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Abstract

The Oseen equations are obtained by linearizing the Navier-Stokes equations around
a nonzero constant vector which is the velocity at infinity. We are interested with
the study of the scalar problem corresponding to the anisotropic operator −∆+ ∂

∂x1
.

The Marcinkiewicz interpolation’s theorem and the Sobolev embeddings are used
to give, in the Lp theory, the continuity’s properties of the scalar Oseen potential.
The contribution of the term ∂

∂x1
gives supplementary properties with regard to the

Riesz potential.
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1 Introduction

The Oseen system is obtained by linearizing the Navier-Stokes equations
around a nonzero constant vector u = u∞, where u∞ = λe1 is the veloc-
ity at infinity, and can be written as follow (see [14], [15]):

−ν∆u + λ ∂u
∂x1

+∇π = f in Rn,

divu = g in Rn,

(1.1)
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where n ≥ 2. The data are, the external forces f , a function g, the positive real
number λ and the viscosity of the fluid ν. The unknowns of this system are the
velocity u and the pressure π. One of the first works devoted to these equations
is due to Finn [6], [7]. Specifically, Finn studied (1.1) Oseen’s equations in three
and two dimensional exterior domains when (1 + |x|)f ∈ L2(R3) and g = 0.
He proved that this system has a unique solution u such that (1 + |x|)−1u ∈
L2(R3). When (f , g) ∈ W m,p(Rn)×Wm+1,p(Rn) with m ≥ 0, Galdi [8] proved
that Problem (1.1) has a solution (u, π) ∈ W m,p

loc (Rn)×Wm+1,p
loc (Rn) and some

results on the derivatives of u and π under conditions on the power p. Re-
cently, Amrouche and Razafison [2] investigated this problem by working in
weighted Sobolev spaces.
Taking the divergence of the first equation of (1.1), we observe that the pres-
sure satisfies the Poisson’s equation (see for instance [1]):

∆π = divf + ν∆g − λ
∂g

∂x1

in Rn, (1.2)

and the vector field u satisfies

−ν∆u + λ
∂u

∂x1

= f −∇ π in Rn. (1.3)

Now observe that each component uj of the velocity satisfies

−ν∆uj + λ
∂uj

∂x1

= fj −
∂π

∂xj

in Rn. (1.4)

Hence, we see that the Oseen problem (1.1) can be reduced to the following
scalar equation

−ν∆u + λ
∂u

∂x1

= f in Rn, (1.5)

where f = fj− ∂π
∂xj

. Working in the L2 spaces with anisotropic weights, Farwig

[3] treated this equation in three dimensional exterior domain. The purpose
of this work is the study of the potential of the scalar Oseen operator:

T : u 7−→ −∆u +
∂u

∂x1

, (1.6)

and more precisely the boundedness of the operators R : f 7→ O ∗ f , Rj :

f 7→ ∂
∂xj

(O ∗ f) and Rj,k : f 7→ ∂2

∂xj∂xk
(O ∗ f), for f given in Lp(Rn) or

in W−1,p
0 (Rn). The obtained estimates can be applied to the investigation of

qualitative properties of solutions of Navier-Stokes equations with a non-zero
constant velocity at infinity.
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2 Notations and Functional Spaces

Throughout this paper, p is a real number in the interval ]1, +∞[ and p′ the
conjugate exponent of p. A point in Rn is denoted by x = (x1, .., xn) and we
set:

r = |x| = (x2
1 + ... + x2

n)1/2, s = r − x1 and s′ = r + x1.

For R > 0, BR denotes the open ball of radius R centered at the origin and
B′

R = R2\BR. For any j ∈ Z, Pj is the space of polynomials of degree lower
than or equal to j. If j is a negative integer, we set by convention Pj = 0.
Given a Banach space B, with dual space B′ and a closed subspace X of B,
we denote by B′ ⊥ X the subspace of B′ orthogonal to X:

B′ ⊥ X = {f ∈ B′; ∀v ∈ X, 〈f, v〉 = 0}.

We define the weighted Sobolev space

W 1,p
0 (Rn) =

{
u ∈ D′(Rn); ω−1u ∈ Lp(Rn); ∇u ∈ Lp(Rn)

}
,

where, ω = 1 + r if p 6= n and ω = (1 + r)ln (2 + r) if p = n. Equipped with
it’s natural norm:

‖ u ‖W 1,p
0 (Rn) =

(
‖ ω−1u ‖p

Lp(Rn) + ‖ ∇u ‖p
Lp(Rn)

) 1
p ,

it is a reflexive Banach space. We denote its semi-norm by: | u |W 1,p
0 (Rn) = ‖

∇u ‖Lp(Rn). For more details on these spaces, see [12], [10] and [1]. However,
we recall some properties and results that we use in this paper. The space
W 1,p

0 (Rn) contains constants when p ≥ n and no polynomials otherwise. The
space of smooth functions with compact support D(Rn) is dense in W 1,p

0 (Rn).

Then, its dual space denoted by W−1,p′

0 (Rn) is a space of distributions. We
recall that there exists a constant C such that (see [1]):

∀u ∈ W 1,p
0 (Rn), inf

k∈P[1−n
p ]

‖ u + k ‖W 1,p
0 (Rn) ≤ C ‖ ∇u ‖Lp(Rn) . (2.1)

Which implies that, in particular when p < n, the full norm on W 1,p
0 (Rn)

is equivalent to the semi norm. Inequality (2.1) permits to prove that the
following gradient and divergence operators are isomorphisms (see [1]):

∇ : W 1,p
0 (Rn)/P[1−n

p
] −→ Lp(Rn)⊥Hp′ , (2.2)

div : Lp′(Rn)/Hp′ −→ W 1,p′

0 (Rn)⊥ P[1−n
p
], (2.3)
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where, H p = {v ∈ Lp(Rn), divv = 0}. Inequality (2.1) also allows to have
the important following result (see [1] and [2] for the expression of k(u) which
is given in the case n = 3):

