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Introduction

The Oseen system is obtained by linearizing the Navier-Stokes equations around a nonzero constant vector u = u ∞ , where u ∞ = λe 1 is the velocity at infinity, and can be written as follow (see [START_REF] Oseen | Uber die Stokessesche Formel und Über eine Verwandte Aufgabe inder Hydrodynamik[END_REF], [START_REF] Oseen | Neuere Methoden und Ergebnisse in der Hydrodynamik[END_REF]):

-ν∆u + λ ∂u ∂x 1 + ∇π = f in R n , div u = g in R n , (1.1) 
where n ≥ 2. The data are, the external forces f , a function g, the positive real number λ and the viscosity of the fluid ν. The unknowns of this system are the velocity u and the pressure π. One of the first works devoted to these equations is due to Finn [START_REF] Finn | On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems[END_REF], [START_REF] Finn | Estimates at infinity for stationary solutions of the Navier-Stokes equations[END_REF]. Specifically, Finn studied (1.1) Oseen's equations in three and two dimensional exterior domains when (1 + |x|)f ∈ L 2 (R 3 ) and g = 0.

He proved that this system has a unique solution u such that (1 + |x|) -1 u ∈ L 2 (R 3 ). When (f , g) ∈ W m,p (R n ) × W m+1,p (R n ) with m ≥ 0, Galdi [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF] proved that Problem (1.1) has a solution (u, π) ∈ W m,p loc (R n ) × W m+1,p loc (R n ) and some results on the derivatives of u and π under conditions on the power p. Recently, Amrouche and Razafison [START_REF] Amrouche | Weighted Sobolev paces for a scalar model Oseen equation in R 3[END_REF] investigated this problem by working in weighted Sobolev spaces. Taking the divergence of the first equation of (1.1), we observe that the pressure satisfies the Poisson's equation (see for instance [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]):

∆π = divf + ν∆g -λ ∂g ∂x 1 in R n , (1.2) 
and the vector field u satisfies

-ν∆u + λ ∂u ∂x 1 = f -∇ π in R n . (1.3) 
Now observe that each component u j of the velocity satisfies -ν∆u j + λ ∂u j ∂x 1 = f j -∂π ∂x j in R n .

(1.4)

Hence, we see that the Oseen problem (1.1) can be reduced to the following scalar equation

-ν∆u + λ ∂u ∂x 1 = f in R n , (1.5) 
where f = f j -∂π ∂x j . Working in the L 2 spaces with anisotropic weights, Farwig [START_REF] Farwig | A variational approach in weighted Sobolev spaces to the operator -∆ + ∂/∂x 1 in exterior domains of R 3[END_REF] treated this equation in three dimensional exterior domain. The purpose of this work is the study of the potential of the scalar Oseen operator:

T : u -→ -∆u + ∂u ∂x 1 , (1.6) 
and more precisely the boundedness of the operators R :

f → O * f , R j : f → ∂ ∂x j (O * f ) and R j,k : f → ∂ 2 ∂x j ∂x k (O * f ), for f given in L p (R n ) or in W -1,p 0 (R n ).
The obtained estimates can be applied to the investigation of qualitative properties of solutions of Navier-Stokes equations with a non-zero constant velocity at infinity.

Notations and Functional Spaces

Throughout this paper, p is a real number in the interval ]1, +∞[ and p the conjugate exponent of p. A point in R n is denoted by x = (x 1 , .., x n ) and we set:

r = |x| = (x 2 1 + ... + x 2 n ) 1/2 , s = r -x 1 and s = r + x 1 .
For R > 0, B R denotes the open ball of radius R centered at the origin and B R = R 2 \B R . For any j ∈ Z, P j is the space of polynomials of degree lower than or equal to j. If j is a negative integer, we set by convention P j = 0. Given a Banach space B, with dual space B and a closed subspace X of B, we denote by B ⊥ X the subspace of B orthogonal to X:

B ⊥ X = {f ∈ B ; ∀v ∈ X, f, v = 0}.
We define the weighted Sobolev space

W 1,p 0 (R n ) = u ∈ D (R n ); ω -1 u ∈ L p (R n ); ∇ u ∈ L p (R n ) , where, ω = 1 + r if p = n and ω = (1 + r)ln (2 + r) if p = n.
Equipped with it's natural norm:

u W 1,p 0 (R n ) = ω -1 u p L p (R n ) + ∇ u p L p (R n ) 1 p ,
it is a reflexive Banach space. We denote its semi-norm by:

| u | W 1,p 0 (R n ) = ∇ u L p (R n ) .
For more details on these spaces, see [START_REF] Kufner | Weighted Sobolev spaces[END_REF], [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace Rend[END_REF] and [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]. However, we recall some properties and results that we use in this paper. The space W 1,p 0 (R n ) contains constants when p ≥ n and no polynomials otherwise. The space of smooth functions with compact support D(R n ) is dense in W 1,p 0 (R n ). Then, its dual space denoted by W -1,p 0 (R n ) is a space of distributions. We recall that there exists a constant C such that (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]):

∀u ∈ W 1,p 0 (R n ), inf k∈P [1-n p ] u + k W 1,p 0 (R n ) ≤ C ∇ u L p (R n ) . (2.1)
Which implies that, in particular when p < n, the full norm on W 1,p 0 (R n ) is equivalent to the semi norm. Inequality (2.1) permits to prove that the following gradient and divergence operators are isomorphisms (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]):

