−2B C̄Af−3B · · · D̄










where C̄ refers to the matrix C with its first row replaced by c̄T
1 =

∑ny

j=1 αjc
T
j and where D̄ is defined

in a similar way. Then, it becomes straightforward to built the permutation matrix as follows

S =

















Inyf (1, :)
Inyf (ny + 1, :)

...
Inyf ((f − 1)ny + 1, :)

Inyf (2 : ny, :)
Inyf (ny + 2 : 2ny, :)

...
Inyf ((f − 1)ny + 2 : fny, :)

















.

Remark 3 In the remainder of the paper we will still use the notations of Eq. (5) even after the trans-

formation suggested above. Knowing the permutation matrix S, the matrix Γ̂f can be deduced from P̂f

by pre-multiplying Êo by ST since STS = I.

The problem of the propagator estimation is considered in the following of this section. The effects
of the noise on the estimates reliability are more precisely analysed.

4.1.3 Minimised criterion in the noise free case

Consider Eq. (7) and assume that the noise is identically null. After the application of the transfor-
mation matrix S such that the first nx rows of Γf are linearly independent, the following partition of the
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observation vector can be introduced

zf (t) =

[
Inx

PT
f

]

Γf1x(t) =

[
zf1(t)
zf2(t)

]
} ∈ R

nx×1

} ∈ R
nyf−nx×1 (12)

where zf1 and zf2 are the components of zf corresponding respectively to the nx rows of Γf1 and nyf−nx

rows of Γf2 (the same symbols are used before and after the reorganization for the sake of simplicity). In
the ideal noise free case, it is easy to show that zf2 = PT

f zf1 since Γf1 is invertible. Then, the propagator
can be estimated by minimising the following quadratic criterion

J(Pf ) = E
∥
∥zf2 − PT

f zf1

∥
∥

2
, (13)

the (asymptotic) least squares optimum of which is given by [17]

P̂T
f = Rzf2

zf1
R−1

zf1
. (14)

Remark 4 Notice that the uniqueness of P̂f is ensured by the convexity of the criterion (13), which,
in turn, can be guaranteed by suitable persistency of excitation assumptions (see [25] for the convergence
conditions of the propagator-based methods in the recursive identification framework).

In order to develop a recursive minimization algorithm and since only a finite number of data is
available in practice, write the cost function (13) as follows

J(Pf (t)) =

t∑

k=1

βt−k
∥
∥zf2(k) − PT

f (t)zf1(k)
∥
∥

2
(15)

obtained by replacing the expectation operator with a finite exponentially weighted sum. The minimiza-
tion of such a criterion is recursively feasible by applying a classic recursive least squares approach [17].
The outcome algorithm, named RPM1, and the computational load of each step are summarised in Table
1.

Build L̆f (0) and PT
f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

K̆f (t) =
zT

f1
(t)L̆f (t − 1)

β + zT
f1

(t)L̆f (t − 1)zf1
(t)

nx(nx + 1)

L̆f (t) := R
−1
zf1

(t)

=
1

β

(

L̆f (t − 1) − L̆f (t − 1)zf1
(t)K̆f (t)

)

n2
x

P
T
f (t) = P

T
f (t − 1) +

(

zf2
(t) − P

T
f (t − 1)zf1

(t)
)

K̆f (t) 2nx(nyf − nx)

end

Table 1: The RPM1 algorithm and its computational load.

4.1.4 Noise effects

Assume now that the noise bf is no more null. Then, it is easy to show that the LS solution (14)
leads to a biased estimate, even if the residual vector bf is zero mean spatially and temporally white. In
order to emphasise this drawback, apply first of all to bf a reorganization similar to (12)

bf =

[
bf1

bf2

]
} ∈ R

nx×1

} ∈ R
nyf−nx×1 .

Then, the noise covariance matrix is

Rbf
=

[
Rbf1

Rbf1
bf2

Rbf2
bf1

Rbf2

]

.

9



Hence, it is possible to write the covariance matrix of zf as

Rzf
=

[
Rzf1

Rzf1
zf2

Rzf2
zf1

Rzf2

]

=

[
Inx

PT
f

]

Γf1RxΓ
T
f1

︸ ︷︷ ︸

Rx̄

[
Inx Pf

]
+

[
Rbf1

Rbf1
bf2

Rbf2
bf1

Rbf2

]

with4 x̄ = Γf1x. Thus, the following relations are verified

Rzf2
zf1

= PT
f Rx̄ + Rbf2

bf1
= PT

f Rx̄

Rzf1
= Rx̄ + Rbf1

= Rx̄ + σ2Inx

when Rbf
= σ2Inyf . Then, we get

P̂T
f = PT

f Rx̄

(
Rx̄ + σ2Inx

)−1 6= PT
f , (16)

equation which shows that the propagator is asymptotically biased. This difficulty could be partially
circumvented by considering a Total Least Squares [35] approach to the problem. However this would
likely complicate the recursive implementation of the solution. Two other solutions can be proposed

• The first one assumes that the observation vector has been estimated via the recursive version of
the PI/PO MOESP schemes (see §3.2). Then, an asymptotically noise free covariance matrix Rzf

is computed with the property to be linked to the observability matrix by the relation

Rzf
= ΓfRxΓ

T
f . (17)

• The second approach assumes that the observation vector has been computed by using the recursive
version of ordinary MOESP (see §3.1). Then, no disturbance treatment has ever been realized. The
solution consists in introducing an instrumental variable in the criterion (13) so that the new cost
function is usable whatever the colour of the noise acting on the system is.

Both approaches will be respectively considered in Subsection 4.2 and 4.3. The algorithms developed
in these paragraphs have more particularly the property to supply consistent estimates of the extended
observability matrix in a noisy framework.

Remark 5 It is interesting to complete this study by quantifying the outcomes of the disturbances in the
propagator estimation. The perturbation theory [34] allows us to write that, for all matrix M and small
perturbation ∆M

(M + ∆M)
−1 ∼= M−1 − M−1∆MM−1.

