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Abstract

This paper solves the scalar Oseen equation, a linearized form of the
Navier-Stokes equation. Because the fundamental solution has an anisotropic
properties, the problem is set in Sobolev space with isotropic and anisotropic
weights. We establish some existence results and regularities in LP theory.
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1 Introduction

Let Q be an exterior domain of R? or the whole space R2. We consider the
following Oseen’s problem:

—VAu+/\@+Vﬂ' = f in Q

6371
dive = ¢ in £, (1.1)
u = u, on 0f,
with the condition on u at infinity
lim  w(x) = Yoo (1.2)
|z|—+o00

The viscosity v, the external force f, the boundary values u, on 0 and g are
given. The unknown velocity field u is assumed to converge to a constant vector
Us, and the scalar function 7 denotes the unknown pressure. C. W. Oseen [14]
obtained (1.1) by linearizing the Navier-Stokes equations, describing the flow of
a viscous and incompressible fluid. Some authors worked on this problem. We
can cite Finn [6, 7], more recently Galdi [8], Farwig [3, 4], Farwig and Sohr [5]
and Amrouche and Razafison [2]. When Q = R?, the system (1.1) is written as
follows

—uAu+)\%+V7r:f in R2?,
Ox1 (1.3)

divu=g in RZ?



with the same condition at infinity. Taking the divergence of the first equation
of (1.3), we obtain a decoupled set of equations

dg

Ar=f+vAg— A—
8$1

in R? (1.4)

ou
—VAu—I—)\——f—VW in R2 (1.5)
axl
We use the results obtained in [1] for the Poisson equation to solve Equation
(1.4). Now observe that each component u; of the velocity satisfies

—vAu; + )\ 811,]

=f;—=— in R (1.6)
Ly

Then, we see that if we solve the scalar equation

—vAu+ /\@ =f in R?% (1.7)

Oxy

we can apply to Oseen problem the results obtained for this last equation. The
aim of this paper is then to study the scalar Oseen equation (1.7). Since the
fundamental solution of this equation has anisotropic decay properties, see (3.6),
(3.9) we will work in Sobolev spaces with isotropic weight and anisotropic weight
introduced by Farwig [3] in the particular Hilbertian case (p = 2). The case
A = 0 yields the Laplace’s equation studied by Amrouche-Girault-Giroire [1] in
weighted Sobolev spaces. This paper is divided into five sections. In section
2, we introduce the functional spaces and we recall some preliminaries results.
We give also a density result of D(R?) in an anisotropic weighted space and
characterization of homogeneous Sobolev spaces. In the section 3, by adapting
a technique used by Stein, we obtained results on the Oseen’s potential which
we used then to solve Equation (1.7), where the left hand side f is given on the
one hand in L?(RR?) and on the other hand in W, "?(R?). We also looked at the
case where f belongs at the same moment to two space with different powers p
and q. We considered, in the section 4, the case where f belongs to spaces LP
with anisotropic weights. Finally, in the section 5, we considered the limit case
when A tends to zero and we compared the solution obtained with the Poisson’s
equation. The main results of this paper are given by the below theorems.

In Theorem 1, we give (LP, L9) continuity propertieb for the Oseen opertors
f—Oxf fr— %(O*f) and f +— o7, Mk((?*f). We observe that
the continuity results obtained for the Oseen equatlon (1.7) are better than the

classic properties of the Riesz’s potential associated to the Laplacian operator,
corresponding to the case A = 0.

Theorem 1 Let f € LP(R?) with 1 < p < oco. Then, Bz, 070 Bm (Oxf) e
LP(R?), 8%(O x f) € LP(R?) and satisfy the estimate

0? 0
Haxjaxk (O f)llLe(wz) + ”87c1(0 * fllee ey < Cllfllor@2)-
Moreover, K
1) i) if1<p<2, V(Oxf)e L35 (R2) N L>7(R2) and satisfies
HV(O*f)HL;fv(Rz)JrHV( I, 2y S < Cllfllze@e)-

i) Ifp=2, V(Oxf)e L' (R?), for any r > 6 and the following estimate
holds.
IV(O* Pllir@e) < Cllflle@s)-



i) If2<p<3, V(Oxf)e L%(RQ) N L>®(R?) and we have the estimate.

VO NI g o FIVO* Pllz=@e) < CllfllLre2).-

(R?)

2) ifl<p<3, Oxfec LS%P(H@) N L>(R?) and satisfies

|O

2wy T 1O fllLe®e) <O fllLrme)-

In Theorem 2, we give some similar results in the case when f belongs to a
negative weighted Sobolev space W Lp (R?) and we observe again that we obtain
results better than in the case A = 0.

Theorem 2 Let f € Wo_l’p(Rz) satisfying the compatibility condition

(f,1) WP (R x WP (R2) T 0, whenl<p<2.

i) If1<p<3, thenu=0xf¢€ L%(RQ) is the unique solution of Equation
(8.1) such that Vu € LP(R?) and “1 € Wy "P(R?). Moreover, we have the
estimate

lull 22 oy +HVUHLP(R2)+H IIW wr@ey < Ollfllwgrr g,

and u € L%(R2) when 1 < p < 2, u € L"(R?) for any r > 6 when p =2 and
u € L (R?) when 2 < p < 3.

1) If p > 3, then Equation (3.1) has a solution u € W&’p(RQ), unique up to a
constant and we have

I};IGI]% ||U + If||’v[701,p(R2) < CHf”WO_l’p(RZ)’

Theorem 3 is concerned by the case where f belongs to LP spaces with anisotropic

weight.

Theorem 3 Assume that2 <p < 32 and f € L | (R?), we haveu = Ox f €
274

L, ,(R?), 2 Sor € Lp (]RQ), C,?; € Lp , (R?) and V2u € LY | (R?). Moreover,
274 14 274
we have the estzmates

Jar (L) 5 (L4 8) S ulP da+ [ (L47)2 (L4 8) T (1G5 P + VP ul?) dee

—|—fR2(1+s)%\%‘2|pdw <C [l +7)E(1+s)E|f[P da.

2 Functional Spaces and preliminaries

In this paper, p is a real number in the interval |1, +oo[ and it’s conjugate is
denoted by p’. A point in R? is denoted & = (21, 22) and we denote:

r=lx| = (22 + 232, p=1+r)V2 s=r—ua,
s'=r+x, fora,beR, nf=(1+7r)1+s).