∇ : W 1,p 0 (R n )/P [1-n p ] -→ L p (R n ) ⊥ H p , (2.2) div : L p (R n )/H p -→ W 1,p 0 (R n ) ⊥ P [1-n p ] , (2.3) 
where, H p = {v ∈ L p (R n ), divv = 0}. Inequality (2.1) also allows to have the important following result (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] and [START_REF] Amrouche | Weighted Sobolev paces for a scalar model Oseen equation in R 3[END_REF] for the expression of k(u) which is given in the case n = 3):

Proposition 2.1 Let u a distribution such that ∇ u ∈ L p (R n ). i) If 1 < p < n
, there exists a unique constant k(u) ∈ R defined by:

k(u) = -lim |x|→∞ 1 ω n S n-1 u(σ|x|) dσ, (2.4) 
where ω n denotes the area of the sphere

S n-1 , such that u + k(u) ∈ W 1,p 0 (R n ), and u + k(u) W 1,p 0 (R n ) ≤ C ∇ u L p (R n ) . (2.5) ii) If p ≥ n, then u ∈ W 1,p 0 (R n ) and inf k∈R u + k W 1,p 0 (R n ) ≤ C ∇ u L p (R n ) . (2.6)
We recall the Sobolev embeddings:

W 1,p 0 (R n ) → L p * (R n ) if 1 < p < n, with 1 p * = 1 p - 1 n , (2.7) 
W 1,n 0 (R n ) → V M O(R n ), (2.8) 
where,

V M O(R n ) = D(R n ) . BM O .
The space BM O is defined as follows: A locally integrable function

f belongs to BM O if f BM O =: sup Q 1 |Q| Q |f (x) -f Q | dx < ∞,
where, the supremum is taken on all the cubes and

f Q = 1 |Q| Q f (x) dx is the average of f on Q. Note that if ∇ u ∈ L p (R n ), with p > n and u ∈ L r (R n ) for some r ≥ 1 then u ∈ L r (R n ) ∩ L ∞ (R n ), (2.9) 
and if p = n, then u belongs to L q (R n ) for any q ≥ r.

We introduce also the following space (see [START_REF] Amrouche | Weighted Sobolev paces for a scalar model Oseen equation in R 3[END_REF]):

W 1,p 0 (R n ) = {v ∈ W 1,p 0 (R n ); ∂u ∂x 1 ∈ W -1,p 0 (R n )},
which is a reflexive Banach space for the norm:

v W 1,p 0 (R n ) = v W 1,p 0 (R n ) + ∂u ∂x 1 W -1,p 0 (R n ) .
3 The fundamental solution.

Following the idea of [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], we get the following fundamental solution O: i) For n = 3,

O(x) = 1 4πr e -s 2 . (3.1)
ii) For n = 2, the fundamental solution has, in a neighbourhood of the origin, the following behaviour:

O(x) = - 1 2π e x 1 2 ln 1 r + 2ln 2 -γ + σ(r) , (3.2) 
where σ satisfies d k σ dr k = or -k ). When r is sufficiently large, we have:

O(x) = - 1 2 √ πr e -s 2 1 - 1 4r + O(r -2 ) .
Using the inequality e -s/2 ≤ C b (1 + s) b , which holds for any real number b, we obtain the following anisotropic estimates for r sufficiently large:

|O(x)| ≤ C r -1 (1 + s) -2 , | ∂O ∂x 1 (x)| ≤ C r -2 (1 + s) -3 2 , | ∂O ∂x j (x)| ≤ C r -3 2 (1 + s) -3 2 (1 + 2 r ), j = 2, 3, if n = 3, (3.3) 
|O(x)| ≤ C r -1 2 (1 + s) -1 , | ∂O ∂x 1 (x)| ≤ C r -3 2 (1 + s) -1 , | ∂O ∂x 2 (x)| ≤ C r -1 (1 + s) -1 , if n = 2.
(3.4)

In order to study the integrability properties of the fundamental solution and its derivatives, we need to estimate the following integral (for the proof, see [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF]):

α, β ∈ R, I α,β = |x|>µ r -α (1 + s) -β dx, with µ > 0.
Lemma 3.1 Assume that n -α -min( n-1 2 , β) < 0. Then, there exists a constant C > 0 such that, for all µ > 1, we have

I α,β ≤ Cµ n-α-min( n-1 2 ,β) , if β = n -1 2 , I α,β ≤ Cµ n+1 2 -α ln r, if β = n -1 2 . ∀p > 3, O ∈ L p (R 2 ) and ∀p ∈ ] 3 2 , 2[, ∇ O ∈ L p (R 2 ), (3.5) ∀p ∈ ]2, 3[, O ∈ L p (R 3 ) and ∀p ∈ ] 4 3 , 3 2 [, ∇ O ∈ L p (R 3 ). (3.6)
Note also that

O ∈ L 1 loc (R n ) and ∇ O ∈ L 1 loc (R n ),
for n = 2, 3.

(3.7)

Study of the kernel

Using the Fourier's transform, the kernel of the operator T , when it is defined on the tempered distributions S (R n ), is given by: Lemma 3.2 Let f ∈ S (R n ) be a tempered distribution and let u ∈ S (R n ) be a solution of (1.6). Then u is uniquely determined up to polynomials of S k , where:

S k = {q ∈ P k ; -∆q + ∂q ∂x 1 = 0}. (3.8)
Let us notice that S 0 = R and S 1 is the space of polynomials of degree lower than or equal one and not depending on x 1 .

Scalar Oseen Potential in three dimensional

This section is devoted to the L p estimates of convolutions with Oseen kernels.