Proposition 2.1 Let u a distribution such that ∇u ∈ Lp(Rn).
i) If 1 < p < n, there exists a unique constant k(u) ∈ R defined by:

k(u) = − lim
|x|→∞

1

ωn

∫
Sn−1

u(σ|x|) dσ, (2.4)

where ωn denotes the area of the sphere Sn−1, such that u + k(u) ∈ W 1,p
0 (Rn),

and
‖ u + k(u) ‖W 1,p

0 (Rn) ≤ C‖∇u‖Lp(Rn). (2.5)

ii) If p ≥ n, then u ∈ W 1,p
0 (Rn) and

inf
k∈R

‖ u + k ‖W 1,p
0 (Rn) ≤ C‖∇u‖Lp(Rn). (2.6)

We recall the Sobolev embeddings:

W 1,p
0 (Rn) ↪→ Lp∗(Rn) if 1 < p < n, with

1

p∗
=

1

p
− 1

n
, (2.7)

W 1,n
0 (Rn) ↪→ V MO(Rn), (2.8)

where,

V MO(Rn) = D(Rn)
‖.‖BMO

.

The space BMO is defined as follows: A locally integrable function f belongs
to BMO if

‖f‖BMO =: sup
Q

1

|Q|

∫
Q
|f(x)− fQ| dx < ∞,

where, the supremum is taken on all the cubes and fQ = 1
|Q|
∫
Q f(x) dx is the

average of f on Q.
Note that if ∇u ∈ Lp(Rn), with p > n and u ∈ Lr(Rn) for some r ≥ 1 then

u ∈ Lr(Rn) ∩ L∞(Rn), (2.9)

and if p = n, then u belongs to Lq(Rn) for any q ≥ r.
We introduce also the following space (see [2]):

W̃ 1,p
0 (Rn) = {v ∈ W 1,p

0 (Rn);
∂u

∂x1

∈ W−1,p
0 (Rn)},

which is a reflexive Banach space for the norm:

‖v‖
W̃ 1,p

0 (Rn)
= ‖v‖W 1,p

0 (Rn) + ‖ ∂u

∂x1

‖W−1,p
0 (Rn).
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3 The fundamental solution.

Following the idea of [8], we get the following fundamental solution O:
i) For n = 3,

O(x) =
1

4πr
e−

s
2 . (3.1)

ii) For n = 2, the fundamental solution has, in a neighbourhood of the origin,
the following behaviour:

O(x) = − 1

2π
e

x1
2

{
ln

1

r
+ 2ln 2− γ + σ(r)

}
, (3.2)

where σ satisfies dkσ
drk = or−k). When r is sufficiently large, we have:

O(x) = − 1

2
√

πr
e−

s
2

[
1− 1

4r
+ O(r−2)

]
.

Using the inequality e−s/2 ≤ Cb(1 + s)b, which holds for any real number b,
we obtain the following anisotropic estimates for r sufficiently large:

|O(x)| ≤ C r−1(1 + s)−2, | ∂O
∂x1

(x)| ≤ C r−2 (1 + s)−
3
2 ,

| ∂O
∂xj

(x)| ≤ C r−
3
2 (1 + s)−

3
2 (1 + 2

r
), j = 2, 3, if n = 3,

(3.3)

|O(x)| ≤ C r−
1
2 (1 + s)−1, | ∂O

∂x1
(x)| ≤ C r−

3
2 (1 + s)−1,

| ∂O
∂x2

(x)| ≤ C r−1 (1 + s)−1, if n = 2.

(3.4)

In order to study the integrability properties of the fundamental solution and
its derivatives, we need to estimate the following integral (for the proof, see
[11]):

α, β ∈ R, Iα,β =
∫
|x|>µ

r−α(1 + s)−β dx, with µ > 0.

Lemma 3.1 Assume that n − α − min(n−1
2

, β) < 0. Then, there exists a
constant C > 0 such that, for all µ > 1, we have

Iα,β ≤ Cµn−α−min(n−1
2

,β), if β 6= n− 1

2
,

Iα,β ≤ Cµ
n+1

2
−α ln r, if β =

n− 1

2
.

This lemma allows us to derive the following integrability properties of O and
its gradient:

∀p > 3, O ∈ Lp(R2) and ∀p ∈ ]
3

2
, 2[, ∇O ∈ Lp(R2), (3.5)
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∀p ∈ ]2, 3[, O ∈ Lp(R3) and ∀p ∈ ]
4

3
,
3

2
[, ∇O ∈ Lp(R3). (3.6)

Note also that

O ∈ L1
loc(Rn) and ∇O ∈ L1

loc(Rn), for n = 2, 3. (3.7)

3.1 Study of the kernel

Using the Fourier’s transform, the kernel of the operator T , when it is defined
on the tempered distributions S ′(Rn), is given by:

Lemma 3.2 Let f ∈ S ′(Rn) be a tempered distribution and let u ∈ S ′(Rn) be
a solution of (1.6). Then u is uniquely determined up to polynomials of Sk,
where:

Sk = {q ∈ Pk;−∆q +
∂q

∂x1

= 0}. (3.8)

Let us notice that S0 = R and S1 is the space of polynomials of degree lower
than or equal one and not depending on x1.

4 Scalar Oseen Potential in three dimensional

This section is devoted to the Lp estimates of convolutions with Oseen kernels.

Theorem 4.1 Let f ∈ Lp(R3). Then ∂2

∂xj∂xk
(O∗f) ∈ Lp(R3) and ∂

∂x1
(O∗

f) ∈ Lp(R3). Moreover, the following estimate holds

‖ ∂2

∂xj∂xk

(O ∗ f)‖Lp(R3) + ‖ ∂

∂x1

(O ∗ f)‖Lp(R3) ≤ C‖f‖Lp(R3). (4.1)

Moreover,

1) if 1 < p < 2, then O ∗ f ∈ L
2p

2−p (R3) and satisfies

‖O ∗ f‖
L

2p
2−p (R3)

≤ C‖f‖Lp(R3). (4.2)

2) If 1 < p < 4, then ∂
∂xj

(O ∗ f) ∈ L
4p

4−p (R3) and verifies the estimate

‖ ∂

∂xj

(O ∗ f)‖
L

4p
4−p (R3)

≤ C‖f‖Lp(R3). (4.3)
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Proof : By Fourier’s transform, from Equation (1.5) we obtain:

F(
∂2

∂xj∂xk

O ∗ f) =
−ξjξk

ξ2 + iξ1

F(f).