For R > 0, Br denotes the open ball of radius R centered at origin and By =
R?*\Bpg. For any j € Z, P; is the space of polynomials of degree lower than or
equal j and if j is negative we set, by convention, P; = 0. Let B be a Banach



space, with dual space B’ and a closed subspace X of B. We denote by B’ 1 X
the subspace of B’ orthogonal to X defined by:

B 1L X ={feB;YwelX, (fv)=0}
For m € N*, we set

~1 if a+2¢{1,..,m}
k=k(m,p,a) = (2.1)
m—a—% if a+%6{1,...7m}

and we define the weighted Sobolev spaces

u € D'(R?); YA € N2: 0 < |\ < K, ple=m+ A (1g p) =10 u
Wi P(R?) =
€ LP(R?); E4+1<|A <m, ple=mtADgry € LP(R?)

where lg p = In (14 p). It is a reflexive Banach space, equipped with its natural
norm:

lullwgr@y = (> 1o ™ Mg p) 0™ |17, ey
0<[N <k

+ Y O )
E+1<|A|<m

Its semi-norm is defined by

a 1
ulwgr @y = (Y 1| 0% [, g2) 7
[A|l=m

The logarithmic weight appears only when a—f—% € {1,...m}. We refer to Kufner
[11], Hanouzet [9], and Amrouche-Girault-Giroire [1] for a detailed study of the
space W/ P(R™). However, we recall some properties and results that we use in
this paper. For any A € N2, the mapping

uwe WP(R?) — 9*u e Wm—IAP(R2) (2.2)

is continuous. When « + % ¢ {1,..,m}, we have the following continuous em-
bedding and density

WmP(R?) ¢ W MP(R?) € ... ¢ WOP(R?), (2.3)
where,
WIP(R?) = {u € D'(R?); p*u € LP(R?)}
and note that the mapping

u € WP(R?) +—— plu € W;";’;(RQ) (2.4)

is continuous, what is not the case if o + % € {1,..,m}. The space WP (R?)
contains the polynomials of degree lower or equal to j, denoted P;, where j € N
is defined by
j = [m—a-—2] if a+=2¢Z
P P (2.5)

j = m—-1—a-— %7 otherwise.

The following theorem is fundamental (see [1])



Theorem 2.1 Let m > 1 an integer and o a real number, then there exists a
constant C' such that

m, 2 . .
Yue WIPR), il |t A o € Clubvpoge, (26
where j is the highest degree of polynomial contained in WP (R?).

We define the space
H, ={ve LP(R?), dive=0}.

Theorem 2.1 permits to prove that the following divergence operator is an iso-
morphism (see [1]):

div : LV (R?)/H, — Wy "7 (R?) LPy_s (2.7)
The next result is a consequence of Theorem 2.1 (see [1]):

Proposition 2.2 Let m > 1 be an integer and a distribution u such that
VA EN? 1 |\ =m, O u e LP(R?).

(i) If 1 < p <2, then there exists a unique polynomial K(u) € P,,_1 such that
u+ K(u) € WJ"P(R?), and

inf K m,p < C m,p 2.8
#67;&7%] [ u+ K(u)+ pllwreme) < Clulwmr s (2.8)

(ii) If p > 2, then u € Wy"P(R?) and

inf m,p < C m,p . 2.9
MG#;,_%] | w+plwremey < Clulwmege) (2.9)

When 1 < p < 2, we have the following charecterization of the space VVO1 P(R?):
WAP(R2) = {v e L75 (R%); Vv e LP(R2)}. (2.10)
We recall the spaces introduced in [2]:

ou

Wy P(R?) = {u € WyP (R%); o € Wo_l’p(Rz)} ; (2.11)

which is a Banach space for its natural norm:

ou
I gy = 1 ey + 1| g o
Also, we define
720 (T2 2,p (o2 du 2
WP (R*) = que WP (R?); %GL”(R) , (2.12)
1
which is a Banach space for its natural norm:
U
| w ||Wg*7’(]R2) =l u HW(?’I’(R% + | a1 e (@2) -

Its dual space denoted ’V[7072’p / (R?) can be characterized as follows (see also
Remark 2.5).



Proposition 2.3 Let f € WO_Q”’/ (R?). Then,
i) if p # 2, there exists fo € WP (R?), F e (WP (R2))2, H e (LP (R?))2*2
and h € LP (R?) such that for all v e WP (R?), we have

(02 oy iz ey = oo Vb oy + BV 0o op (2.13)
+ (H V2 0) o 4 (P 325 Lot o

i) If p = 2 we take, on a one hand, the weight plg p instead of p in the definition
of Wlo’p (R?%) and WB’f(Rz), on the other hand, p?lgp instead of p? in the
definition of W' (R2) and WP (R2).

Proof : i) Suppose p # 2. Let E = W2P(R?) x (WP (R2))2 x (LP(R?))2*2 x
LP(R?), equipped with the norm:

n n
lblle = llvollwoy + Y 1illwor + > I¢5kllze + 1920 Lo,

i=1 Gk=1

where ¢ = (Yo, Y5, ¥k, ). It is clear that the following operator is an iso-
metric
v

T :veW2P(R?) — (v, Vo, Vv, —
6351

)€ E.

For all f € WO_Q”’, (R?), the operator defined by L(h) = (f, T~'h) is continuous
on T(WO2 P(R?)) which is a closed subspace of E. Then, by the Hahn-Banach
theorem, we can extend L to an element L of the dual of E. Now, by the Riesz
theorem, there exists fo € WO (R2), F € (W (R?))2, H € (L* (R?))?*2 and
h € L* (R?) satisfying (2.13).

ii) if p = 2, we take plg pF; € 7 (R?), in the definition of W{)’p/ (R2), p? lgpfo €
L” (R?) in the definition of WQO"p/ (R?) and we proceed as the case i). Let us
note that, when 1 < p < 2, thanks to Theorem 2.1, we can take FF = 0. ¢

This proposition permits to prove the next result
Proposition 2.4 D(R?) is dense in Wg“’(]l@).
Proof : Let f € /I/IV/O_Q”’/ (R?) such that

VSD € D(R2)7 <f7 @>W627P'(R2)XWO&F(R2) =0. (214)

i) If p’ # 2, by the previous proposition, there exist fo € Wy / (R?), F €
(WP (R?)?, H € (L (R?))?*2 and h € LP(R?) satisfying (2.13). In particu-
lar, taking v = ¢ € D(R?) in this equation, we have by (2.14):

oh

fo—divF + div(divH) — pr =0,

in distributions sense. Now, by (2.3), we have the continuous embedding and
density W) *(R2) ¢ WYP(R2?). Then, by duality, we have the embedding
Wi (R2) ¢ Wy % (R?), so F € (Wy 7' (R?))2, which implies divF € W 2¥ (R?).
By the same argument, we deduce fy, € W 2:p (R?), thus the last equation yields

Ooh

bo; = Jo— divF +div(diviT) € Wy 27 (R2) 0 Wy 7 (R2).