By writing M = Rx̄ and ∆M = σ2Inx , it is straightforward to show that

(
Rx̄ + σ2Inx

)−1
= R−1

x̄ − σ2R−1
x̄ R−1

x̄ .

Equation (16) can then be written as

P̂T
f
∼= PT

f − σ2PT
f R−1

x̄ .

This clearly proves that the propagator is asymptotically biased.

4.2 Estimation from the recursive PI/PO MOESP scheme update

Assume that an asymptotically noise free covariance matrix Rzf
has been estimated via the recursive

version of the PI/PO MOESP scheme (see §3.2). Then, the estimation of the propagator is no more
feasible from the criterion (13) since this one requires zf which is not available with the Eq. (11). So,
it is necessary to propose other cost functions which take into account the matrix Rzf

instead of the
observation vector.

4Notice that Γf1
can be considered as a similarity transformation since rank

{
Γf1

}
= nx.
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4.2.1 RPM2 algorithm

In order to determine a new criterion, consider the expression of the observability matrix in the
propagator basis

Γf =

[
Inx

PT
f

]

Γf1 .

Then, Eq. (17) can be rewritten as follows

Rzf
=

[
Inx

PT
f

]

Rx̄

[
Inx Pf

]
.

Thus, by construction,

Rzf
=

[

Ržf1
(t) − Rˇ̌zf1

(t) Ržf1
žf2

(t) − Rˇ̌zf1
ˇ̌zf2

(t)

Ržf2
žf1

(t) − Rˇ̌zf2
ˇ̌zf1

(t) Ržf2
− Rˇ̌zf2

(t)

]

=

[
Rx̄ Rx̄Pf

PT
f Rx̄ PT

f Rx̄Pf

]

.

(18)

This relation shows that the propagator can be estimated by minimising the following cost function

J̄(Pf (t)) =
∥
∥
∥

(

R̂žf2
žf1

(t) − R̂ˇ̌zf2
ˇ̌zf1

(t)
)

− PT
f (t)

(

R̂žf1
(t) − R̂ˇ̌zf1

(t)
)∥
∥
∥

2

F
(19)

since, by assuming that the involved inverse matrices exist (see [25] for conditions of invertibility), its
minimising argument is given by

P̂T
f (t) =

(

R̂žf2
žf1

(t) − R̂ˇ̌zf2
ˇ̌zf1

(t)
) (

R̂žf1
(t) − R̂ˇ̌zf1

(t)
)−1

. (20)

An RLS-based algorithm can be developed to recursively estimate this optimum. The algorithm
introduced in Table 2 and named RPM2 summarises the computational steps of the recursive formulation
of (20).

Build Lf (0), L
f
(0) and PT

f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

Lf (t) =
1

λ



L
f
(t − 1) −

L
f
(t − 1)žf1

(t)žT
f1

(t)L
f
(t − 1)

λ + žT
f1

(t)L
f
(t − 1)žf1

(t)



 nx(2nx + 1)

L
f
(t) = Lf (t) +

Lf (t)ˇ̌zf1
(t)ˇ̌zf1

T (t)Lf (t)

1 − ˇ̌zf1
T (t)Lf (t)ˇ̌zf1

(t)
nx(2nx + 1)

P
T
f (t) = P

T
f (t − 1) +

(

žf2
(t) − P

T
f (t − 1)žf1

(t)
)

ž
T
f1

(t)Lf (t)

−
(

ˇ̌zf2
(t) − P

T
f (t − 1)ˇ̌zf1

(t)
)

ˇ̌zT
f1

(t)L
f
(t) 2nx(2nyf − nx)

end

Table 2: The RPM2 algorithm and its computational load.

4.2.2 COPM algorithm

In order to avoid the use of the matrix inversion lemma5 twice, a second approach can be introduced.
More precisely, by writing the decomposition of Rzf

(see Eq. (18)) in a compact manner as follows

Rzf
=

[
Rzf1

Rzf1
zf2

Rzf2
zf1

Rzf2

]

, (21)

5This technique is known to suffer from numerical problems when ill-conditioned matrices are considered.
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the cost function (19) becomes

J̄(Pf (t)) =
∥
∥
∥R̂zf2

zf1
(t) − PT

f (t)R̂zf1
(t)

∥
∥
∥

2

F
. (22)

Then, by definition of the Frobenius matrix norm [9], the criterion (22) can be modified as

J̄(Pf (t)) =

nx∑

i=1

∥
∥
∥r

i
zf2

zf1
(t) − PT

f (t)ri
zf1

(t)
∥
∥
∥

2

where ri
zf2

zf1
and ri

zf1
are respectively the ith columns of R̂zf2

zf1
and R̂zf1

. A sufficient condition to

the minimization of the global cost function J̄ is the sequential optimization of

J̄i(Pf (t)) =
∥
∥
∥r

i
zf2

zf1
(t) − PT

f (t)ri
zf1

(t)
∥
∥
∥

2

for i ∈ {1, · · · , nx} . (23)

By being inspired by the works of J. L. Yu [45] on the COPAST method, in order to improve the numerical
stability of the minimization algorithm applied to (23) and to introduce forgetting capacities for tracking,
the cost function J̄i can be modified as follows

J̄i(Pf (t)) =

t∑

k=1

βt−k
∥
∥
∥r

i
zf2

zf1
(k) − PT

f (t)ri
zf1

(k)
∥
∥
∥

2

for i ∈ {1, · · · , nx} .

Each cost function J̄i is then equivalent to the criterion (15). The RPM1 method can therefore be adjusted
to this optimization problem. The corresponding algorithm, named COPM, is introduced in Table 3.