Now, the function ξ 7→ m(ξ) = −ξjξk

ξ2+iξ1
is of class C2 in R3 \{0} and satisfies for

every α = (α1, α2, α3) ∈ N3

|∂
|α|m

∂ξα (ξ)| ≤ C|ξ|−α,

where, |α| = α1 + α2 + α3 and C is a constant not depending on ξ. Then, the
linear operator

A : f 7→ ∂2

∂xj∂xk

(O ∗ f)(x) =
∫

R2
eixξ −ξjξk

ξ2 + iξ1

Ff(ξ) dξ

is continuous from Lp(R3) into Lp(R3) (see E. Stein [18], Thm 3.2, p.96). So,
∂2

∂xj∂xk
(O ∗ f) ∈ Lp(R3) and satisfies

‖ ∂2

∂xj∂xk

(O ∗ f)‖Lp(R3) ≤ C‖f‖Lp(R3).

We have also

F(
∂

∂x1

(O ∗ f)) =
iξ1

ξ2 + iξ1

F(f)

and since the function ξ 7→ m1(ξ) = iξ1
ξ2+iξ1

admits the same properties that

those of m(ξ), then ∂
∂x1

(O ∗ f) ∈ Lp(R3) and satisfies the estimate

‖ ∂

∂x1

(O ∗ f)‖Lp(R3) ≤ C‖f‖Lp(R3),

which proves the first part of the proposition and Estimate (4.1). Next, to
prove inequalities (4.2) and (4.3), we adapt the technique used by Stein in
[18] which studied the convolution of f ∈ Lp(Rn) with the kernel |x|α−n. Let
us decompose the function K as K1 + K∞ where,

K1(x) = K(x) if |x| ≤ µ and K1(x) = 0 if |x| > µ,

K∞(x) = 0 if |x| ≤ µ and K∞(x) = K(x) if |x| > µ.

(4.4)

The function K will denote successively O and ∂O
∂xj

and µ is a fixed positive

constant which need not be specified at this instance. Next, we shall show that
the mapping f 7→ K ∗ f is of weak-type (p, q), with q = 2p

2−p
when K = O and
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q = 4p
4−p

when K = ∂O
∂xj

, in the sense that:

for all λ > 0, mes {x ; |(K ∗ f)(x)| > λ} ≤
(
Cp,q

‖f‖Lp(R3)

λ

)q

. (4.5)

Since K ∗ f = K1 ∗ f + K∞ ∗ f , we have now:

mes {x ; |K∗f | > 2λ} ≤ mes {x ; |K1∗f | > λ}+mes {x ; |K∞∗f | > λ}. (4.6)

Note that it is enough to prove inequality (4.5) with ‖f‖Lp(R3) = 1. We have
also:

mes {x ; |(K1 ∗ f)(x)| > λ} ≤
‖K1 ∗ f‖p

Lp(R3)

λp
≤

‖K1‖p
L1(R3)

λp
, (4.7)

and

‖K∞ ∗ f‖L∞(R3) ≤ ‖K∞‖Lp′ (R3). (4.8)

1) Estimate (4.2). According to (3.3), O1 ∈ L1(R3) and by (3.6), O∞ ∈
Lp′(R3) for 1 ≤ p < 2. Then, the integral O1 ∗ f converges almost everywhere
and O∞ ∗f converges everywhere. So, O∗f converges almost everywhere. But

∀µ > 0, ‖O1‖L1(R3) ≤ Cµ. (4.9)

Next, by using (3.3), we have for any p′ > 2:

∀µ > 0, ‖O∞‖Lp′ (R3) ≤ Cµ
2−p′

p′ . (4.10)

Choosing now λ = Cµ
2−p′

p′ or equivalently µ = C ′λ
p

p−2 . Then from (4.10) and
(4.8) we have ‖O∞ ∗ f‖L∞(R3) < λ and so mes {x ; |O∞ ∗ f | > λ} = 0. Finally,
for 1 ≤ p < 2, we get from inequalities (4.9), (4.6) and (4.7):

mes {x ∈ R3; |(O ∗ f)(x)| > λ} ≤
(
Cp

1

λ

) 2p
2−p

. (4.11)

So, for 1 ≤ p < 2, the operator R : f 7→ O ∗ f is of weak-type (p, 2p
2−p

).

2) Estimate (4.3). Here we take K = ∂O
∂xj

. First, according to (4.1), ∂
∂x1

(O ∗
f) ∈ W 1,p(R3) then, by the Sobolev embedding, we have in particular, ∂

∂x1
(O∗

f) ∈ L
4p

4−p (R3). It remains to prove Estimate (4.3) for j = 2, 3. Firstly we have:

‖∂O
∂xj

‖L1(R3) ≤ cµ, if µ ≤ 1 and ‖∂O
∂xj

‖L1(R3) ≤ cµ
1
2 , if µ > 1.
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Furthermore, we have for p′ > 4
3
:

∫
|x|>µ | ∂O∂xj

(x)|p′ dx ≤ Cµ4−3p′ , if µ ≤ 1,

∫
|x|>µ | ∂O∂xj

(x)|p′ dx ≤ Cµ
4−3p′

2 , if µ > 1.

In summary we have:
a) If 0 < µ < 1,∫

|x|<µ
|∂O
∂xj

(x)| dx ≤ cµ and
∫
|x|>µ

|∂O
∂xj

(x)|p′ dx ≤ Cµ4−3p′ ,

b) if µ ≥ 1,∫
|x|<µ

|∂O
∂xj

(x)| dx ≤ cµ
1
2 and

∫
|x|>µ

|∂O
∂xj

(x)|p′ dx ≤ Cµ
4−3p′

2 .