So, Equation (2.13) can be writen:
oh
<f) > —217 (R2)><W2p (R2) <f0_d1VF+d1V(d1VH) 81'1 > —2:0 (R2)XW2 P(R2)"

Let v € W 2P(R2). Since D(R?) is dense in WZP(R2), there exists a sequence
Y € ’D(Rz) such that o — v in W2 (R2). We obtain then,

. . o oh
<fa > —2,p’ (R2)XW2 P(R2) kILII;O<fO_d1VF+d1Vd1VH O 730k> —2,p/ W2 T =0.

ii) If p = 2, we take (plg p)F € L¥ (R2) and (p?lg p)fo € L* (R?) we obtain, by
the previous embeddings, F € (W, " > (R?))? and f, € Wy >* (R?). Proceeding
as in case i), the result holds and finishes the proof. ¢

Remark 2.5 Property (2.13) is equivalent to
=20 (m?2 Iy oh
Wy =P (R*) =4 f e D'(R%); f=fo+divF +div(divH) + 9 [ (2.15)
1
where fy, F', H and h are defined in Proposition 2.3.

Using the same technics as in the proof of the Payne-Weinberger inequality, we
get the following:

Lemma 2.6 Let u € D'(R?) such that Vu € LP(R?).
i) If 1 < p < 2 then, there exists a unique constant u.., defined by

1 27
Uso = lim —/ u(rcos 0, rsin @) do, (2.16)
r—00 27T 0
such that
U — Uo € Wy P(R?). (2.17)
Moreover, we have
2p
U — U € L7-7 (R?), (2.18)
with the estimate
o= ol g2 0 < C 1V lingeoy, (2.19)
and
2m
/ lu(rcos 8, rsin ) — us|Pdd < C’rp_Q/ |V ulPde. (2.20)
0 {lz|>r}

i) If p > 2, then u € WyP(R?) and verifies
[u(@)| < Cr' 75 | ullyaogs, and 1o u(@)] — 0, (2.21)

The next result is a corollary of the previous lemma.

Corollary 2.7 Let u € D'(R?) such that V?u € LP(R?). Then,
i) if 1 < p < 2, there exists a unique vector A € R? such that

Vu+ Ae L77(R?),



where A is defined by

27

A = — lim — V u(rcos 8, rsin0)db. (2.22)

Moreover, u+ A.x € WP (R?) and satisfies

ég% || u + A:I}+ k ||W02’p(R2) S C|U|W§’p(R2)' (223)

i) If p > 2, then u € WP (R?) and
)\1611721 I+ A HWO2,13(R2) < C’|u|W02,p(R2). (2.24)

Now, with these last result, we can give precisely definition of limit at infinity.

Definition 2.8 Let u € D'(R?) such that Vu € LP(R?). We say that u tends
t0 us € R at infinity and we denote

lim u(z) = U,
|| —o0
if
2

lim |u(rcos8,rsind) — us|dd = 0.
T—00 0

Remark 2.9 Let u € D'(R?) such that Vu € LP(R?). If 1 < p < 2, we have
the equivalence of the following propositions

i) u—us € WyP(R?),

ii) | llim u() = use  in the sense of Definition 2.8 .

Finally, we recall the following lemma

Lemma 2.10 Let r and p two reals such that 1 < r < oo and p > 2. Let
u € L"(R?) and Vu € LP(R?). Then u is a continuous function on R? and

lim wu(x) = 0.
|a] —o0

3 The scalar Oseen equation in R?.

In this section, we propose to solve the scalar Oseen equation (1.7). In order to
simplify the notations, we assume without loss the generality A = v = 1:

Ou

— ; 2
pri f in R (3.1)

—Au+

where f € D'(R?). To that end, let us define the operator

T : uH—Au—l—%. (3.2)



3.1 Study of the kernel

We consider the kernel of the operator T' when it is defined on the tempered
distributions S’(R?). Let u be an element of the kernel, by Fourier’s transform
we can write

Am?(EPa(€) + 2iméra(E) = 0.
Setting
a(§) = v(€) +iw(§),
it follows that
{ 42 [¢]Pu(€) = 2m& 1w (§) = 0,
(3.3)
2m&10(€) 4 4m?[EPw(€) = 0.

Since the determinant of the above system is 167%|¢|* +472|¢|?, we deduce that,
for £ # 0, the support of 4 is included in {0}. Then we have

(&) = cad ™, ¢, € C, with a finite sum.
By the inverse Fourier’s transform, we get

u(z) = > dox®,d, € C, with a finite sum,
then, u is a polynomial. Setting for all integer k

B
Sk = {4 € P —Aq + - =0}, (3.4)
6.231

if T is defined on S’'(R?), then ker T = S, and we have:

Lemma 3.1 Let f € §'(R?) be a tempered distribution and let u € S'(R?) be a
solution of (3.1). Then u is uniquely determined up to polynomial of Sk.

Let us notice that So = R and &; is a space of polynomials of degree less than
or equal one and independent of x.
3.2 The fundamental solution

Following the idea of [8], we look for the fundamental solution O of the scalar
Oseen equation under the shape

z1 r
() =% 1(3),
we find by a direct computations:
Q0N 1 e Tao Ty Ty T Tig T
(-80+52) = shae™ (GPrG)+ 3G - GPrD).
where, for y = 3,

v () +yf () =y fy) =0
is the modified Bessel equation. The singular solution at y = 0, Ky of this
equation cannot be given explicitly however, we can give an esimates in a neigh-

borhood of zero and when y is large as follow.
(i) When y is small

1
Ko(y) =In " +In 2 —v+a(y), (3.5)



where v is the Euler constant and o satisfies

drko K
W:O(y )-
Then, when r is close to zero,
O(z) = Lo il fome +o(r) (3.6)
T)=—5€ n - n vy+o(r);p. .