Build L̄f (0) and PT
f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

R̂zf
(t) = λR̂zf

(t − 1) + žf (t)žT
f (t) − ˇ̌zf (t)ˇ̌zT

f (t) 2(nyf)2

i = remainder(t, nx) + 1

r
i
zf1

(t) = R̂zf
(1 : nx, i)(t)

r
i
zf2

zf1
(t) = R̂zf

(nx + 1 : nyf, i)(t)

K̄f (t) =
ri T
zf1

(t)L̄f (t − 1)

β + ri T
zf1

(t)L̄f (t − 1)ri
zf1

(t)
nx(nx + 1)

L̄f (t) =
1

β

(

L̄f (t − 1) − L̄f (t − 1)ri
zf1

(t)K̄f (t)

)

n2
x

P
T
f (t) = P

T
f (t − 1) +

(

r
i
zf2

zf1
(t) − P

T
f (t − 1)ri

zf1
(t)

)

K̄f (t) 2nx(nyf − nx)

end

Table 3: The COPM algorithm and its computational load.

Note that this algorithm requires to extract the vectors r̂i
zf2

zf1
and r̂i

zf1
. As shown in Table 3, these

ones are obtained at each update of the covariance matrix R̂zf
by noticing that the matrices R̂zf1

and

R̂zf2
zf1

respectively correspond to the nx first rows and nyf − nx last rows of the nx first columns of

R̂zf
(see Eq. (18) and (21)).

4.3 Estimation from the ordinary MOESP scheme update

The online propagator updating techniques developed in Subsection 4.2 exclusively employ the covari-
ance matrix Rzf

. As specified in the Subsections 3.1 and 3.2, the computational cost of the covariance
matrix update is greater than the recursive estimation of the observation vector. Thus, it would be
interesting to propose recursive propagator estimation techniques which use the solution of the ordinary
MOESP RQ factorization updating. The study of the noise effects proposed in the paragraph 4.1.4 has
shown that the the propagator approach provides biased estimates even in a white noise framework. Since
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the algorithm proposed in §3.1 does not treat the disturbances effects, it is now essential to introduce
recursive methods which circumvent this problem.

Many identification methods using the instrumental variable approach [33, 17] have been developed
since the 70’s to model systems in noisy environment. Their principle consists in introducing into the
minimised criterion a vector, composed for example by I/O delayed data, in order to zero out the influence
of the noise contained in the regressors at time t. In order to employ such a technique for our identification
problem, consider an instrumental variable ξ ∈ R

nξ×1, nξ ≥ nx, assumed to be uncorrelated with the
noise bf but sufficiently correlated with the state vector x. By introducing this vector into the cost
function (13) we get

JIV (Pf (t)) =
∥
∥
∥R̂zf2

ξ(t) − PT
f (t)R̂zf1

ξ(t)
∥
∥
∥

2

F
(24)

with R̂zf•ξ(t) =
∑t

k=1 βt−kzf•
(k)ξT (k). The minimization of such a cost function can therefore be

realized by three different manners.

4.3.1 COIVPM, IVPM and EIVPM algorithms

COIVPM algorithm The first solution, named COIVPM, is similar to the COPM algorithm. Indeed,
since the criterion (24) can be easily rewritten as

JIV (Pf (t)) =

nξ∑

i=1

∥
∥
∥r

i
zf2

ξ(t) − PT
f (t)ri

zf1
ξ(t)

∥
∥
∥

2

where ri
zf1

ξ and ri
zf2

ξ are respectively the ith columns of the covariance matrices R̂zf1
ξ and R̂zf2

ξ, it is

possible to minimise the cost function (24) by sequentially minimising nξ criteria defined as

JIVi(Pf (t)) =

t∑

k=1

βt−k
∥
∥
∥r

i
zf2

ξ(k) − PT
f (t)ri

zf1
ξ(k)

∥
∥
∥

2

for i ∈ [1, nξ] .

By considering only vectors and not covariance matrices, the computational load of the global criterion
optimization becomes lower. Each criterion JIVi can be minimised by a least squares algorithm similar
to those developed for RPM1 and COPM. The following algorithm, named COIVPM, is summarised in
Table 4.

Build ¯̄Lf (0) and PT
f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

R̂zf ξ(t) = λR̂zf ξ(t − 1) + zf (t)ξT (t) nξnyf

i = remainder(t, nξ) + 1

r
i
zf1

ξ(t) = R̂zξ(1 : nx, i)(t)

r
i
zf2

ξ(t) = R̂zξ(nx + 1 : nyf, i)(t)

¯̄Kf (t) =
ri T
zf1

ξ(t)¯̄Lf (t − 1)

β + ri T
zf1

ξ
(t)Lf (t − 1)ri

zf1
ξ
(t)

nx(nx + 1)

¯̄Lf (t) =
1

β

(

¯̄Lf (t − 1) − ¯̄Lf (t − 1)ri
zf1

ξ(t) ¯̄Kf (t)

)

n2
x

P
T
f (t) = P

T
f (t − 1) +

(

r
i
zf2

ξ(t) − P
T
f (t − 1)ri

zf1
ξ(t)

)

¯̄Kf (t) 2nx(nyf − nx)

end

Table 4: The COIVPM algorithm and its computational load.

IVPM and EIVPM algorithms The minimization of the criterion (24) can be as well recursively
realized more simply by considering the equation of its minimum. This one is differently written according
to the dimension of the instrumental variable.
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• If nξ = nx, by assuming that the instrumental variable is enough correlated to the vector zf1 such
that the matrix Rzf1

ξ is invertible (see [25] for conditions on the system and the I/O data), the
minimising argument of the cost function (24) is given by

P̂T
f (t) = R̂zf2

ξ(t)R̂
−1
zf1

ξ(t). (25)

• If nξ > nx, the covariance matrix Rzf1
ξ is no more square. Its inversion needs the use of the Moore

Penrose inverse [9]

P̂T
f (t) = R̂zf2

ξ(t)R̂
†
zf1

ξ(t).