Setting λ = Cµ
4−3p′

p′ in the case a) or λ = Cµ
4−3p′
2p′ in the case b), we get in

both cases:

mes {x ∈ R3; |K ∗ f(x)| > λ} ≤
(
Cp

1

λ

) 4p
4−p

. (4.12)

Thus, for 1 ≤ p < 4, the operator Rj : f 7→ ∂
∂xj

(O∗ f) is of weak-type (p, 4p
4−p

).

Applying now the Marcinkiewicz interpolation’s theorem, we deduce that, for

1 < p < 2, the linear operator R is continuous from Lp(R3) into L
2p

2−p (R3) and

for 1 < p < 4, Rj is continuous from Lp(R3) into L
4p

4−p (R3). ♦

Remark 4.2 Another proof of Theorem 4.1 consists in using the Fourier’s
approach. Let (fj)j∈N ⊂ D(R3) a sequence which converges to f in Lp(R3).
Then the sequence (uj)j∈N given by:

uj = F−1(m0(ξ)Ffj), m0(ξ) = (|ξ|2 + iξ1)
−1, (4.13)

satisfies the equation Tuj = fj, where the operator T is defined by (1.6). Let
us recall now the:
Lizorkin Theorem. Let D = {ξ ∈ R3; |ξ| > 0} and m : D −→ C, a

continuous function such that its derivatives ∂km

∂ξ
k1
1 ∂ξ

k2
2 ∂ξ

k3
3

are continuous and

verify

|ξ1|k1+β |ξ2|k2+β |ξ3|k3+β

∣∣∣∣∣ ∂km

∂ξk1
1 ∂ξk2

2 ∂ξk3
3

∣∣∣∣∣ ≤ M, (4.14)

where k1, k2, k3 ∈ {0, 1}, k = k1 + k2 + k3 and 0 ≤ β < 1. Then, the operator

A : g 7−→ F−1(m0Fg),

is continuous from Lp(R3) into Lr(R3) with 1
r

= 1
p
− β.

Applying this continuity property with fj ∈ Lp(R3) and β = 1
2
, we show that
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(uj) is bounded in L
2p

2−p (R3) if 1 < p < 2. So, this sequence admits a subse-
quence still denoted (uj) which converges weakly to u and satisfying Tu = f .
For the derivative of uj with respect to x1, the corresponding multiplier is on
the form m(ξ) = iξ1(|ξ|2 + iξ1)

−1. So that (4.14) is satisfied for β = 0 and
then ∂u

∂x1
∈ Lp(R3). The same property takes place for the second derivatives

with m(ξ) = ξkξl(|ξ|2 + iξ1)
−1. Finally, we verify with β = 1

4
, that the first

derivative of (uj) with respect to xk is bounded in L
4p

4−p (R3), which implies
∂u
∂xk

∈ L
4p

4−p (R3). ♦

Theorem 4.1 states that ∂2

∂xj∂xk
(O ∗ f) ∈ Lp(R3) and under conditions on p,

∂
∂xj

(O ∗ f) ∈ L
4p

4−p (R3) and O ∗ f ∈ L
2p

2−p (R3). Now, using these results and

the Sobolev embeddings (2.7)-(2.9), we have the following:

Theorem 4.3 Let f ∈ Lp(R3).

1) Assume that 1 < p < 4. Then ∇ (O ∗ f) ∈ L
4p

4−p (R3) with the estimate
(4.3). Moreover,

i) if 1 < p < 3, then ∇ (O ∗ f) ∈ L
3p

3−p (R3) with the estimate

‖∇ (O ∗ f)‖
L

3p
3−p (R3)

≤ C‖f‖Lp(R3). (4.15)

ii) If p = 3, then ∇ (O ∗ f) ∈ Lr(R3) for any r ≥ 12 and satisfies

‖∇ (O ∗ f)‖Lr(R3) ≤ C‖f‖Lp(R3). (4.16)

iii) If 3 < p < 4, then ∇ (O ∗ f) ∈ L∞(R3) and verifies the estimate

‖∇ (O ∗ f)‖L∞(R3) ≤ C‖f‖Lp(R3). (4.17)

2) Assume that 1 < p < 2. Then O ∗ f ∈ L
2p

2−p (R3) with the estimate (4.2).
Moreover,

i) if 1 < p < 3
2
, then O ∗ f ∈ L

3p
3−2p (R3) and satisfies

‖O ∗ f‖
L

3p
3−2p (R3)

≤ C‖f‖Lp(R3). (4.18)

ii) If p = 3
2
, then O ∗ f ∈ Lr(R3) for any r ≥ 6 and

‖O ∗ f‖Lr(R3) ≤ C‖f‖Lp(R3). (4.19)

iii) If 3
2

< p < 2, then O ∗ f ∈ L∞(R3) and the following estimate holds

‖O ∗ f‖L∞(R3) ≤ C‖f‖Lp(R3). (4.20)
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Proof : 1) When 1 < p < 4, the previous theorem asserts that ∂
∂xj

(O ∗ f) ∈

L
4p

4−p (R3) and ∂2

∂xj∂xk
(O ∗ f) ∈ Lp(R3). If 1 < p < 3, according to Proposition

2.1, there exists a unique constant k(f) ∈ R such that v = ∂
∂xj

(O∗f)+k(f) ∈

W 1,p
0 (Rn). Then k(f) = v − ∂

∂xj
(O ∗ f) ∈ W 1,p

0 (Rn) + L
4p

4−p (R3). As none of

both spaces contains constants then k(f) = 0, which implies that ∂
∂xj

(O∗f) ∈

W 1,p
0 (Rn). Now, the Sobolev embedding (2.7) yields ∂

∂xj
(O∗f) ∈ L

3p
3−p (R3) and

estimate (4.15). If p ≥ 3, also by the previous theorem and Proposition 2.1, we
have ∂

∂xj
(O ∗ f) ∈ W 1,p

0 (Rn). The Sobolev embedding (2.8) gives ∂
∂xj

(O ∗ f) ∈
V MO(R3) if p = 3. Applying now the interpolation theorem between BMO
and Lp (see [9]), we get ∂

∂xj
(O ∗ f) ∈ Lr(R3) for any r ≥ 12. By Sobolev

embedding (2.9), when 3 < p < 4, we have ∂
∂xj

(O ∗ f) ∈ L∞(R3), ) and the

case 1) is finished.