(ii) When r — +00, using the asymptotic developpement given in [10] we have

Ko(ty = (3) e ® {1 - ir + O(T_Q)} :

2 T 4
Ky(3) = (g) e [—1 - % + O(T—Q)} .

As the divatives of O are given by

o0 1 o= r x1.,,,T

o € [Ko(i) + TKo(i)} ) (3.7)
00 To =y r

o = e K (5). (3:8)

We deduce then the behavior of the fundamental solution O and these deriva-
tives when r tends to the infinity.

= L5t -2
Ow = —3/=¢ {1 o Tor )] : (3.9)
@ — _; _% f _ r + 3(1)1 9
oxy  Ajmr L g2 Tor )] , (3.10)
00 _ T2 % 3 -2
Ooxy 47“\/7?7“6 {1 Tt O(r )} ~ (3.11)

Using the inequality:
Vb eR, e %2 < Cy(1+s).
we obtain the following anisotropic estimates

-1 -1 0 -3 -1
O(@)| <Cr7=(1+s)"", |5 (@<Cr 2 (1+s)7,
(3.12)
g—g(mﬂ <Cr1(1+s)~ L
Let f and g two functions defined on an interval I C R. We denote f ~ g on
J C I if there exist two positive constants Cy and Cy such that Cyg(t) < f(t) <
Cog(t) for all ¢ in J.
To study the integrability properties of the fundamental solution and its deriva-

tives, we need the following result.

Lemma 3.2 Assume that 2 — a — min(%, B) < 0. Then, there exists a constant

C > 0 such that, for all p > 1, we have
Cﬂ27o¢7min(%,ﬁ)’ if 3 # %7

/ (1 +s) P d < (3.13)
|a|> Cpz=*Inr, if 8= 3.

10



Proof : First we prove the following result.

Tl—a—min(%,ﬁ) if ﬁ 7& %)
/ r (1 +s)Pdo~ .
oBr r2=*Inr, if 8= 3.
Using the polar coordinates, we have for s = r(1 — cos §):

I= / 114 s) P do = 27‘1_0‘/ (1+7(1—cos))~Pd6.
oBr 0

25in 20 = 2rs — s? then,

Since r
2r .
I= 27”1*0‘/ (1+ 5)*'8(27"3 — %) 72 ds.
0
i) When 0 < s <1,1+ s~ 1, then

1 1
/ (1+8)7B(27”8782)7%d8 ~ r*%/ sT3ds ~ 13,
0 0

ii) When 1 < s <7, 1+ s~ s and 2rs — s = s(2r — s) ~ rs then

Nl

/;(1 +5) 7P (2rs — s%)~

ds ~ 172 /TS_%_Bds ~ g min(3.0),
1
and, if 8 = %, we get
/T(l +5)7P(2rs — 82)7% ds ~r zlnr.
1
iii) When r < s < 2r, 1+ s ~r and 2rs — s2 ~ r(2r — s) then

/2T(1 +5) P2rs—s2) tds ~r 3P /27“(% —8)"rds ~ P
r r
So,
I ~ pl-a-min(3.8) (Tmin(%ﬂ)f% 114 rmin(%,m—ﬁ)
plma—min(39) jf 3 £ 1
rz=®lny, if = %
By this equivalence we deduce:

1
/ r_o‘(1+s)_5d:1:<+oo<:>2—a—min(§,ﬂ)<0.
|z]>p

When this condition is satisfied we obtain our result. O

Using Lemma 3.2 with estimate (3.12) we deduce

Vp>3, OcLP(R?) and Vpe]g,Q[, VO € [P(R?),

(3.14)

(3.15)

(3.16)

that means that in particular O € VVO1 P(R?) for any % < p < 2. Note also that

OeclLl (R and VOelL,(R?),

11

(3.17)



and for BY = R?\ B(0, R)

Vp>3, OcLP(BY) and Vp> g VO e I(BR). (3.18)

With the L> weighted estimates obtained in [10] (Thms 3.5, 3.7 and 3.8), we
get estimates on the convolution of O with a function ¢ € D(R?) as follows

Lemma 3.3 For any ¢ € D(R?) we have the estimates

M 1
0 * p(x)] < Cp— - (3.19)
et (1+ [af + 1)

0 o 1
—(Oxp)(x)] < C < -, 3.20
507 O Q@) < Cor s (3.20)
D Gep)@)| < Cp (3.21)
day = e e ) '

where Cy, depends on the support of ¢ and O(z) = O(—=x).

Remark 3.4 1) The behavior on |2 of O % ¢ and its first derivatives is the
same that that of O but, the behavior on 1+ s’ is a little bit different.
2) By Lemma 3.2 and these last estimations we find that

Vg > g O xp € Wy U(R?). (3.22)

3.3 Oseen potential and existence results

Using the weak-type (p,q) operators and the Marcinkiewicz interpolation’s The-
orem, we have the following

Theorem 3.5 Let f given in LP(R?).  Then %;M(O x f) € LP(R?),
6,%1((’) * f) € LP(R?) and satisfy the estimate

82

Haxjaxk

0
(O FllLe@e) + ”871(0 *Pllze@ey < ClfllLre2) (3.23)
Moreover,
3p
i) if 1<p<3, then O f € L5 (R?) and satisfies

1O * f||L3Egp ®) < Ol fllpere).- (3.24)

i) If1 <p<3, then ;2 (O xf) € L%(R2) and verifies the estimate

12
81‘i

(O Il 2 < ClfllLere2)- (3.25)

I, 2%
Proof : By the Fourier’s transform, we obtain from Equation (3.1):

0? AT
M Gmyom, @ ) = g 4 amigy T

24
Since the function £ — m(§) = 477;\?2% is of class C? in R?\ {0} and satisfies

for every a = (a1, ) € N?

dlelm
e

(&) < BlgI™,

12



where, |a| = a1 + a3 and B is a constant. Then, the linear operator

o2 _ omice —4T7E&
Ha@a%“?*f)(@—/we e s amie T D)

(O * f) € LP(R?) and satisfies

T:f

is continous from LP(R?) to LP(R?). So, Eryvr dx

32
I O0x 0z}, ©

* fllee w2y < Clfllor@2)- (3.26)

(see E. Stein [17], Thm 3.2, p.96.) Now, from Equation (3.1), we deduce that
52 (0 * f) € LP(R?) and the estimate

0
Hale(O # [llerey < C (1A * f)llLee) + 1 fllLr@e)) , (3.27)

which proves the first part of proposition and Estimate (3.23). Next, to prove i)
and ii), we adapt the technic used by Stein in [17] which studied the convolution
of f € LP(R™) with the kernel |x|*~™. We split the function K into K; + K
where,

Ki(z)=K(x) if |¢/<p and Ki(x)=0 if |2 >y,
Ky(xz)=0 if |/ <p and Ko(z) = K(x) if |z > p.