Theorem 4.1 Let f ∈ L p (R 3 ). Then ∂ 2 ∂x j ∂x k (O * f ) ∈ L p (R 3 ) and ∂ ∂x 1 (O * f ) ∈ L p (R 3
). Moreover, the following estimate holds

∂ 2 ∂x j ∂x k (O * f ) L p (R 3 ) + ∂ ∂x 1 (O * f ) L p (R 3 ) ≤ C f L p (R 3 ) . (4.1) Moreover, 1) if 1 < p < 2, then O * f ∈ L 2p 2-p (R 3 ) and satisfies O * f L 2p 2-p (R 3 ) ≤ C f L p (R 3 ) . (4.2) 2) If 1 < p < 4, then ∂ ∂x j (O * f ) ∈ L 4p 4-p (R 3
) and verifies the estimate

∂ ∂x j (O * f ) L 4p 4-p (R 3 ) ≤ C f L p (R 3 ) . ( 4 

.3)

Proof : By Fourier's transform, from Equation (1.5) we obtain:

F( ∂ 2 ∂x j ∂x k O * f ) = -ξ j ξ k ξ 2 + iξ 1 F(f ). Now, the function ξ → m(ξ) = -ξ j ξ k ξ 2 +iξ 1 is of class C 2 in R 3 \ {0} and satisfies for every α = (α 1 , α 2 , α 3 ) ∈ N 3 | ∂ |α| m ∂ξ α (ξ)| ≤ C|ξ| -α ,
where, |α| = α 1 + α 2 + α 3 and C is a constant not depending on ξ. Then, the linear operator

A : f → ∂ 2 ∂x j ∂x k (O * f )(x) = R 2 e ixξ -ξ j ξ k ξ 2 + iξ 1 Ff (ξ) dξ is continuous from L p (R 3 ) into L p (R 3 ) (see E. Stein [18], Thm 3.2, p.96). So, ∂ 2 ∂x j ∂x k (O * f ) ∈ L p (R 3
) and satisfies

∂ 2 ∂x j ∂x k (O * f ) L p (R 3 ) ≤ C f L p (R 3 ) .
We have also

F( ∂ ∂x 1 (O * f )) = iξ 1 ξ 2 + iξ 1 F(f )
and since the function ξ → m 1 (ξ) = iξ 1 ξ 2 +iξ 1 admits the same properties that those of m(ξ), then ∂ ∂x 1 (O * f ) ∈ L p (R 3 ) and satisfies the estimate

∂ ∂x 1 (O * f ) L p (R 3 ) ≤ C f L p (R 3 ) ,
which proves the first part of the proposition and Estimate (4.1). Next, to prove inequalities (4.2) and (4.3), we adapt the technique used by Stein in [START_REF] Stein | Singulars Integrals and Differentiability Properties of Functions[END_REF] which studied the convolution of f ∈ L p (R n ) with the kernel |x| α-n . Let us decompose the function K as K 1 + K ∞ where,

K 1 (x) = K(x) if |x| ≤ µ and K 1 (x) = 0 if |x| > µ, K ∞ (x) = 0 if |x| ≤ µ and K ∞ (x) = K(x) if |x| > µ.
(4.4)

The function K will denote successively O and ∂O ∂x j and µ is a fixed positive constant which need not be specified at this instance. Next, we shall show that the mapping f → K * f is of weak-type (p, q), with q = 2p 2-p when K = O and q = 4p 4-p when K = ∂O ∂x j , in the sense that:

for all λ > 0, mes {x ; |(K * f )(x)| > λ} ≤ C p,q f L p (R 3 ) λ q . (4.5) Since K * f = K 1 * f + K ∞ * f , we have now: mes {x ; |K * f | > 2λ} ≤ mes {x ; |K 1 * f | > λ}+mes {x ; |K ∞ * f | > λ}. (4.6)
Note that it is enough to prove inequality (4.5) with f L p (R 3 ) = 1. We have also:

mes {x ; |(K 1 * f )(x)| > λ} ≤ K 1 * f p L p (R 3 ) λ p ≤ K 1 p L 1 (R 3 ) λ p , (4.7) 
and

K ∞ * f L ∞ (R 3 ) ≤ K ∞ L p (R 3 ) . (4.8) 1) Estimate (4.2). According to (3.3), O 1 ∈ L 1 (R 3 ) and by (3.6), O ∞ ∈ L p (R 3 ) for 1 ≤ p < 2.
Then, the integral O 1 * f converges almost everywhere and O ∞ * f converges everywhere. So, O * f converges almost everywhere. But

∀µ > 0, O 1 L 1 (R 3 ) ≤ Cµ. (4.9) 
Next, by using (3.3), we have for any p > 2: 

∀µ > 0, O ∞ L p (R 3 ) ≤ Cµ
mes {x ∈ R 3 ; |(O * f )(x)| > λ} ≤ C p 1 λ 2p 2-p . (4.11) So, for 1 ≤ p < 2, the operator R : f → O * f is of weak-type (p, 2p 2-p ). 2) Estimate (4.3). Here we take K = ∂O ∂x j . First, according to (4.1), ∂ ∂x 1 (O * f ) ∈ W 1,p (R 3 ) then, by the Sobolev embedding, we have in particular, ∂ ∂x 1 (O * f ) ∈ L 4p 4-p (R 3
). It remains to prove Estimate (4.3) for j = 2, 3. Firstly we have:

∂O ∂x j L 1 (R 3 ) ≤ cµ, if µ ≤ 1 and ∂O ∂x j L 1 (R 3 ) ≤ cµ 1 2 , if µ > 1.
8 Furthermore, we have for p > 4 3 :

|x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p , if µ ≤ 1, |x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p 2 , if µ > 1.
In summary we have:

a) If 0 < µ < 1, |x|<µ | ∂O ∂x j (x)| dx ≤ cµ and |x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p , b) if µ ≥ 1, |x|<µ | ∂O ∂x j (x)| dx ≤ cµ 1 2 and |x|>µ | ∂O ∂x j (x)| p dx ≤ Cµ 4-3p 2 
.