2) By the previous theorem, when 1 < p < 2, we have O ∗ f ∈ L
2p

2−p (R3) and

∇ (O ∗ f) ∈ L
3p

3−p (R3). Now by Sobolev embedding (2.7), O ∗ f ∈ Lp∗(R3),
where 1

p∗
= 3−p

3p
− 1

3
= 1

p
− 2

3
if 1 < p < 3

2
, which gives (4.15). For the remainder

of the proof, we use the same arguments that in the previous case with O ∗ f
instead of ∂

∂xj
(O ∗ f) and ∂

∂xj
(O ∗ f) instead of ∂2

∂xj∂xk
(O ∗ f). ♦

Remark 4.4 i) We can also find this result by showing that O ∈ L2,∞(R3),
i.e.

sup
µ>0

µ2 mes {x ∈ R3; O(x) > µ} < +∞. (4.21)

So that, for any 1 < q < 2, according to weak Young inequality (cf. [17], chap.
IX.4), we obtain:

‖O ∗ f‖
L

2q
2−q ,∞

(R3)
≤ C‖O‖L2,∞(R3)‖f‖Lq(R3). (4.22)

Let now p ∈ ]1, 2[. There exist p0 and p1 such that 1 < p0 < p < p1 < 2
and such that the operator R : f 7−→ O ∗ f is continuous from Lp0(R3) into

L
2p0

2−p0
,∞

(R3) and from Lp1(R3) into L
2p1

2−p1
,∞

(R3). The Marcinkiewicz theorem
allows again to conclude that the operator R is continuous from Lp(R3) into

L
2p

2−p (R3)

ii) The same remark is true for ∇O which belongs to L
4
3
,∞(R3). ♦

Using the Young inequality with the relations (3.6) and (3.7), we get the
following result:

Proposition 4.5 Let f ∈ L1(R3). Then
1) O ∗ f ∈ Lp(R3) for any p ∈ ]2, 3[ and satisfies the estimate

‖O ∗ f‖Lp(R3) ≤ C‖f‖L1(R3), (4.23)
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2) ∇ (O ∗ f) ∈ Lp(R3) for all p ∈ ]4
3
, 3

2
[ and the following estimate holds

‖∇ (O ∗ f)‖Lp(R3) ≤ C‖f‖L1(R3). (4.24)

Remark 4.6 Taking ”formally” p = 1 in Theorem 4.3, we find that O ∗ f ∈
Lq(R3) for any q ∈ ]2, 3[ and ∇ (O ∗ f) ∈ Lq(R3) for any q ∈ ]4

3
, 3

2
[. We notice

that they are the same results obtained in Theorem 4.5 by using the Young
inequality.

Now, we are going to study the Oseen potential O ∗ f when f is given in
W−1,p

0 (R3). For that purpose, we give the following definition of the convolu-
tion of f with the fundamental solution O:

∀ϕ ∈ D(R3), 〈O ∗ f, ϕ〉 =: 〈f, Ŏ ∗ ϕ〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

, (4.25)

where Ŏ(x) = O(−x). With the L∞ weighted estimates obtained in [11] (Thms
3.1 and 3.2), we get an estimate on the convolution of Ŏ with a function
ϕ ∈ D(R3) which we shall use afterward as follows

Lemma 4.7 For any ϕ ∈ D(R3) we have the estimates

|Ŏ ∗ ϕ(x)| ≤ Cϕ
1

|x|(1 + |x|+ x1)
, (4.26)

∇ (Ŏ ∗ ϕ)(x)| ≤ Cϕ
1

|x| 32 (1 + |x|+ x1)
3
2

, (4.27)

where Cϕ depends on the support of ϕ.

Remark 4.8 1) The behaviour on |x| of Ŏ ∗ϕ and its first derivatives is the
same that of Ŏ, but the behaviour on 1 + s′ is a little bit different (see (3.3).
2) By Lemma 3.1 and estimates (4.28-(4.29) we find that

∀q >
4

3
, Ŏ ∗ ϕ ∈ W 1,q

0 (R3). (4.28)

3) In (4.26) and (4.27), when ϕ tends to zero in D(R3), then Cϕ tends to zero
in R.

The next theorem studies the continuity of the operators R and Rj when f
belongs to W−1,p

0 (R3).

Theorem 4.9 Assume that 1 < p < 4 and let f ∈ W−1,p
0 (R3) satisfying the

compatibility condition

〈f, 1〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

= 0, when 1 < p ≤ 3

2
. (4.29)
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Then O ∗ f ∈ L
4p

4−p (R3) and ∇ (O ∗ f) ∈ Lp(R3) with the following estimate

‖O ∗ f‖
L

4p
4−p (R3)

+ ‖∇ (O ∗ f)‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3). (4.30)

Moreover,

i) if 1 < p < 3, then O ∗ f ∈ L
3p

3−p (R3) and the following estimate holds

‖O ∗ f‖
L

3p
3−p (R3)

≤ C‖f‖W−1,p
0 (R3). (4.31)

ii) If p = 3, then O ∗ f ∈ Lr(R3) for any r ≥ 12 and satisfies

‖O ∗ f‖Lr(R3) ≤ C‖f‖W−1,p
0 (R3). (4.32)

iii) If 3 < p < 4, then O ∗ f ∈ L∞(R3) and we have the estimate

‖O ∗ f‖L∞(R3) ≤ C‖f‖W−1,p
0 (R3). (4.33)