Two algorithms are then developed in the following to estimate the propagator Pf according to the
hypothesis on the instrumental variable dimension.

IVPM algorithm

If nξ = nx, the estimation Pf is feasible by applying the matrix inversion lemma to the least squares
solution (25). The following algorithm, named IVPM, is summarised in Table 5.

Build
˘̆
Lf (0) and PT

f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

˘̆
Kf (t) =

ξT (t)
˘̆
Lf (t − 1)

β + ξT (t)
˘̆
Lf (t − 1)zf1

(t)
nx(nx + 1)

˘̆
Lf (t) =

1

β

(
˘̆
Lf (t − 1) − ˘̆

Lf (t − 1)zf1
(t)

˘̆
Kf (t)

)

n2
x

P
T
f (t) = P

T
f (t − 1) +

(

zf2
(t) − P

T
f (t − 1)zf1

(t)
)

˘̆
Kf (t) 2nx(nyf − nx)

end

Table 5: The IVPM algorithm and its computational load.

EIVPM algorithm

When nξ > nx, the use of the matrix inversion lemma is no more accurate since the matrix Rzf1
ξ is

rectangular by construction. Now, this situation is not rare in practice since the instrumental variable
is often built from delayed MIMO data which makes difficult to fix nξ = nx a priori. Furthermore, it
was argued in [33] that the accuracy of the estimates obtained from an instrumental variable method
increases with the number of instruments. In that case, the minimization of the criterion (24) requires
the use of a technique named the Extended Instrumental Variable Method [8]. The application of such a
method gives the recursive updating formulas introduced in Table 6.

Build Lf (0) and PT
f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

gf (t) =
[

R̂zf2
ξ(t − 1)ξ(t) zf2

(t)
]

nξ(nyf − nx)

Λ(t) =

[

−ξT (t)ξ(t) β
β 0

]

nξ

Ψf (t) =
[

R̂zf1
ξ(t − 1)ξ(t) zf1

(t)
]

nξnx

Kf (t) =
(

Λ(t) + Ψ
T
f (t)Lf (t − 1)Ψf (t)

)
−1

Ψ
T
f (t)Lf (t − 1) 2nx(nx + 4)

P
T
f (t) = P

T
f (t − 1) +

(

gf (t) − P
T
f (t − 1)Ψf (t)

)

Kf (t) 4nx(nyf − nx)

R̂zf1
ξ(t) = λR̂zf1

ξ(t − 1) + zf1
(t)ξT (t) nξnx

R̂zf2
ξ(t) = λR̂zf2

ξ(t − 1) + zf2
(t)ξT (t) nξ(nyf − nx)

Lf (t) =
1

β2
(Lf (t − 1) − Lf (t − 1)Ψf (t)Kf (t)) 2n2

x

end

Table 6: The EIVPM algorithm and its computational load.
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4.3.2 Improvement of the extended variable method: the EIVsqrtPM algorithm

As all recursive least squares algorithms, a necessary condition for the numerical stability of EIVPM
is to impose that the matrix Lf is positive definite at each iteration. Indeed, when this matrix is ill-
conditioned and not positive definite, the considered algorithm may diverge. Now, according to the
update formula of Lf (see Table 6), this positiveness condition cannot be guaranteed. Indeed, even if the
matrix Lf is positive definite at time t − 1, the relation

Lf (t) =
1

β2

(

Lf (t − 1) − Lf (t − 1)Ψf (t)
(
Λ(t) + ΨT

f (t)Lf (t − 1)Ψf (t)
)−1

ΨT
f (t)Lf (t − 1)

)

does not verify this property at time t since

Λ(t) + ΨT
f (t)Lf (t − 1)Ψf (t) =

[

−ξT (t)

(

I−R̂T
zf1

ξ(t−1)Lf (t−1)R̂zf1
ξ(t−1)

)

ξ(t) β+ξT (t)R̂T
zf1

ξ(t−1)Lf (t−1)zf1
(t)

β+zT
f1

(t)Lf (t−1)R̂zf1
ξ(t−1)ξ(t) zT

f1
(t)Lf (t−1)zf1

(t)

]

(26)

has two eigenvalues of opposite6 sign. Then, it is not possible to guarantee a good convergence of the
EIVPM algorithm (or all methods using the EIV technique [33]). The first improvement (inspired by
[11]) rests on the calculation of Lf as proposed in Table 6, the extraction of its upper triangular part and
the use of its symmetry property to complete its update. Unfortunately, this approach cannot guarantee
the positive definiteness of Lf . The technique developed hereafter ensures this property. It consists more
precisely in adapting an algorithm proposed by B. Porat et B. Friedlander [31] to the multivariable case.
The underlying idea is to compute the square root of Lf . This approach is a sufficient condition to
preserve the positive definiteness of Lf .

Assume that the matrix Lf is positive definite at time t. If Λ were positive definite, it would be
possible to write Lf (t) as follows

Lf (t) =
1

β2

(

L
1/2
f (t − 1)L

T/2
f (t − 1) − L

1/2
f (t − 1)

(

ΨT
f (t)L

1/2
f (t − 1)

)T

(

Λ1/2(t)ΛT/2(t) + ΨT
f (t)L

1/2
f (t − 1)

(

ΨT
f (t)L

1/2
f (t − 1)

)T
)−1

ΨT
f (t)L

1/2
f (t − 1)L

T/2
f (t − 1)

)

.