Setting λ = Cµ 4-3p p in the case a) or λ = Cµ 4-3p 2p
in the case b), we get in both cases:

mes {x ∈ R 3 ; |K * f (x)| > λ} ≤ C p 1 λ 4p 4-p . (4.12)
Thus, for 1 ≤ p < 4, the operator

R j : f → ∂ ∂x j (O * f ) is of weak-type (p, 4p 4 
-p ). Applying now the Marcinkiewicz interpolation's theorem, we deduce that, for 1 < p < 2, the linear operator R is continuous from

L p (R 3 ) into L 2p 2-p (R 3 ) and for 1 < p < 4, R j is continuous from L p (R 3 ) into L 4p 4-p (R 3 ). ♦ Remark 4.
2 Another proof of Theorem 4.1 consists in using the Fourier's approach. Let (f j ) j∈N ⊂ D(R 3 ) a sequence which converges to f in L p (R 3 ).

Then the sequence (u j ) j∈N given by:

u j = F -1 (m 0 (ξ)Ff j ), m 0 (ξ) = (|ξ| 2 + iξ 1 ) -1 , (4.13) 
satisfies the equation T u j = f j , where the operator T is defined by (1.6). Let us recall now the: Lizorkin Theorem. Let D = {ξ ∈ R 3 ; |ξ| > 0} and m : D -→ C, a continuous function such that its derivatives

∂ k m ∂ξ k 1 1 ∂ξ k 2 2 ∂ξ k 3 3
are continuous and verify

|ξ 1 | k 1 +β |ξ 2 | k 2 +β |ξ 3 | k 3 +β ∂ k m ∂ξ k 1 1 ∂ξ k 2 2 ∂ξ k 3 3 ≤ M, (4.14) 
where

k 1 , k 2 , k 3 ∈ {0, 1}, k = k 1 + k 2 + k 3 and 0 ≤ β < 1.
Then, the operator

A : g -→ F -1 (m 0 Fg), is continuous from L p (R 3 ) into L r (R 3 ) with 1 r = 1 p -β.
Applying this continuity property with f j ∈ L p (R 3 ) and β = 1 2 , we show that

(u j ) is bounded in L 2p 2-p (R 3 ) if 1 < p < 2.
So, this sequence admits a subsequence still denoted (u j ) which converges weakly to u and satisfying T u = f . For the derivative of u j with respect to x 1 , the corresponding multiplier is on the form m(ξ) = iξ 1 (|ξ| 2 + iξ 1 ) -1 . So that (4.14) is satisfied for β = 0 and then ∂u ∂x 1 ∈ L p (R 3 ). The same property takes place for the second derivatives with m(ξ) = ξ k ξ l (|ξ| 2 + iξ 1 ) -1 . Finally, we verify with β = 1 4 , that the first derivative of (u j ) with respect to x k is bounded in L 4p 4-p (R 3 ), which implies

∂u ∂x k ∈ L 4p 4-p (R 3 ). ♦ Theorem 4.1 states that ∂ 2 ∂x j ∂x k (O * f ) ∈ L p (R 3
) and under conditions on p,

∂ ∂x j (O * f ) ∈ L 4p 4-p (R 3 ) and O * f ∈ L 2p 2-p (R 3
). Now, using these results and the Sobolev embeddings (2.7)-(2.9), we have the following:

Theorem 4.3 Let f ∈ L p (R 3 ). 1) Assume that 1 < p < 4. Then ∇ (O * f ) ∈ L 4p 4-p (R 3 ) with the estimate (4.3). Moreover, i) if 1 < p < 3, then ∇ (O * f ) ∈ L 3p 3-p (R 3 ) with the estimate ∇ (O * f ) L 3p 3-p (R 3 ) ≤ C f L p (R 3 ) . (4.15) 
ii)

If p = 3, then ∇ (O * f ) ∈ L r (R 3
) for any r ≥ 12 and satisfies

∇ (O * f ) L r (R 3 ) ≤ C f L p (R 3 ) . (4.16) iii) If 3 < p < 4, then ∇ (O * f ) ∈ L ∞ (R 3
) and verifies the estimate

∇ (O * f ) L ∞ (R 3 ) ≤ C f L p (R 3 ) . (4.17) 2) Assume that 1 < p < 2. Then O * f ∈ L 2p 2-p (R 3 ) with the estimate (4.2). Moreover, i) if 1 < p < 3 2 , then O * f ∈ L 3p 3-2p (R 3 ) and satisfies O * f L 3p 3-2p (R 3 ) ≤ C f L p (R 3 ) . (4.18) ii) If p = 3 2 , then O * f ∈ L r (R 3 ) for any r ≥ 6 and O * f L r (R 3 ) ≤ C f L p (R 3 ) . (4.19) iii) If 3 2 < p < 2, then O * f ∈ L ∞ (R 3
) and the following estimate holds

O * f L ∞ (R 3 ) ≤ C f L p (R 3 ) . ( 4 

.20)

Proof : 1) When 1 < p < 4, the previous theorem asserts that

∂ ∂x j (O * f ) ∈ L 4p 4-p (R 3 ) and ∂ 2 ∂x j ∂x k (O * f ) ∈ L p (R 3 ). If 1 < p < 3, according to Proposition 2.1, there exists a unique constant k(f ) ∈ R such that v = ∂ ∂x j (O * f ) + k(f ) ∈ W 1,p 0 (R n ). Then k(f ) = v -∂ ∂x j (O * f ) ∈ W 1,p 0 (R n ) + L 4p 4-p (R 3
). As none of both spaces contains constants then k(f ) = 0, which implies that ∂ ∂x j (O * f ) ∈ W 1,p 0 (R n ). Now, the Sobolev embedding (2.7) yields ∂ ∂x j (O * f ) ∈ L 