The function K denotes successively O and ‘g—g and the positive number p will
be fixed in the sequel.

1) Estimate (3.24). According to (3.6), we have O; € L*(R?) and by (3.16),
Os € L7 (R?), then, Oy x f exists almost everywhere and O, * f exists every-
where so, O x f = Oy % f + O * f exists almost everywhere. Next, we shall
show that f — O x f is of weak-type (p,q) with ¢ = ?ﬁ—gp in the sense that:

mes {z; (O x f)(z)] > A\} < < ”JC”L;@R)) , forall A > 0. (3.28)

We have:
mes {x;|O * f| > 22} <mes{z;|O1 * f| > A} + mes {z;|Ox * f| > A},

and » »
H<91||L1(Rz) Hf||Lp(R2)
AP ’

mes {z;[(O1  f)(z)| > A} <

[Occ * fllzoe(®2) < [|Ooll o 2y 1 fllLr(2)-

Note that it is enough to prove inequality (3.28) for || f||Lem2) = 1.
i) Estimate of [ = fw\<u (z)| de.

If 0 < pp <1, then by (3.6), I < Cu.

If p>1,
1:/ |(9(:c)|da:—|—/ 0(a)| da.
|z| <1 1<|z|<p

Since O € L}, (R?), then

| 1o@lae<c<cn
|z| <1

13



Further, from estimate (3.12) and using lemma 3.2, we have

/ |O(z)| dz < c/ r2(1+s) de< Cp,
<Jal<p <Jal<p
then,
V>0, [|O1lp g2y < Cp. (3.29)
ii) Estimate of J = fl \>u x)|” da.
If u> 1, |0@)P ~e zr 2, < Cr- 7( 1+ s)~7". Then by Lemma 3.2, for

P

p’ >3, WehaveJ<C'/ﬂ_2.
Ifo<p<l,

J= O()]” dm+/ 0@ dz = Jy + Ja.
n<lz|<1 |z|>1

Proceeding as previously, we get J, < C' < Cu%_%. We have also

»’
2

le/ " —Inr 422+ + o(r) de < C < Cpi~
u<|z|<1
Then,
forp >3 and >0, [Oullprme) < O’ . (3.30)
Setting A = Cu 5 which implies 11 = C'ATS = C'ATS we get
mes {z € R?;|(Oy * f)(x)| > A} = 0.

So, for 1 < p < %, we have

O p1 2 3—2p
mes{x€R2;(|(9*f)(w)>2)\}<C”1|L;(R) C/;p<0( ) :

which proves inequality (3.28).

2) Estimate (3.25). We have also K; € L'(R?) and K, € L* (R?) where,
K=42i=12
i) Estimate of f$|>u = O ()P da.

Using estimate (3.12), we get for p > 1 and p < 3:

/ \gf(wﬂp/ de < Cpd=—% <coudv. (3.31)
x| >0 ?

For p < 1,

00 / 00 , 00 ,
/ 129 (@) da = / 129 @) da + / 129 (@) da.
la|>p OTi p<lal<1 O a|>1 O

The case p > 1 yields

30 ’ 3 ’
)P de<C < Cu27?.
/|z>1axi( )

We have also

1 ™ , ,
/ |go(m)|P’dm < / Hfdr/ e 7700 5in 0 + C'[P" db
p<la)<1 OLi
c

3 ’
§—P

A

1
rz qdr < C

IA

©w

14



So, by these two inequalities and (3.31), we get

00 3-2p/
||87:i||LP/(R2) <Cp 7. (3.32)

ii) Estimate of J = flx\<u %(mﬂdw.
0 <p<l,

— T2 1 — e 5cos 0| .- /
J = le?|— +o(=)|de = e2°*%|sin 0 + C'|drdf
|z <p r r 0 -7

IN

® 1
C’/ dr < Cu < Cuz.
0

Ifp>1,

90 e
J:/ | |d:c+/ 199 14 = Ty + .
|z|<1 1<|zl<p

6:51- X

The preceding case yields J; < C < C’,u%. By Estimate (3.12) and Lemma 3.2
we have

Nl

o
JQSC/ dm SC/ riédrgCu.
|| <pe 7’(1+S) 0

We obtain then
H 00
81}1‘

Since O € L}, (R?) and 372 € L} .(R?), then %(O*f) = g—g*f. As previously,

loc loc

we have, for 1 < p < 3 and all A > 0:

ey < Cpt. (3.33)

3p

mes {z € R? |8ixz(o x fi(x)| > 22} < C (i) o .

Now, using the Marcinkiewicz Theorem, the operator R : f — Oxf is continuous
3

from LP(R?) into L5 2 (R2) and R; : f — 52 (O« f) is continuous from LP(R?)

into L3255 (R?). ¢

Remark 3.6 i) We can prove that O € L3°°(R?), i.e

sup g mes {z € R?; |O(z)| > u} < +oo. (3.34)
n>0

So that, thanks to the weak Young inequality (cf. Reed-Simon [16]):

10 71l s < CJO] g @y |l - (3.35)

3-2p ’”(Rz)

This estimate shows that if 1 < p < %, there exist pg and p; such that 1 < py <
p<p < % and such that the operator

T:f—0Oxf

is continuous from LP° (R?) into L%%’OO(RQ) and from LP1 (R?) into L%’M(Rz).
The interpolation Marcinkiewicz theorem allows again to conclude that the op-
erator T : LP(R?) — L7% (R?) is continuous.

ii) The same remark is true for V O which belongs to L2:>°(R?2).

15



By Theorem 3.5 and the Sobolev embedding we easily obtain the following

result.