The update of this relation would be available by considering the following matrix

Tf (t) =

[

Λ1/2(t) ΨT
f (t)L

1/2
f (t − 1)

0 L
1/2
f (t − 1)

]

since

Tf (t)TT
f (t) =

[
Λ(t) + ΨT

f (t)Lf (t − 1)Ψf (t) ΨT
f (t)Lf (t − 1)

Lf (t − 1)Ψf (t) Lf (t − 1)

]

(27)

contains the components of Lf (t). Unfortunately, Λ (see Table 6) is not positive definite. Then, it is
necessary to suggest an other way to update Lf (t). For that, notice that Λ can be rewritten as

Λ(t) =

[ √
ξT (t)ξ(t) 0

− β√
ξT (t)ξ(t)

β√
ξT (t)ξ(t)

]
[ −1 0

0 1

]

[√
ξT (t)ξ(t) − β√

ξT (t)ξ(t)

0 β√
ξT (t)ξ(t)

]

= ∆(t)J∆T (t)

with J the signature matrix of Λ [9]. Thus, by defining

T̄f (t) =

[

∆(t) ΨT
f (t)L

1/2
f (t − 1)

0 Lf
1/2(t − 1)

]

,

6note that I− R̂T
zf1

ξ
(t − 1)Lf (t − 1)R̂zf1

ξ(t − 1) is a positive definite matrix.
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Eq. (27) can be rewritten as

T̄f (t)

[
J 0

0 Inx

]

T̄T
f (t) =

[
Λ(t)+ΨT

f (t)Lf (t−1)Ψf (t) ΨT
f (t)Lf (t−1)

Lf (t−1)Ψf (t) Lf (t−1)

]

.

The next step consists therefore in updating the matrix T̄f (t). By referring to [9], we know that there is
a matrix RotH ∈ R

2×2 composed by hyperbolic rotations such that (RotH)J(RotH)T = J and ∆RotH

is lower triangular. Moreover [9], for all Givens rotation RotG, (RotG)(RotG)T = I. The developed
updating method adapted from [31] consists in associating both types of rotations into a single matrix
named Rot in order to apply them to T̄f (t) so that their combined action leads to a triangular matrix

T̄f (t)Rot =

[
L11 0

L21 L22

]

with L11 and L22 two lower triangular matrices of respective dimension 2× 2 and nx × nx and such that

Rot

[
J 0

0 Inx

]

RotT =

[
J 0

0 Inx

]

.

The links between these matrices and T̄f are displayed by noticing that

T̄f (t)

[
J 0

0 Inx

]

T̄T
f (t) = T̄f (t)Rot

[
J 0

0 Inx

]

RotT T̄T
f (t)

=

[
L11 0

L21 L22

] [
J 0

0 Inx

] [
LT

11 LT
21

0 LT
22

]

.

Then the following results hold

∆(t)J∆T (t) + ΨT
f (t)Lf (t)Ψf (t) = L11JLT

11, (28)

Lf (t − 1)Ψf (t) = L21JLT
11, (29)

Lf (t − 1) = L21JLT
21 + L22L

T
22. (30)

From Eq. (28) and (29), we have

Kf (t) =
(
L11JLT

11

)−1
ΨT

f (t)LT
f (t − 1) =

(
L11JLT

11

)−1
L11JLT

21 = L21L
−1
11 . (31)

From Eq. (29) we get
L21 = Lf (t − 1)Ψf (t)L−T

11 J−1. (32)

Finally, from (28), (31) and (32), Eq. (30) becomes

L22L
T
22 = Lf (t − 1) − L21JLT

21 = Lf (t − 1) − Lf (t − 1)Ψf (t)Kf (t) = β2Lf (t).

Hence,

L
1/2
f (t) =

1

β
L22.

Furthermore, The full algorithm, named EIVsqrtPM, is summed up in Table 7.

4.4 Summary and comments

Seven possible implementations for recursive estimation of the propagator have been proposed. Al-
though these techniques are conceptually similar, they have different characteristics and can be distin-
guished by their numerical properties and burdens. Table 8 introduces a summary of the number of
multiplications necessary for each estimation phase. For information and comparison, the complexities of
the main PAST-based methods [44, 11, 45] and of the eigendecomposition of the covariance matrix Rzf

is
given too. First of all, this table clearly indicates that all the developed recursive subspace identification
methods have a low computational cost in comparison with the SVD one. Secondly, the comparison of
the numerical load of the PM algorithms with the PAST by-products shows that all the techniques based
on the propagator are computationally less demanding than their PAST equivalents. These complexity
differences are mainly due to the facts that

16



Build Lf (0) and PT
f (0) suitably, e.g. from parts of the ident. mat.

for t = 1, . . .

gf (t) =
[

R̂zf2
ξ(t − 1)ξ(t) zf2

(t)
]

nξ(nyf − nx)

∆(t) =

[ √

ξT (t)ξ(t) 0

− β√
ξT (t)ξ(t)

β√
ξT (t)ξ(t)

]

nξ

Ψf (t) =
[

R̂zf1
ξ(t − 1)ξ(t) zf1

(t)
]

nξnx

Find the rotations matrix Rot such that
[

∆(t) ΨT
f (t)L

1/2
f (t − 1)

0 L
1/2
f

(t − 1)

]

Rot =

[
L11 0

L21 L22

]

2nx(nx + 3)3 + 8nx

L
1/2
f (t) =

1

β
L22

Kf (t) =
(

L21L
−1
11

)T
4nx

P
T
f (t) = P

T
f (t − 1) +

(

gf (t) − P
T
f (t − 1)Ψf (t)

)

Kf (t) 4nx(nyf − nx)

R̂zf1
ξ(t) = λR̂zf1

ξ(t − 1) + zf1
(t)ξT (t) nξnx

R̂zf2
ξ(t) = λR̂zf2

ξ(t − 1) + zf2
(t)ξT (t) nξ(nyf − nx)

end

Table 7: The EIVsqrtPM algorithm and its computational load.

• a computation step is added in the PAST methods (relatively to the PM techniques) to perform
the projection approximation of the Yang’s criterion,

• the PM approaches only estimate the propagator, the dimension of which is less than the observ-
ability matrix one.