∂ ∂x j (O * f ) ∈ W 1,p 0 (R n ). The Sobolev embedding (2.8) gives ∂ ∂x j (O * f ) ∈ V M O(R 3 ) if p = 3.
Applying now the interpolation theorem between BM O and L p (see [START_REF] Hanks | Interpolation by the Real Method between BM O, L α (0 < α < ∞) and H α (0 < α < ∞)[END_REF]), we get ∂ ∂x j (O * f ) ∈ L r (R 3 ) for any r ≥ 12. By Sobolev embedding (2.9), when 3 < p < 4, we have

∂ ∂x j (O * f ) ∈ L ∞ (R 3
), ) and the case 1) is finished.

2) By the previous theorem, when 1 < p < 2, we have

O * f ∈ L 2p 2-p (R 3 ) and ∇ (O * f ) ∈ L 3p 3-p (R 3 ). Now by Sobolev embedding (2.7), O * f ∈ L p * (R 3 ), where 1 p * = 3-p 3p -1 3 = 1 p -2 3 if 1 < p < 3 2
, which gives (4.15). For the remainder of the proof, we use the same arguments that in the previous case with

O * f instead of ∂ ∂x j (O * f ) and ∂ ∂x j (O * f ) instead of ∂ 2 ∂x j ∂x k (O * f ). ♦ Remark 4.4 i) We can also find this result by showing that O ∈ L 2,∞ (R 3 ), i.e. sup µ>0 µ 2 mes {x ∈ R 3 ; O(x) > µ} < +∞. (4.21) 
So that, for any 1 < q < 2, according to weak Young inequality (cf. [START_REF] Reed | Fourier Analysis Self-Adjointness t[END_REF], chap. IX.4), we obtain:

O * f L 2q 2-q ,∞ (R 3 ) ≤ C O L 2,∞ (R 3 ) f L q (R 3 ) . ( 4 

.22)

Let now p ∈ ]1, 2[. There exist p 0 and p 1 such that 1 < p 0 < p < p 1 < 2 and such that the operator R :

f -→ O * f is continuous from L p 0 (R 3 ) into L 2p 0 2-p 0 ,∞ (R 3 ) and from L p 1 (R 3 ) into L 2p 1 2-p 1
,∞ (R 3 ). The Marcinkiewicz theorem allows again to conclude that the operator R is continuous from

L p (R 3 ) into L 2p 2-p (R 3 )
ii) The same remark is true for ∇ O which belongs to L 

O * f L p (R 3 ) ≤ C f L 1 (R 3 ) , (4.23) 2) ∇ (O * f ) ∈ L p (R 3 ) for all p ∈ ] 4 3 , 3 2
[ and the following estimate holds

∇ (O * f ) L p (R 3 ) ≤ C f L 1 (R 3 ) . (4.24)
Remark 4.6 Taking "formally" p = 1 in Theorem 4.3, we find that O * f ∈ L q (R 3 ) for any q ∈ ]2, 3[ and ∇ (O * f ) ∈ L q (R 3 ) for any q ∈ ] 4 3 , 3 2 [. We notice that they are the same results obtained in Theorem 4.5 by using the Young inequality. Now, we are going to study the Oseen potential O * f when f is given in W -1,p 0 (R 3 ). For that purpose, we give the following definition of the convolution of f with the fundamental solution O:

∀ϕ ∈ D(R 3 ), O * f, ϕ =: f, Ȏ * ϕ W -1,p 0 (R 3 )×W 1,p 0 (R 3 ) , (4.25) 
where Ȏ(x) = O(-x). With the L ∞ weighted estimates obtained in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] (Thms 3.1 and 3.2), we get an estimate on the convolution of Ȏ with a function ϕ ∈ D(R 3 ) which we shall use afterward as follows Lemma 4.7 For any ϕ ∈ D(R 3 ) we have the estimates

| Ȏ * ϕ(x)| ≤ C ϕ 1 |x|(1 + |x| + x 1 ) , (4.26) 
∇ ( Ȏ * ϕ)(x)| ≤ C ϕ 1 |x| 3 2 (1 + |x| + x 1 ) 3 2 
, (4.27)

where C ϕ depends on the support of ϕ.

Remark 4.8 1)

The behaviour on |x| of Ȏ * ϕ and its first derivatives is the same that of Ȏ, but the behaviour on 1 + s is a little bit different (see (3.3).

2) By Lemma 3.1 and estimates (4.28-(4.29) we find that

∀q > 4 3 , Ȏ * ϕ ∈ W 1,q 0 (R 3 ). (4.28)
3) In (4.26) and (4.27), when ϕ tends to zero in D(R 3 ), then C ϕ tends to zero in R.

The next theorem studies the continuity of the operators R and R j when f belongs to W -1,p 0 (R 3 ).