Proof : Let 1 < p < 4. By Lemma 4.7 and Remark 4.8 point 3), if ϕ → 0
in D(R3), then Cϕ → 0 where Cϕ is defined by (4.26). Thus, Ŏ ∗ ϕ → 0

in W 1,p′

0 (R3) for all p ∈ ]1, 4[, what implies that O ∗ f ∈ D′(R3). Next, by
Isomorphism (2.3), there exists F ∈ Lp(R3) such that

f = divF and ‖F‖Lp(R3) ≤ C‖f‖W−1,p
0 (R3). (4.34)

According to (4.1), we have for any ϕ ∈ D(R3),

|〈 ∂

∂xj

(O ∗ f), ϕ〉D′(R3)×D(R3)|= |〈F ,∇ ∂

∂xj

(Ŏ ∗ ϕ)〉Lp(R3)×Lp′ (R3)|

≤C‖f‖W−1,p
0 (R3)‖ϕ‖Lp′ (R3).

Then we deduce the second part of (4.30). We also have for all ϕ ∈ D(R3):

〈O ∗ f, ϕ〉D′(R3)×D(R3) = −〈F ,∇ (Ŏ ∗ ϕ)〉Lp(R3)×Lp′ (R3),

and by (4.3): |〈O ∗ f, ϕ〉D′(R3)×D(R3)| ≤ C‖f‖W−1,p
0 (R3)‖ϕ‖

L
4p

5p−4 (R3)
. Note that

1 < p < 4 ⇐⇒ 1 < 4p
5p−4

< 4. Consequently, we have the first part of (4.30).

Moreover, by Sobolev embeddings (2.7)-(2.9), O ∗ f ∈ L
3p

3−p (R3) if 1 < p < 3,
O ∗ f belongs to Lr(R2) for all r ≥ 12 if p = 3 and belongs to L∞(R2) if
3 < p < 4. Thus, we showed that if 1 < p < 4, the operators R and Rj are
continuous. ♦

Corollary 4.10 Assume that 1 < p < 4. If u is a distribution such that
∇u ∈ Lp(R3) and ∂u

∂x1
∈ W−1,p

0 (R3), then there exists a unique constant k(u)
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such that u + k(u) ∈ L
4p

4−p (R3) and

‖ u + k(u) ‖
L

4p
4−p (R3)

≤ C(‖ ∇u ‖Lp(R3) + ‖ ∂u

∂x1

‖W−1,p
0 (R3)). (4.35)

Moreover, if 1 < p < 3, then u + k(u) ∈ L
3p

3−p (R3), where k(u) is defined by:

k(u) = − lim
|x|→∞

1

ω3

∫
S2

u(σ|x|) dσ, (4.36)

where, ω3 denotes the area of the sphere S2 and u tends to the constant −k(u)
as x tends to infinity in the following sense:

lim
|x|→∞

∫
S2

|u(σ|x|) + k(u)| dσ = 0. (4.37)

If p = 3, then u + k(u) belongs to Lr(R3) for any r ≥ 12. If 3 < p < 4, then
u belongs to L∞(R3), is continuous in R3 and tends to −k(u) pointwise.

Proof : Setting g = −∆u + ∂u
∂x1

∈ W−1,p
0 (R3). Since P[1− 3

p′ ]
contains at most

constants and according to the density of D(R3) in W̃ 1,p
0 (R3) (see [2]), then

g satisfies the compatibility condition (4.29). By the previous theorem, there

exists a unique v = O∗g ∈ L
4p

4−p (R3) such that∇ v ∈ Lp(R3) and ∂v
∂x1

∈ Lp(R3),
satisfying T (u− v) = 0, where T is the Oseen operator, with the estimate:

‖ v ‖
L

4p
4−p (R3)

≤ C(‖ ∇u ‖Lp(R3) + ‖ ∂u

∂x1

‖W−1,p
0 (R3)). (4.38)

Setting w = u − v, we have for all i = 1, 2, 3, ∂w
∂xi

∈ Lp(R3) and satisfies

T ( ∂w
∂xi

) = 0. We deduce then by Lemma 3.2 that ∇u = ∇ v and consequently
there exists a unique constant k(u), defined by (4.36), such that u+ k(u) = v.
The last properties are consequence of (2.8) and (2.9). ♦

Remark 4.11 Let u ∈ D′(R3) such that ∇u ∈ Lp(R3).
i) When 1 < p < 3, according to Proposition 2.1, we know that there exists

a unique constant k(u) such that u + k(u) ∈ L
3p

3−p (R3). Here, the fact that

in addition ∂u
∂x1

∈ W−1,p
0 (R3) we have moreover u + k(u) ∈ L

4p
4−p (R2), with

4p
4−p

< 3p
3−p

.

ii) When 3 ≤ p < 4, by Proposition 2.1, for any constant k, u+k belongs only
to W 1,p

0 (R3) but no to the space Lr(R3). But, if moreover ∂u
∂x1

∈ W−1,p
0 (R3)

then, u+k(u) ∈ L
4p

4−p (R3) for some unique constant k(u). Moreover u+k(u) ∈
Lr(R3) for any r ≥ 4p

4−p
and u ∈ L∞(R3) if p > 3.
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5 Scalar Oseen potential in two dimensional.

In this section we study also the continuity of the operators R, Rj and Rj,k

when f is given in Lp(R2) or in W−1,p
0 (R2). We begin by the case where f

belongs to Lp(R2).