In order to simplify the analysis of the complexity of the proposed algorithms, a classic practical case is
considered: nξ = nup with p = f which corresponds to choose the instruments as past input data

ξ(t) =
[
uT (t − p) · · · uT (t − 1)

]T
. (33)

Then, as shown in Table 9, the computational load of the PI/PO RQ factorization update is about twice
as high than the one of the ordinary RQ factorization. Now, since the different propagator estimation
methods, except EIVsqrtPM, have a complexity of the same order, the cheapest techniques from a
computational point of view are those which use the ordinary RQ factorization update. Concerning
EIVsqrtPM, the numerical stability improvement is payed by a significant complexity increase. The
choice between EIVPM and EIVsqrtPM has to be done according to the well conditioning and the
excitation quality of the experiment conditions.

In order to help the user for the choice of the suitable algorithms according to the application scenario,
the main practical conditions of the developed propagator-based algorithms are introduced in Table 10.
This table shows that

• RPM1 can only be used with noise-free data,

• IVPM should be applied to SISO systems so as to render easier the construction of the instrumental
variable,

• RPM2 and COPM should be employed for systems with relatively small values of nx, nu and ny,

• COIVPM and EIVPM can be used in most practical cases,

• EIVsqrtPM should be mainly used when the experimental conditions or the identified system fea-
tures lead to numerical problems.

The use of the propagator for recursive subspace identification introduces a particular property for
the model structure: the setting of the state-space basis. Indeed, if the system matrices A and C are
extracted as in the batch case i.e. from Γ̂f

Ĉ = Γ̂f (1 : ny, :),

Â =
{

Γ̂f (1 : ny(f − 1), :)
}†

Γ̂f (ny + 1 : nyf, :),
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Algorithm RQ update compl. O (•) Γf estimation compl. O (•) Approx. Bias

RPM1
( nu

2 + ny

)
nuf2 2nyfnx No Yes/Yes

RPM2
(

nuf+nξ
2 + nyf

)

(nuf + nξ) 2nx (2nyf + nx) No No/No

COPM
(

nuf+nξ
2 + nyf

)

(nuf + nξ) 2nyf (2nyf + nx) No No/No

COIVPM
( nu

2 + ny

)
nuf2 nyf (nξ + 2nx) No No/No

IVPM
( nu

2 + ny

)
nuf2 2nyfnx No No/No

EIVPM
( nu

2 + ny

)
nuf2 2nyf (nξ + 2nx) No No/No

EIVsqrtPM
( nu

2 + ny

)
nuf2 2nyf (nξ + 2nx) + 2nx (nx + 3)3 No No/No

PAST
( nu

2 + ny

)
nuf2 3nyfnx + 2n2

x Yes No/Yes

COPAST
(

nuf+nξ
2 + nyf

)

(nuf + nξ) nyf (2nyf + 3nx) + 2n2
x Yes No/No

EIVPAST
( nu

2 + ny

)
nuf2 2 (nyf + nx) (nξ + 2nx) Yes No/No

ED or SVD
(

nuf+nξ
2 + nyf

)

(nuf + nξ) n3
yf3 No No/No

Table 8: Major computational load of the main recursive subspace algorithms. ”Approx.”
indicates if the algorithm introduces an approximation for the Γf estimation. ”Bias” indi-
cates if the algorithm gives access to a biased estimate of Γf when bf is a white/coloured

Gaussian noise.

Algorithm RQ update meth. RQ update compl. O (•) Γf estimation compl. O (•)

RPM1 Ord. MOESP
( nu

2 + ny

)
nuf2 2nyfnx

RPM2 PI/PO MOESP 2 (nu + ny) nuf2 2nx (2nyf + nx)

COPM PI/PO MOESP 2 (nu + ny) nuf2 2nyf (2nyf + nx)

COIVPM Ord. MOESP
( nu

2 + ny

)
nuf2 nyf (nuf + 2nx)

IVPM Ord. MOESP
( nu

2 + ny

)
nuf2 2nyfnx

EIVPM Ord. MOESP
( nu

2 + ny

)
nuf2 2nyf (nuf + 2nx)

EIVsqrtPM Ord. MOESP
( nu

2 + ny

)
nuf2 2nyf (nuf + 2nx) + 2nx (nx + 3)3

Table 9: Major computational load of the developed propagator-based algorithms when
nξ = nup with p = f .

Algorithm Noisy data MIMO system Ill-conditioned mat. High values of nx, nu and ny

RPM1 X X

RPM2 X X

COPM X X

COIVPM X X X

IVPM X X

EIVPM X X X

EIVsqrtPM X X X

Table 10: Main application conditions of the developed propagator-based algorithms.
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the parametric structure of the state-space matrices is frozen throughout the identification procedure

since, in our case, Γ̂f =
[

Inx
P̂f

]T
. This loss of flexibility can be considered as a drawback, more

particularly from a numerical point of view. Indeed, the fact that the first nx rows of Γ̂f are equal
to the identity matrix could lead to conditioning problems when the proposed methods are applied to
ill-conditioned systems. However, we have not encountered any numerical problems when simulating
the algorithms in MATLAB R©. Furthermore, contrary to the PAST approach where the signal subspace
is obtained by minimising a modified function obtained after an approximation, the PM cost functions
are always determined without approximation nor constraint. This is an interesting property of the
propagator algorithms, in particular when RSMI techniques are used for change detection purposes.

5 Simulation examples

5.1 MIMO time-invariant and time-varying systems

In order to illustrate the performances of the recursive algorithms proposed in this paper, the developed
methods are applied to the I/O data of the following state-space system used , e.g., by H. Oku in [28,
Chapter4]

x(t + 1) =





0.8 −0.4 0.2
0 0.3 −0.5
0 0 0.5



x(t) +





0 0
0 −0.6

0.5 0



u(t) +





0.055
0.04
0.045



w(t)

y(t) =

[
0.5 0.5 0
0 0 1

]

x(t) +

[
0.025
0.03

]

v(t).