Theorem 4.9 Assume that 1 < p < 4 and let f ∈ W -1,p 0 (R 3 ) satisfying the compatibility condition

f, 1 W -1,p 0 (R 3 )×W 1,p 0 (R 3 ) = 0, when 1 < p ≤ 3 2 . (4.29) Then O * f ∈ L 4p 4-p (R 3 ) and ∇ (O * f ) ∈ L p (R 3 ) with the following estimate O * f L 4p 4-p (R 3 ) + ∇ (O * f ) L p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (4.30) Moreover, i) if 1 < p < 3, then O * f ∈ L 3p 3-p (R 3
) and the following estimate holds

O * f L 3p 3-p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (4.31) ii) If p = 3, then O * f ∈ L r (R 3
) for any r ≥ 12 and satisfies

O * f L r (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (4.32) iii) If 3 < p < 4, then O * f ∈ L ∞ (R 3
) and we have the estimate

O * f L ∞ (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (4.33) 
Proof : Let 1 < p < 4. By Lemma 4.7 and Remark 4.

8 point 3), if ϕ → 0 in D(R 3 ), then C ϕ → 0 where C ϕ is defined by (4.26). Thus, Ȏ * ϕ → 0 in W 1,p 0 (R 3 ) for all p ∈ ]1, 4[, what implies that O * f ∈ D (R 3 ). Next, by Isomorphism (2.3), there exists F ∈ L p (R 3 ) such that f = divF and F L p (R 3 ) ≤ C f W -1,p 0 (R 3 ) . (4.34) 
According to (4.1), we have for any ϕ ∈ D(R 3 ),

| ∂ ∂x j (O * f ), ϕ D (R 3 )×D(R 3 ) | = | F , ∇ ∂ ∂x j ( Ȏ * ϕ) L p (R 3 )×L p (R 3 ) | ≤ C f W -1,p 0 (R 3 ) ϕ L p (R 3 ) .
Then we deduce the second part of (4.30). We also have for all ϕ ∈ D(R 3 ):

O * f, ϕ D (R 3 )×D(R 3 ) = -F , ∇ ( Ȏ * ϕ) L p (R 3 )×L p (R 3 ) ,
and by (4.3):

| O * f, ϕ D (R 3 )×D(R 3 ) | ≤ C f W -1,p 0 (R 3 ) ϕ L 4p 5p-4 (R 3 )
. Note that

1 < p < 4 ⇐⇒ 1 < 4p 5p-4 < 4.
Consequently, we have the first part of (4.30). Moreover, by Sobolev embeddings (2.7)-(2.9

), O * f ∈ L 3p 3-p (R 3 ) if 1 < p < 3, O * f belongs to L r (R 2
) for all r ≥ 12 if p = 3 and belongs to L ∞ (R 2 ) if 3 < p < 4. Thus, we showed that if 1 < p < 4, the operators R and R j are continuous. ♦ Corollary 4.10 Assume that 1 < p < 4. If u is a distribution such that ∇ u ∈ L p (R 3 ) and ∂u ∂x 1 ∈ W -1,p 0 (R 3 ), then there exists a unique constant k(u)

such that u + k(u) ∈ L 4p 4-p (R 3 ) and u + k(u) L 4p 4-p (R 3 ) ≤ C( ∇ u L p (R 3 ) + ∂u ∂x 1 W -1,p 0 (R 3 ) ). (4.35) Moreover, if 1 < p < 3, then u + k(u) ∈ L 3p 3-p (R 3 ),
where k(u) is defined by:

k(u) = -lim |x|→∞ 1 ω 3 S 2 u(σ|x|) dσ, (4.36) 
where, ω 3 denotes the area of the sphere S 2 and u tends to the constant -k(u) as x tends to infinity in the following sense:

lim |x|→∞ S 2 |u(σ|x|) + k(u)| dσ = 0. (4.37) If p = 3, then u + k(u) belongs to L r (R 3 ) for any r ≥ 12. If 3 < p < 4, then u belongs to L ∞ (R 3 ), is continuous in R 3 and tends to -k(u) pointwise. Proof : Setting g = -∆u + ∂u ∂x 1 ∈ W -1,p 0 (R 3 ). Since P [1-3
p ] contains at most constants and according to the density of D(R 3 ) in W 1,p 0 (R 3 ) (see [START_REF] Amrouche | Weighted Sobolev paces for a scalar model Oseen equation in R 3[END_REF]), then g satisfies the compatibility condition (4.29). By the previous theorem, there

exists a unique v = O * g ∈ L 4p 4-p (R 3 ) such that ∇ v ∈ L p (R 3 ) and ∂v ∂x 1 ∈ L p (R 3 ), satisfying T (u -v) = 0,
where T is the Oseen operator, with the estimate:

v L 4p 4-p (R 3 ) ≤ C( ∇ u L p (R 3 ) + ∂u ∂x 1 W -1,p 0 (R 3 ) ). ( 4 

.38)

Setting w = u -v, we have for all i = 1, 2, 3, ∂w ∂x i ∈ L p (R 3 ) and satisfies T ( ∂w ∂x i ) = 0. We deduce then by Lemma 3.2 that ∇ u = ∇ v and consequently there exists a unique constant k(u), defined by (4.36), such that u + k(u) = v. The last properties are consequence of (2.8) and (2.9). ♦ Remark 4.11 Let u ∈ D (R 3 ) such that ∇ u ∈ L p (R 3 ). i) When 1 < p < 3, according to Proposition 2.1, we know that there exists a unique constant k(u) such that u + k(u) ∈ L 3p 3-p (R 3 ). Here, the fact that in addition ∂u ∂x

1 ∈ W -1,p 0 (R 3 ) we have moreover u + k(u) ∈ L 4p 4-p (R 2 ), with 4p 
4-p < 3p 3-p . ii) When 3 ≤ p < 4, by Proposition 2.1, for any constant k, u + k belongs only to W 1,p 0 (R 3 ) but no to the space L r (R 3 ). But, if moreover ∂u ∂x 1 ∈ W -1,p 0 (R 3 ) then, u+k(u) ∈ L 4p 4-p (R 3 ) for some unique constant k(u). Moreover u+k(u) ∈ L r (R 3 ) for any r ≥ 4p 4-p and u ∈ L ∞ (R 3 ) if p > 3.