Theorem 3.7 Let f € LP(R?) with 1 < p < oco. Then, %(O x f) €
;0T

LP(R?), 8%l((’) x f) € LP(R?) and satisfy the estimate

62

0
(O * f)llor ey + ||5.71(O * Fllzeezy < Cllflloe2)- (3.36)

Moreover,
3 2
1) @) ifl<p<2, V(Oxf)e L%(RQ) N Lﬁ(RQ) and satisfies

VOOl o FIV(O*])

P < P 2). .
||LE(R2) 2 <O fllzr @2y (3.37)

I

i) Ifp=2, V(Oxf)e L"(R?) for any r > 6 and the following estimate
holds.
IV (O * Hllr@ey < Clflloewe)- (3.38)

tii) If2<p<3, V(Oxf)e LS%(RQ) N L*(R?) and we have the estimate.

IV (O f) )+||V((9*f)||Loo(]R2) < Ol fllee @2)- (3.39)

2 s
P (R
2) ifl<p<3, Oxfec L%(RQ) N L>°(R?) and satisfies

1O fll 2 P [0 fllLee®2) < CllfllLrw2)- (3.40)

Remark 3.8 i) Applying Young Inequality and (3.16) we verify that if f €
LP(R?) with 1 < p < 3, then O * f € L4(R?) for all ¢ E]%, +o00l[, property a
little weaker than (3.40).

ii) the same remark is true for V (O * f).

By using Theorem 3.7 and Lemma 3.1 it is clear that if f € LP(R?) then the
solutions of Equation (3.1) are of the form:

What means that O x f is the unique solution of Equation (3.1) if 1 < p < %,
up to a constants if % < p < 3 and up to an elements of S; if p > 3.
By Theorem 3.7, we have the following result for a given f € LP(R?).

Theorem 3.9 Let f € LP(R?), then Equation (5.1) has at least a solution u of
the form (3.41) such that V?u € LP(R?), 2% ¢ LP(R?) and verify the estimate

’ 8:1}1
2 ou
V= ul| Lo g2y + ||67331||LP(]R2) < C|flle(re)- (3.42)
Moreowver,

1) if1<p<32, thenue L7% (R?) N L¥(R2), Vu € L35 (R?) N L275 (R2)
and satisfy

HUHLSEgp ®) + llull o m2) + ||VU||L3?;7PP(R2) + HVUHL%(RZ) S O fllee)-
(3.43)
3p 2p
2) i) if 3 <p<2, then Vue L3+ (R*) N L7+ (R?) and satisfies
) » < » .
IVl IV e S O, (344)
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i) if p=2, Vu € L"(R?) for any r > 6 and the following estimate holds.
IVullzr@®e) < Cllfllzewe).- (3.45)
ii) if 2 <p<3, then Vu e L37(R2) N L®(R2) and:

IVl g5, o+ IV =) < CllF o (3.46)

8) If p>3, then u € WP (R2) and we have the estimate

Ai;{; lu + A“Wﬁ”’(R?) < Cllfllzr@e)- (3.47)

Remark 3.10  Another demonstration of Theorem 3.9 consists in using the
Fourier’s approach. Let (f;)jen C D(R?) a sequence converging to f in LP(R?).
Then the sequence (u;) given by:

u; = FHmo(€)fy), mo(€) = (4ml¢]® + 2imér) Y, (3.48)

is a solution of Equation (3.1) with the right-hand side f;. Let us recall now
the:

Lizorkin Theorem Let D = {¢£ € R?; |&] >0, |&] >0} andm: D — C, a
8 m

continuous fonction such that its derivatives et et
1 2

are continuous and verify

*m

ki+p ka+p <
|£1‘ |£2| 85?16552 >

M, (3.49)

where ki, ko € {0,1}, k =k1 + ka2 and 0 < 8 < 1. Then, the operator

1

T:g+— F Y (moF(g)), mo(€)= T2l + 2iney”

is continuous from LP(R?) into L"(R?) with 1 = 1% - B.

Applying this continuous property with f; € LP(R?), 3 = % we show that (u;)
is bounded in L%(Rz) ifl<p< % so, this sequence admits a subsequence
still denoted (u;) which converges weakly to u solution of Equation (3.1) with
right-hand side f. For the derivative of u; with respect to x;, the multiplier
which intervenes is on the form m(€) = 2in&; (472|€|% + 2in&1) 1, so that (3.49)
is satisfied for 8 = 0, so r = p. The same property takes place for the second
derivatives with m(€) = —4n2¢1&(4n%|€]? + 2imé;)~t. We verify finally, with
3
8 = %, that the first derivative of (u;) with respect to z is bounded in L35 (R?)

which implie 2% € L+%7 (R2). 0

In order to study Equation (3.1) with a right-hand side f € ng’p(Rz), we give
the following definition of the convolution of f with the fundamental solution
O:
2 . A
VQO € D(R )7 <O * f7 <P> - <f> O * <‘O>W071‘p(]R2)><W01‘p/ (Rz)a

where O(z) = O(—x).
Theorem 3.11 Let f € Wo_l’p (R?) satisfying the compatibility condition

(f, 1>W(;1,p(R2)XWS,p/(R2) =0, whenl<p<2. (3.50)

17



i) If1<p<3,thenu=0xf¢€ L%(R2) is the unique solution of Equation
(3.1) such that Vu € LP(R?) and “1 e Wy "P(R?). Moreover, we have the
estimate

g5, IV oy + o Ll < Ol (351

2
and u € L%(R2) When 1 < p <2, u€ L"(R?) for any r > 6 when p =2 and
u € L®(R?) when 2 < p < 3.

i) If p > 3, then Equation (3.1) has a solution u € Wol’p(RQ), unique up to a
constant and we have

it llu+ kligg e < Ol ey (352

Proof : Let f € W, "P(R?) satisfying the condition (3.50). Thanks to Lemma
3.3 and Remark 3.4, if ¢ — 0 in D(R2), we have O % ¢ — 0 in Wol’p/ (R?) for
all p €]1, 3] which implies that O x f € D'(R?). We know also, by Isomorphism
(2.7), that there exists F € LP(R?) such that

f=divF and ||FHLP(R2) < CHf”WO—l,p(]RQ). (3.53)

i) Suppose now that 1 < p < 3. Then,

9 Oy
(o, O Drohpyxpm = —(O* [ 5 )pwe) o)

e

(F, V(O %j»ﬂ"(RQ)xLP’(R?)