Three different practical situations are more precisely considered: a time-invariant case, a slowly time-
varying case and a time-varying with abrupt change case. For each case, the I/O data are generated by
following the same experimental procedure:

• The initial state-space matrices are randomly generated under the constraint that the absolute value
of the maximum eigenvalue of Â(0) is less than 1 (stability requirement).

• A Monte Carlo simulation (MCS) of size 100 is carried out.

• The input and noise signals are zero mean white Gaussian noises of variance 1 such that the signal
to noise ratio7 (SNR) equals 25dB.

The instrumental variable is chosen as past input data (see Eq. (33)) and the hyper parameters f and p

are fixed equal to 5. The forgetting factors are built as follows

λ(t) = β(t) = min {λ0λ(t − 1) + 1 − λ0, λfinal}

in order to quickly annihilate the effects of this initialization.

Remark 6 As far as the choice of the tuning parameters p and f is concerned, the user is often faced
with a tricky situation. The study of several simulation examples with systems of order nx < 10 has
displayed that choosing f = p = nx + 2 gives results as good as those obtained with f = p = 3nx or more.
This observation is an interesting characteristic since, as shown in Table 8, the computational load of the
RSMI methods strongly depends on these values. Choosing them relatively small is also interesting from
a numerical point of view.

5.1.1 Time-invariant case

Firstly, the performances of the developed online algorithms are examined with the help of time-
invariant simulations. For that, the subspace angles (in radians) between the average estimated and true
observability matrices is used as measure of quality. This approach provides indeed an easy plotting scalar

7The signal to noise ratio is defined as SNR = 20 log
(

std{yd}
std{v}

)

where yd is the deterministic part of y.
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Figure 1: Comparison of the subspace angles computed with RPM2, EIVPM, EIVsqrtPM,
COPM, COIVPM, EIVPAST and COPAST in a stationary environment. λ0 = 0.98, λ(0) =

0.98, λfinal = 0.999. SNR = 25dB, MCS=100.

quantity suitable for the transient effects exam. In order to demonstrate the efficiency of the recursive
subspace identification methods, an eigendecomposition-based estimate obtained from the nx principal
eigenvectors of R̂zf

is also added in the study (ED on Figure 1).

Remark 7 For clarity, the plots obtained with RPM1 and IVPM are not displayed on Figure 1. This
choice can be justified by the fact that RPM1 leads to biased estimate in a noisy framework (see §4.1.4)
and IVPM requires some constraints to build an instrumental variable of good size. Concerning the
comparison of the PM and PAST approaches, it is important to notice that, originally, COPAST was
developed for array signal processing. In this paper, it has been necessary to adapt this method for the
observability matrix subspace tracking. To the authors’ knowledge, there is no COIVPAST algorithm in
the literature.

As can be seen on Figure 1, all the propagator-based methods provide consistent estimates of the
observability subspace, since, as time goes on, the principal angles between Γf and Γ̂f tends to 0.
Although all the estimates asymptotically converge to the true subspace, the convergence speed and
the transient behaviour strongly differ according to the considered algorithm. Thus, the RPM2 average
estimate is much slower to reach the system observability subspace than the other techniques. This
algorithm is indeed based on two interlinked loops and uses block matrices such as Lf or L

f
(see Table

2) which decrease the forgetting ability of the developed method. This disadvantage could be reduced by
considering smaller forgetting factors. Furthermore, we can notice that the subspace angles obtained with
COPM and COIVPM have a smoother decrease in comparison with the other algorithms. This feature
may be due to the sequential procedure used by both techniques. Finally, for this good-conditioned
process, EIVPM and EIVsqrtPM leads to the same subspace estimates as shown on the left-hand side
curves of Figure 1. This illustrates the fact that EIVsqrtPM is only a more numerically robust version
of EIVPM. Concerning the PM and PAST comparison, the EIVPM and COPM algorithms show better
performances in terms of initial convergence speed with respect to EIVPAST and COPAST. The slower
convergence of PAST versions is most likely due to the projection approximation introduced to render
easier the minimization of the Yang’s criterion [44]. Thus, based on these simulation results, the EIVPM
and COIVPM algorithms can be considered as the best solution for this time-invariant scenario.

5.1.2 Slowly time-varying case

In order to investigate the tracking performance of the developed recursive algorithm, a second exper-
imental framework is considered. More precisely, after a time-invariant phase of size 665, the following
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Figure 2: Poles trajectories estimated with EIVPM, RPM2, COPM COIVPM and ED in
a nonstationary environment. λ0 = 0.97, λ(0) = 0.97, λfinal = 0.98. SNR = 25dB,

MCS=100.
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state matrix is used

A =








0.8 − 0.3
exp(− t−665

2000 )−1

exp(−1)−1 −0.4 0.2

0 0.3 − 0.5
exp(− t−665

2000 )−1

exp(−1)−1 −0.5

0 0 0.5 + 0.2
exp(− t−665

2000 )−1

exp(−1)−1








.

Thus, the poles of the the system drift from {0.3, 0.5, 0.8} to {-0.2, 0.7, 0.5} during the next 1335
samples. The same conditions of experiment as in the previous Subsection are used, except for the
forgetting factor which is set at λ0 = 0.97, λ(0) = 0.97, λfinal = 0.98. The main characteristics of the
system are the slowly time-varying of the system dynamic and the intersection of two eigenvalues. The
estimated poles trajectories averaged over the 100 MCS runs are displayed on Figure 2. These curves
show that all the techniques present interesting abilities to track variations in the system parameters. We
can furthermore notice that EIVPM and RPM2 have performance very similar to the eigendecomposition-
based approach (named ED on Figure 2). This observation proves that a significant complexity reduction
can be achieved without scarifying accuracy. The trajectories obtained with COIVPM and COPM are
smoother and relatively slower than with the other techniques. This property is in all likelihood due to
the sequentially minimization procedure of the COPM and COIVPM algorithms. The use of such an
approach leads indeed to an averaging of the estimates. Concerning the intersection scenario, EIVPM,
RPM2 and ED know the same difficulties to discriminate the eigenvalues. In front of these results, using
COPM or COIVPM for slowly time-varying system identification can be seen as a good solution since
these techniques lead to smooth responses and offer a good trade-off between tracking and stationary
performance. It is however important to notice that COIVPM is more interesting than COPM from a
numerical complexity point of view. The choice between both methods can be done according to the
computation time constraints.