5 Scalar Oseen potential in two dimensional.

In this section we study also the continuity of the operators R, R j and R j,k when f is given in L p (R 2 ) or in W -1,p 0 (R 2 ). We begin by the case where f belongs to L p (R 2 ).

Theorem 5.1 Let f ∈ L p (R 2 ). Then ∂ 2 ∂x 1 ∂x 2 (O * f ) ∈ L p (R 2 ), ∂ ∂x 1 (O * f ) ∈ L p (R 2
) and satisfy the estimate

∂ 2 ∂x 1 ∂x 2 (O * f ) L p (R 2 ) + ∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) .
(5.1)

Moreover, 1) if 1 < p < 3 2 , then O * f ∈ L 3p 3-2p (R 2 ) and satisfies O * f L 3p 3-2p (R 2 ) ≤ C f L p (R 2 ) . (5.2) 2) If 1 < p < 3, then ∂ ∂x j (O * f ) ∈ L 3p 3-p (R 2
) and verifies the estimate

∂ ∂x j (O * f ) L 3p 3-p (R 2 ) ≤ C f L p (R 2 ) . (5.3) 
Proof : As in three-dimensional case, since the operator

A : f → ∂ 2 ∂x 1 ∂x 2 (O * f )(x) = R 2 e ixξ -ξ 1 ξ 2 ξ 2 + iξ 1 f (ξ) dξ is continuous from L p (R 2 ) into L p (R 2 ), we get ∂ 2 ∂x 1 ∂x 2 (O * f ) ∈ L p (R 2 ). We have also ∂ ∂x 1 (O * f ) ∈ L p (R 2
) and the estimate:

∂ 2 ∂x 1 ∂x 2 (O * f ) L p (R 2 ) + ∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) , (5.4) 
which proves the first part of theorem and Estimate (5.1). Now, as in the three-dimensional case, we will show that the operators R :

f → O * f and R j : f → ∂ ∂x j (O * f ) are weak-type (p, 3p 3-2p ) if 1 ≤ p < 3 2
and weak-type (p, 3p 3-p ) if 1 ≤ p < 3 respectively. Using the decomposition (4.4), according to (3.7) and Estimate (3.3), the integral K * f = K 1 * f + K ∞ * f converges almost everywhere, where K denotes O and ∂O ∂x j respectively. 1) Estimate (5.2). We observe that:

∀µ > 0, O 1 L 1 (R 2 ) ≤ Cµ, (5.5) 
and for all p > 3:

∀µ > 0, O ∞ p ≤ Cµ 3-p 2p . (5.6) 
Setting λ = Cµ

3-p 2p

or equivalently µ = C λ 2p 3-p = C λ 2p 2p-3 , we get from this last inequality that O ∞ * f L ∞ (R 2 ) < λ. Then by Estimate (4.8), we have mes {x ∈ R 2 ; |O ∞ * f (x)| > λ} = 0. So, for any 1 < p < 3 2 , we have from (4.6) and (4.7):

mes {x ∈ R 2 ; |O * f (x)| > 2λ} ≤ C µ p λ p ≤ C 1 λ 3p 3-2p , (5.7) 
which proves that the operator R is of weak type (p, 3p 3-2p ). 2) Estimate (5.3). According to (5.1) and the Sobolev embedding, we get that ∂ ∂x 1 (O * f ) belongs in particular to L 3p 3-p (R 2 ). It remains then to show (5.3) for i = 2. As previously, we have:

∀µ > 0, ∂O ∂x 2 L 1 (R 2 ) ≤ Cµ 1 2 , (5.8) 
and for any p >

3 2 , ∂O ∂x 2 L p (R 2 ) ≤ Cµ 3-2p p .
(5.9)

We have also, for 1 < p < 3 and any λ > 0:

mes {x ∈ R 2 ; | ∂ ∂x 2 (O * f )(x)| > 2λ} ≤ C 1 λ 3p 3-p . (5.10) 
Thus, the operator R 2 is of weak-type (p, 3p 3-p ). Now, from inequalities (5.7), (5.10) and by Marcinkiewicz interpolation's Theorem, the operator R :

f → O * f is continuous from L p (R 2 ) into L 3p 3-2p (R 2 ) and R 2 : f → ∂ ∂x 2 (O * f ) is continuous from L p (R 2 ) into L 3p 3-p (R 2 ). ♦ Remark 5.2 i)
We can also prove this result as follows. We observe first that

O ∈ L 3,∞ (R 2 ), i.e. sup µ>0 µ 3 mes {x ∈ R 2 ; |O(x)| > µ} < +∞. ( 5.11) 
So that, when 1 < q < 3 2 and using weak Young inequality (cf. [START_REF] Reed | Fourier Analysis Self-Adjointness t[END_REF], chap. IX.4), we obtain:

O * f L 3q 3-2q ,∞ (R 2 ) ≤ C O L 3,∞ (R 2 ) f L q,∞ (R 2 ) .
(5.12)

Now, let 1 < p < 3 2 . This last estimate shows that there exist p 0 and p 1 such that 1 < p 0 < p < p 1 < 3 2 and such that the operator R :

f -→ O * f is continuous from L p 0 (R 2 ) into L 3p 0 3-2p 0 ,∞ (R 2 ) and from L p 1 (R 2 ) into L 3p 1 3-2p 1
,∞ (R 2 ). The Marcinkiewicz theorem allows again to conclude that

∇ (O * f ) ∈ L 2 (R 2
). The Sobolev embedding (2.8) gives then O * f ∈ L q (R 2 ) for any q > 3 and we notice that they are the same results obtained by Theorem 5.4 by using the Young inequality.