0 o
(F,V 67j(O * ) pr (m2) x I (R2)-

Moreover, by (3.23),

0

0
(5, (O * ) 0)pr ) xD(w2) | 1 2 o) 1V 5~ (O*so)lle(R2)
J

CIIfIIW(;Lp(RaIIwIILp (R2)-

IN

IN

There is
0
I35 (© % v < Cll gy

With the same condition on p as in the previous case, for all ¢ € D(R?), we
have

(O f,0)p@2yxp@2) = —(F,V (oF ©)) Ir (R2)x I¥' (R2)
and by (3.25)

IN

0 o
(O * f, €0>D'(R2)xD(R2)| ||FHLP(R2) ||7(O * SO)HLP' (R2)

IN

Ol fllyy- lpmp)\l@\\ .

Note that 1 <p<3<«<=1< < 3. Consequently, O x f € L35 (R?) and

4p3

104 71, g, oy < Ol ey

18



Moreover, by the Sobolev embedding, O * f € LZ’%(RQ) fl<p<?2 Oxf
belongs to L"(R?) for all 7 > 6 if p = 2 and belongs to L>(R?) if 2 < p < 3.
We thus showed that if 1 < p < 3, the operator

R:Wy"P(R2) L Py_2) — WaP(R2) N L35 (R?),
z (3.54)
f— Oxf,

is continuous.

ii) Suppose now that p > 3 and let f € W Lp (R?). Then we have the relation
(3.53). Now, since D(R?) is dense in L”(R?), there exists a sequence F,, €
D(R?) such that F,, — F in LP(R?). Set f,, = divF,, and ¢, = O * f,,. For
all ¢ € D(R?), we have

51/)m 0 A
=(F,,,V—(O .
(Go2) = (B 5 (O9)
Then, according to inequality (3.36), we have
M,
(Gl < CIFmllances el

< Ol ey 10l ot ooy (3.55)

So that, V), is bounded in L”(R?). We can apply Theorem 2.1: for each m,
there exists a constant C,, such that v, + C,, € WO1 P(R?%) and

me + Cm”WOl’p(]Rz) < CHf”WO*l‘p(RQ)'

From this follows that ., +C,,, converges weakly to some function u € WO1 P(R?)
and

ou
—Au+ — =
u + axl f7
so that Equation (3.1) admits a solution u and moreover u € W& P(R?). O

Remark 3.12 i) If 1 < p < 2, as the solution u of Equation (3.1) given by
Theorem 3.11 belongs in particular to W, *(R?), we deduce that

lim wu(x) = 0,
in the sense of Definition 2.8. Consequently, for any given constant u..,, the

distribution v = u + u is the unique solution of Equation (3.1) which is such
that Vo € LP(R?), 2~ e W, "P(R?) and satisfying the condition at infinity

) 81’1
lim v(z) = Uo-
|| — o0
ii) If 2 < p < 3, by Lemma 2.10, the same result holds with a pointwise conver-
gence.

Corollary 3.13 Assume 1 < p < 3. If u is a distribution such that Vu €
LP(R?) and %‘1 € Wy "P(R?). Then, there exists a unique constant k such that
u+ke LS%(]RQ) and

ou

lut kil g 0 € OU VUl + 1 o lwgorgey)- (356

Moreover, if 1 <p <2, thenu+k € L%(R2) and u(x) tends to the constant
—k when |x| tends to infinity in the sense of Definition 2.8. If p =2, then u+k
belongs to L"(R?) for any r > 6. If 2 < p < 3, then u belongs to L>°(R?), is
continuous in R? and tends to —k pointwise.

19



Proof : Setting g = —Au—|— e W, P(R?). Since Pp1— 2 contains at most a
P
constants and according to the den81ty of D(R?) in WO1 P(R?), then g satisfies the
compatibility condition (3.50). By the previous theorem, there exists a unique
3p
v € L35 (R?) such that Vv € LP(R?) and 2% € LP(R?), satisfying T'(u—v) = 0
(T is the Oseen operator, see (3.2)), with the estimate
[N Ol A [lyy 10 gy + 1| Z ywro(gey)

5 ey = (3.57)

<C(IVullLes + | ;%1 HWO’L”(]RQ))'

Setting w = u—v, we have forall i = 1,2, aw € LP(R?) and satisfies T'( 8’9) = 0.
We deduce then by Lemma 3.1 that Vu e Vv, then there exists a unique
constant k such that v = u + k. The last properties are consequence of Lemma
2.6 and Lemma 2.10.

Remark 3.14 Let u € D'(R?) such that Vu € LP(R?).
i) When 1 < p < 2, thanks to Proposition 2.2, we know that there exists a

unique constant k such that u + k € L%(RQ). Here, the fact that in add
2 e W, 'P(R?) we have, in more u + k € L35 T (R2).

ii) When 2 < p < 3, uis only in W, P(R?) but is in no space L"(R?). But, if
moreover a € W, "P(R?) then, u+k € L% (R?) for some unique constant k
and u € LT(]RZ) for any r > 6 if p = 2 and u € L>°(R?) otherwise.

As consequence of Theorems 3.9 and 3.11 we solve Equation (3.1) when the
data f belongs to intersection of two weighted spaces. We have then the two
following results.

Proposition 3.15 Suppose that f € W, "P(R?)NW, "Y(R?) with1 <p < g <
oo and satisfies the compatibility condition (3.50). Then, Equation (3.1) has a
solution u € WP (R?) N W, '%(R?) satisfying
IV ey + 19 iy + 18 g + I o
< C(Hf”WO—le’(W) + ||fHWO—1"1(R2))‘

Moreover:

i) The solution u is unique if p < 3 and up to a constant if p > 3. It is equal
to Ox fifp<3. ,

) If p<q<2, thenué€ L%(RQ) N LZ%(RQ) and verifies

ol g o el < Ol g gaoy + Wl ragesy)- (359

i1i) If p < q = 2, then u € L"(R?) for any r > 33_—”7) and

(”fHWO—lvP(RZ’) + Hf”wo—lvq(w))' (3.60)
w)Ifp<3andq>2thenu€ L?»%(RQ) N L>(R2) with the estimate

R?2) + HU”LOO(]RZ) < C(HfHWO*lvP(W) + ||f||W(;1’q(]R2))~ (3-61)

lull | 2o

(

Proof : Let f € W, "P(R?) N W, "(R?) and satisfies the compatibility condi-
tion (3.50) with 1 < p < ¢ < co. We know that there exists u € W,"*(R?) and
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URS Wol *I(R?) solutions of (3.1). Moreover, by a uniqueness argument we have

necessary Vu = Vv and Estimate (3.58) comes from (3.51).

i) Now, in the one hand, if p > 3, then u — v = k, where k is an arbitrary

constant, so u = v+k € WP (R2) N W24 (R?). If on the other hand p < 3, then

u=0xf.

ii) Suppose that ¢ < 2, we know that v = O * f € LS%(RQ) and u = v €

L5 (R?) and satisfies Estimate (3.59).

iii) If ¢ = 2, ghen7 by Theorem 3.11, u = O x f € L%(Rz) and u = v € L"(R?)
p

for any r > 35

iv) If p < 3 and ¢ > 2, we know that u = Ox f € LS%(RQ). Since Vu € LY(R?)
with ¢ > 2, then u € L>°(R?) and we have Estimate (3.61).