5.1.3 Time-varying with abrupt change case

Although some assumptions necessary to the implementation of the recursive subspace identification
algorithms are no more verified when a sudden and abrupt change is considered, the goal of the last
simulation example is to study the behaviour of the introduced RSMI methods in this framework. For
that, the following state matrix is used

A =











0.8 −0.4 0.2
0 0.3 −0.5
0 0 0.5



 for t < 665





0.8 −0.4 0.2
0 0.45 −0.5
0 0 0.5



 for t ≥ 665

.

All the studied techniques are able to detect and track the pole trajectory jump. As previously (see Fig.
3), the EIVPM and RPM2 algorithms provide estimates analogous to those of the eigendecomposition-
based approach. Their adaptation to this step change is faster than with COPM or COIVPM. However,
this quickness is paid at the cost of a stronger variance. Once again, a trade-off between good tracking
and smoothing response is thereby necessary.

5.2 Influence of the S matrix

In the previous example, the permutation matrix S introduced in Subsection 4.1.2 has been set
to the identity since, in this particular case, the first nx rows of the extended observability are linearly
independent. Unfortunately, in many situations, choosing the S matrix in such way may result in a wrong
partition of Γf and bad performances of the identification algorithms. The goal of following simulation
example is to emphasise the need of well choosing this partitioning matrix. The example is intentionally
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Figure 3: Poles trajectories estimated with EIVPM, RPM2, COPM COIVPM and ED in an
abrupt nonstationary environment. λ0 = 0.97, λ(0) = 0.97, λfinal = 0.98. SNR = 25dB,

MCS=100.
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set such that the first nx rows of Γf are not linearly independent. It consists more particularly in

x(t + 1) =





−0.850 0 0
0 0 −1.4744
0 0.50 1.730



x(t) +





−0.70 −0.30
−0.4652 −0.5972
1.4050 1.270



u(t)

y(t) =

[
0.50 0 0
0 0 2.0

]

x(t) +

[
1 1
1 1

]

u(t) + v(t)

with u and v two zero mean white Gaussian noises such that SNR=25dB. As previously, a Monte Carlo
simulation of size 100 is driven using respectively the EIVPM8 with and without permutations, EIVPAST
and a classic eigendecomposition. For EIVPM, the matrix S is selected by following the trick suggested
in Subsection 4.1.2. The average principal angles between the estimated observability space and the
true one are depicted on Figure 4. These plots firstly illustrate the necessity of rearranging the rows
of Γf for improving the efficiency of EIVPM. EIVPM with S introduction leads indeed to accurate Γf

estimates in less than 300 samples. On the contrary, the principal angle computed with EIVPM without
S application has a chaotic dynamic which will result in bad state-space matrices estimation. Secondly,
it is interesting to notice that, even if the EIVPAST estimates have better asymptotic behaviour than
the ”EIVPM without permutations” ones, the EIVPAST estimates converges less quickly to the true
observability subspace than when the S matrix is used.
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Figure 4: Comparison of the subspace angles computed with EIVPM with and without the
use of the S matrix and EIVPAST. λ0 = 0.98, λ(0) = 0.98, λfinal = 0.999. SNR = 25dB,

MCS=100.

6 Conclusion

In this paper, several recursive subspace model identification algorithms are proposed. The estimation
of the observability subspace of MIMO systems from I/O data is more precisely formulated as specific
unconstrained optimization problem adapted from signal processing. This adaptation, combined with
the introduction of particular instruments, allow to avoid the use of singular values decomposition to
recursively estimate the signal subspace in a noisy framework. A particular attention is paid to the
computational load of the developed methods. The performances of these algorithms are highlighted
with some simulation examples. The experimental results indicate more particularly that propagator-
based approach has faster initial convergence speed than their PAST counterparts and that the proposed
techniques have good behaviour and performances when slowly time-varying systems and sudden changes
in the process dynamic are considered. Thus, the developed algorithms provide a satisfactory balance
between computational complexity and estimation accuracy.

8The same results are obtained with all the propagator-based algorithms.
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[33] T. Söderström and P. Stoica. System identification. Prentice Hall International Series in Systems
and Control Engineering, New York, 1989.

[34] R. J. Vaccaro. A second order perturbation expansion for the SVD. SIAM Journal on Matrix
Analysis and Applications, 15:661–671, 1994.

[35] S. Van Huffel and J. Vandervalle. The total least squares problem: computational aspects and analysis,
frontiers in applied mathematics series, volume 9. SIAM, Philadelphia, 1991.

[36] P. Van Overschee and B. De Moor. N4SID: subspace algorithms for the identification of combined
deterministic stochastic systems. Automatica, 30:75–93, 1994.

[37] M. Verhaegen. Subspace model identification part 3: analysis of the ordinary output error state
space model identification algorithm. International Journal of Control, 58:555–586, 1993.

[38] M. Verhaegen. Identification of the deterministic part of MIMO state space models given in innova-
tions form from input output data. Automatica, 30:61–74, 1994.

26



[39] M. Verhaegen and E. Deprettere. A fast recursive MIMO state space model identification algorithm.
In Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, United Kingdom,
December 1991.

[40] M. Verhaegen and P. Dewilde. Subspace model identification part 1: output error state space model
identification class of algorithms. International Journal of Control, 56:1187–1210, 1992.

[41] M. Verhaegen and P. Dewilde. Subspace model identification part 2: analysis of the elementary
output error state space model identification algorithm. International Journal of Control, 56:1211–
1241, 1992.
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