Theorem 5.1 Let f ∈ Lp(R2). Then ∂2

∂x1∂x2
(O ∗ f) ∈ Lp(R2), ∂

∂x1
(O ∗ f) ∈

Lp(R2) and satisfy the estimate

‖ ∂2

∂x1∂x2

(O ∗ f)‖Lp(R2) + ‖ ∂

∂x1

(O ∗ f)‖Lp(R2) ≤ C‖f‖Lp(R2). (5.1)

Moreover,

1) if 1 < p < 3
2
, then O ∗ f ∈ L

3p
3−2p (R2) and satisfies

‖O ∗ f‖
L

3p
3−2p (R2)

≤ C‖f‖Lp(R2). (5.2)

2) If 1 < p < 3, then ∂
∂xj

(O ∗ f) ∈ L
3p

3−p (R2) and verifies the estimate

‖ ∂

∂xj

(O ∗ f)‖
L

3p
3−p (R2)

≤ C‖f‖Lp(R2). (5.3)

Proof : As in three-dimensional case, since the operator

A : f 7→ ∂2

∂x1∂x2

(O ∗ f)(x) =
∫

R2
eixξ −ξ1ξ2

ξ2 + iξ1

f̂(ξ) dξ

is continuous from Lp(R2) into Lp(R2), we get ∂2

∂x1∂x2
(O ∗ f) ∈ Lp(R2). We

have also ∂
∂x1

(O ∗ f) ∈ Lp(R2) and the estimate:

‖ ∂2

∂x1∂x2

(O ∗ f)‖Lp(R2) + ‖ ∂

∂x1

(O ∗ f)‖Lp(R2) ≤ C‖f‖Lp(R2), (5.4)

which proves the first part of theorem and Estimate (5.1). Now, as in the
three-dimensional case, we will show that the operators R : f 7→ O ∗ f and
Rj : f 7→ ∂

∂xj
(O∗f) are weak-type (p, 3p

3−2p
) if 1 ≤ p < 3

2
and weak-type (p, 3p

3−p
)

if 1 ≤ p < 3 respectively. Using the decomposition (4.4), according to (3.7)
and Estimate (3.3), the integral K ∗ f = K1 ∗ f + K∞ ∗ f converges almost
everywhere, where K denotes O and ∂O

∂xj
respectively.

1) Estimate (5.2). We observe that:

∀µ > 0, ‖O1‖L1(R2) ≤ Cµ, (5.5)

and for all p′ > 3:

∀µ > 0, ‖O∞‖p′ ≤ Cµ
3−p′
2p′ . (5.6)
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Setting λ = Cµ
3−p′
2p′ or equivalently µ = C ′λ

2p′
3−p′ = C ′λ

2p
2p−3 , we get from this

last inequality that ‖O∞ ∗ f‖L∞(R2) < λ. Then by Estimate (4.8), we have
mes {x ∈ R2; |O∞ ∗ f(x)| > λ} = 0. So, for any 1 < p < 3

2
, we have from (4.6)

and (4.7):

mes {x ∈ R2; |O ∗ f(x)| > 2λ} ≤ C
µp

λp
≤ C

(
1

λ

) 3p
3−2p

, (5.7)

which proves that the operator R is of weak type (p, 3p
3−2p

).

2) Estimate (5.3). According to (5.1) and the Sobolev embedding, we get

that ∂
∂x1

(O ∗ f) belongs in particular to L
3p

3−p (R2). It remains then to show
(5.3) for i = 2. As previously, we have:

∀µ > 0, ‖ ∂O
∂x2

‖L1(R2) ≤ Cµ
1
2 , (5.8)

and for any p′ > 3
2
,

‖ ∂O
∂x2

‖Lp′ (R2) ≤ Cµ
3−2p′

p′ . (5.9)

We have also, for 1 < p < 3 and any λ > 0:

mes {x ∈ R2; | ∂

∂x2

(O ∗ f)(x)| > 2λ} ≤ C
(

1

λ

) 3p
3−p

. (5.10)

Thus, the operator R2 is of weak-type (p, 3p
3−p

). Now, from inequalities (5.7),

(5.10) and by Marcinkiewicz interpolation’s Theorem, the operator R : f 7→
O ∗ f is continuous from Lp(R2) into L

3p
3−2p (R2) and R2 : f 7→ ∂

∂x2
(O ∗ f) is

continuous from Lp(R2) into L
3p

3−p (R2). ♦

Remark 5.2 i) We can also prove this result as follows. We observe first that
O ∈ L3,∞(R2), i.e.

sup
µ>0

µ3 mes {x ∈ R2; |O(x)| > µ} < +∞. (5.11)

So that, when 1 < q < 3
2

and using weak Young inequality (cf. [17], chap.
IX.4), we obtain:

‖O ∗ f‖
L

3q
3−2q ,∞

(R2)
≤ C‖O‖L3,∞(R2)‖f‖Lq,∞(R2). (5.12)

Now, let 1 < p < 3
2
. This last estimate shows that there exist p0 and p1 such

that 1 < p0 < p < p1 < 3
2

and such that the operator R : f 7−→ O ∗ f

is continuous from Lp0(R2) into L
3p0

3−2p0
,∞

(R2) and from Lp1(R2) into

L
3p1

3−2p1
,∞

(R2). The Marcinkiewicz theorem allows again to conclude that
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R : Lp(R2) −→ L
3p

3−2p (R2) is bounded.

ii) The same remark is true for ∇O which belongs to L
3
2
,∞(R2).

Theorem 5.1 and the Sobolev embedding yield the following result.

Theorem 5.3 Let f ∈ Lp(R2).