In order to study the case when f is given in W -1,p 0 (R 2 ), we use the L ∞ weighted estimates obtained in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] (Thms 3.5, 3.7 and 3.8) and we get an estimates on the convolution of Ȏ with a function ϕ ∈ D(R 2 ) as follows: where C ϕ depends on the support of ϕ.

Remark 5.7 1) The behaviour on |x| of Ȏ * ϕ and its first derivatives is the same that that of Ȏ but, the behaviour on 1 + s is a little bit different.

2) By Lemma 3.1 and this last estimates, we find that ∀q > 3 2 , Ȏ * ϕ ∈ W 1,q 0 (R 2 ).

(5.22)

3) In (5.19)-(5.21), when ϕ tends to zero in D(R 3 ), then C ϕ tends to zero in R.

With the definition (4.25), when f is given in W -1,p 0 (R 2 ), we have a similar result to Theorem 4.9. (5.27)

Proof : Because the proof is the same that that of Theorem 4.9, then we give it briefly. Let f ∈ W -1,p 0 (R 2 ) satisfying condition (5.23). As in threedimensional case, we get O * f ∈ D (R 2 ) if 1 < p < 3. By Isomorphism (2.3) and (5.1), we have

| O * f, ϕ D (R 2 )×D(R 2 ) | ≤ F L p (R 2 ) ∂ ∂x j ( Ȏ * ϕ) L p (R 2 ) ≤ C f W -1,p 0 (R 2 ) ϕ L 3p 4p-3 (R 2 )
.

Note that 1 < p < 3 ⇐⇒ 1 < 3p 4p-3 < 3. Then, O * f ∈ L 

  Choosing now λ = Cµ 2-p p or equivalently µ = C λ p p-2 . Then from (4.10) and (4.8) we have O ∞ * f L ∞ (R 3 ) < λ and so mes {x ; |O ∞ * f | > λ} = 0. Finally, for 1 ≤ p < 2, we get from inequalities (4.9), (4.6) and (4.7):

3p 3 -

 3 p (R 3 ) and estimate(4.15). If p ≥ 3, also by the previous theorem and Proposition 2.1, we have

4 3 ,Proposition 4 . 5

 345 ∞ (R 3 ). ♦ Using the Young inequality with the relations (3.6) and (3.7), we get the following result: Let f ∈ L 1 (R 3 ). Then 1) O * f ∈ L p (R 3 ) for any p ∈ ]2, 3[ and satisfies the estimate

Lemma 5 . 6 1 |x| 1 2 ( 1 +

 56111 For any ϕ ∈ D(R 2 ) we have the estimates| Ȏ * ϕ(x)| ≤ C ϕ |x| + x 1 ) ϕ)(x)| ≤ C ϕ 1 |x|(1 + |x| + x 1 ) ,(5.21)

Theorem 5 . 8 (R 2 )×W 1,p 0 (R 2 ) 2 )

 582022 Assume that 1 < p < 3 and let f ∈ W -1,p 0 (R 2 ) satisfying the compatibility conditionf, 1 W -1,p 0 = 0, when 1 < p ≤ 2.(5.23)Then, O * f ∈ L 3p 3-p (R 2 ) and ∇ (O * f ) ∈ L p (R 2) with the following estimate:+ ∇ (O * f ) L p (R 2 ) ≤ C f W -11 < p < 2, then O * f ∈ L 2p 2-p (R 2) and satisfies the following inequality:O * f L 2p 2-p (R 2 ) ≤ C f W -1,p 0 (R 2 ) . (5.25) ii) If p = 2, then O * f ∈ L r (R 2 ) for any r ≥ 6 and O * f L r (R 2 ) ≤ C f W -1,p 0 (R 2 ) . (5.26) iii) If 2 < p < 3, then O * f ∈ L ∞ (R 2) and we have the estimateO * f L ∞ (R 2 ) ≤ C f W -1,p 0 (R 2 ) .

(R 2 )

 2 the Sobolev embedding, O * f ∈ L 2p 2-p (R 2 ) if 1 < p < 2, O * f belongs to L r (R 2 ) for all r ≥ 6 if p = 2 and belongs to L ∞ (R 2 ) if 2 < p < 3.We thus showed that if 1 < p < 3, the following operator is continuous:R : W -1,p 0 ⊥ P [1-2 p ] -→ W 1,p 0 (R 2 ) ∩ L 3p 3-p (R 2 ), f -→ O * f.

ii) The same remark is true for ∇ O which belongs to L 3 2 ,∞ (R 2 ). Theorem 5.1 and the Sobolev embedding yield the following result.

(5.13)

), r ≥ 6 and the following estimate holds:

) and we have the inequality:

The proof of this theorem is the same that of Theorem 4.3. However, in the case 2, we have 2p 2-p > 2 which gives the result by using the Sobolev embedding (2.9). Using the Young inequality with the relations (3.5) and (3.7), we get the following:

) for any p > 3 and satisfies the estimate

)

, 2[ and the following estimate holds

(5.18)

According to the Young inequality and the relation (3.5), this last term belongs to L p (R 3 ) if 4 3 < p < 3 2 . With the same argument we get the case 1). ♦ Remark 5.5 Taking "formally" p = 1 in Theorem 5.3, we find that ∇ (O * f ) ∈ L q (R 3 ) for any q ∈ ] 3 2 , 2[. We find also O * f ∈ L 3 (R 2 ) and