1) Assume that 1 < p < 3. Then, ∇ (O∗f) ∈ L
3p

3−p (R2) and satisfies Estimate
(5.3). Moreover,

i) if 1 < p < 2, then ∇ (O ∗ f) ∈ L
2p

2−p (R2) with

‖∇ (O ∗ f)‖
L

2p
2−p (R2)

≤ C‖f‖Lp(R2). (5.13)

ii) When p = 2, then ∇ (O ∗ f) ∈ Lr(R2), r ≥ 6 and the following estimate
holds:

‖∇ (O ∗ f)‖Lr(R2) ≤ C‖f‖Lp(R2). (5.14)

iii) Finally, if 2 < p < 3, then ∇ (O ∗ f) ∈ L∞(R2) and we have the
inequality:

‖∇ (O ∗ f)‖L∞(R2) ≤ C‖f‖Lp(R2). (5.15)

2) Assume that 1 < p < 3
2
. Then, besides (5.2), O∗ f ∈ L∞(R2) and satisfies

the estimate:
‖O ∗ f‖L∞(R2) ≤ C‖f‖Lp(R2). (5.16)

The proof of this theorem is the same that of Theorem 4.3. However, in the
case 2, we have 2p

2−p
> 2 which gives the result by using the Sobolev embedding

(2.9).
Using the Young inequality with the relations (3.5) and (3.7), we get the
following:

Proposition 5.4 Let f ∈ L1(R2). Then
1) O ∗ f ∈ Lp(R2) for any p > 3 and satisfies the estimate

‖O ∗ f‖Lp(R2) ≤ C‖f‖L1(R2), (5.17)

2) ∇ (O ∗ f) ∈ Lp(R2) for all p ∈ ]3
2
, 2[ and the following estimate holds

‖∇ (O ∗ f)‖Lp(R2) ≤ C‖f‖L1(R2). (5.18)

Proof : Since by (3.7) O ∈ L1
loc(R2) and ∇O ∈ L1

loc(R2), then ∇ (O ∗ f) =
(∇O) ∗ f . According to the Young inequality and the relation (3.5), this last
term belongs to Lp(R3) if 4

3
< p < 3

2
. With the same argument we get the case

1). ♦

Remark 5.5 Taking ”formally” p = 1 in Theorem 5.3, we find that
∇ (O ∗ f) ∈ Lq(R3) for any q ∈ ]3

2
, 2[. We find also O ∗ f ∈ L3(R2) and
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∇ (O ∗ f) ∈ L2(R2). The Sobolev embedding (2.8) gives then O ∗ f ∈ Lq(R2)
for any q > 3 and we notice that they are the same results obtained by
Theorem 5.4 by using the Young inequality.

In order to study the case when f is given in W−1,p
0 (R2), we use the L∞

weighted estimates obtained in [11] (Thms 3.5, 3.7 and 3.8) and we get an
estimates on the convolution of Ŏ with a function ϕ ∈ D(R2) as follows:

Lemma 5.6 For any ϕ ∈ D(R2) we have the estimates

|Ŏ ∗ ϕ(x)| ≤ Cϕ
1

|x| 12 (1 + |x|+ x1)
1
2

, (5.19)

| ∂

∂x1

(Ŏ ∗ ϕ)(x)| ≤ Cϕ
1

|x| 32 (1 + |x|+ x1)
1
2

, (5.20)

| ∂

∂x2

(Ŏ ∗ ϕ)(x)| ≤ Cϕ
1

|x|(1 + |x|+ x1)
, (5.21)

where Cϕ depends on the support of ϕ.

Remark 5.7 1) The behaviour on |x| of Ŏ ∗ϕ and its first derivatives is the
same that that of Ŏ but, the behaviour on 1 + s′ is a little bit different.
2) By Lemma 3.1 and this last estimates, we find that

∀q >
3

2
, Ŏ ∗ ϕ ∈ W 1,q

0 (R2). (5.22)

3) In (5.19)-(5.21), when ϕ tends to zero in D(R3), then Cϕ tends to zero in
R.

With the definition (4.25), when f is given in W−1,p
0 (R2), we have a similar

result to Theorem 4.9.

Theorem 5.8 Assume that 1 < p < 3 and let f ∈ W−1,p
0 (R2) satisfying the

compatibility condition

〈f, 1〉
W−1,p

0 (R2)×W 1,p′
0 (R2)

= 0, when 1 < p ≤ 2. (5.23)

Then, O ∗ f ∈ L
3p

3−p (R2) and ∇ (O ∗ f) ∈ Lp(R2) with the following estimate:

‖O ∗ f‖
L

3p
3−p (R2)

+ ‖∇ (O ∗ f)‖Lp(R2) ≤ C‖f‖W−1,p
0 (R2). (5.24)

Moreover,

i) if 1 < p < 2, then O ∗ f ∈ L
2p

2−p (R2) and satisfies the following inequality:

‖O ∗ f‖
L

2p
2−p (R2)

≤ C‖f‖W−1,p
0 (R2). (5.25)
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ii) If p = 2, then O ∗ f ∈ Lr(R2) for any r ≥ 6 and

‖O ∗ f‖Lr(R2) ≤ C‖f‖W−1,p
0 (R2). (5.26)

iii) If 2 < p < 3, then O ∗ f ∈ L∞(R2) and we have the estimate

‖O ∗ f‖L∞(R2) ≤ C‖f‖W−1,p
0 (R2). (5.27)

Proof : Because the proof is the same that that of Theorem 4.9, then we
give it briefly. Let f ∈ W−1,p

0 (R2) satisfying condition (5.23). As in three-
dimensional case, we get O ∗ f ∈ D′(R2) if 1 < p < 3. By Isomorphism (2.3)
and (5.1), we have

|〈O ∗ f, ϕ〉D′(R2)×D(R2)| ≤ ‖F‖Lp(R2)‖
∂

∂xj

(Ŏ ∗ ϕ)‖Lp′ (R2)

≤C‖f‖W−1,p
0 (R2)‖ϕ‖

L
3p

4p−3 (R2)
.

Note that 1 < p < 3 ⇐⇒ 1 < 3p
4p−3

< 3. Then, O ∗ f ∈ L
3p

3−p (R2) and

‖O ∗ f‖
L

3p
3−p (R2)

≤ C‖f‖W−1,p
0 (R2).

Moreover, by the Sobolev embedding, O ∗ f ∈ L
2p

2−p (R2) if 1 < p < 2, O ∗ f
belongs to Lr(R2) for all r ≥ 6 if p = 2 and belongs to L∞(R2) if 2 < p < 3.
We thus showed that if 1 < p < 3, the following operator is continuous:

R : W−1,p
0 (R2) ⊥ P[1− 2

p′ ]
−→ W 1,p

0 (R2) ∩ L
3p

3−p (R2),

f 7−→ O ∗ f.
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