Remark 3.16 When f € W(;l’q(RQ) with ¢ > 3, we saw that O x f is not
necessary defined. But if moreover f € W, Lp (R?) with p < 3, and satisfying
the compatibility condition (3.50), then O  f has a sense in Wo**(R2) and
belongs to W' (R2).

Proposition 3.17 Let f € LP(R?) N W(;l’p(R2) satisfying the compatibility
condition (3.50). Then Equation (3.1) has a solution uw = O x f such that
Vue WHP(R?), 24 ¢ Whr(R2) N W, "P(R?) and satisfies the estimate

’ 83@1

ou ou
IV ullwe + ||371||W1m + Hafxlllwfw < Cflle + I fllyre)- (3.62)

Moreover: . s

D D
i) if p < %, u is unique, belongs to L3-2 (R?) N W35 (R?) and verifies the
estimate

ol 5, g+l g € OO + W) (363)

3
i) If 3 <p <3, u is unique in WhaT5 (R?) and satisfies the estimate

Il 2, o) < CU ey + 1 o) (3.64)

iii) If p > 3, u belongs to € Wg'(R?) N WN/&”’(RQ), unique up to a constant,
and

it (lu -+ bl ) + 0+ Kl @) < CUS e + 1 lyor0). (365)

Proof : The proof is the same that that given in the previous proposition.

Now we take f more regular, for example f € W, "P(R2) N W(R2) and we
look which regularity we obtain for the solution wu.

Proposition 3.18 Let p and q two reals numbers such that 1 <p < oo, q > 2
and % = % + 3. Suppose that f € Wy "P(R?) N WYPY(R?) and satisfies the
compatibility condition (3.50) Then the unique solution of Equation (3.1) given
by Proposition 3.15 satisfies the complementary properties

VZu e WYI(R?) and 2% € W) I(R?)
Proof : From the relation % = % + % we have 1 < p < 2 and since ¢ > 2, then

Pu-z1 = Pu-z = {0}
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Since W 4(R2) ¢ W, “9(R2) then f € W, "P(R?) N W, "%(R?) and satisfies
the compatibility condition (3.50) for p and q.

i) If 2 < ¢ < 3, Equation (3.1) has a unique solution u € LS%(RQ) n L;qu(ﬂ@)
such that Vu € LP(R?) N L9(R?) and 8‘9—;1 e Wy "P(R?) N W, 9(R?). Further,

ou 0 ou of ou 8uA Ou 9p

- — (p—) = p—L —2 ) - =
paxj)+8x1(p8xj) pa.‘tj vPv(c‘?xj) axj p+8xj8m1

—A(
In the one hand, since Vu € L(R?), in view of (2.3), (2.2) and (2.4), the terms

p‘%, V pV (88;]) and %Ap belong to Wofl’q(RQ). In the other hand, since

Vu € LP(R?) the term %% belongs to LP(R?). By the Sobolev embedding

and the relation between p and ¢, LP(R?) C W, "%(R?) because Wol’q/ (R?) C
LV (R") and we deduce that F € W, “(R?). Then there exists by Theorem
3.11 a unique v; € LSL—QQ(]RQ) such that Vv; € LY(R?) and gii e Wy “I(R?)
satisfying

— A = pgt) + oz (v — pE) = 0.

We deduce that w; = v; — p% is a polynomial. Since Vov; € L(R?) and
J

q > 2 we have, by Proposition 2.2, v; € Wg’q(Rz) c W%I(R?). We have

also p% e W2I(R?), so wj € Pyy_2) = Py. Then, there exists a constant

k such that p2% = v; +k € Wy %(R?), which imply e W 9(R?) and so

V2u € WP9(R?). The same argument prove that 2 e WP(R?).

ii) If ¢ > 3, Equation (3.1) has in view of Proposition 3.15 ii) a unique solution

u € Wy'(R?) N Wy P (R?). The right-hand side F also belongs to W, "(R?)

and we proceed as previously. ¢

4 Study in anisotropic weighted spaces.

In this section we consider the case where the weight is anisotropic, in the form
r®(1+5)% or ng=00+r)*(1+ 5)?. Note that the behavior at infinity of these
weights is not uniform. In fact, in the parabola s = 1 we have r® (1 + 5)% ~
ng ~ r® and out of a sector Sy g = {x € R% o7 > Ar, 0 < A < 1}, we
have 7% (1 + s)8 ~ ng ~ r@*t8. Tt’s for this reason these functions are called

anisotropic weights. For R > 0 we denote by Bpr the ball centered at origin
with the radius R, By, = R?\ Bg and we define the space

L8 5(@) = {veD(Q) ngve L7},
where © = R2 or any open domain of R?. We begin by study the problem

fAeraaTzlJraoz: g in Bf,

(4.1)
z= 0 on 0B,
where g € L’;O(B}%) and
125° +5+2
S B 42
w5 (14 9)? (42)

First we have the following
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Lemma 4.1 Let p such that 2 < p < % and let g € LE’O(B}%). There

exists R* > 0 such that, if R > R*, Problem (4.1) has a unique solution
z € L”, (Bg), such that V?z € LP(By) and 38—;1 € L?(B%). Moreover there
3

exists C' > 0 such that

Izl , (B + H ||LP B T IV22lle(my,) < CHQHL” (B (4.3)

2’
Proof : For all £ > 0, since g € L} 0(B}%) and ag > 0, the problem
3

—Az + 825 +apze +e€2. = g in Bp,

(4.4)
zze= 0 on 0Bj.

has a unique solution z. € W2P(B%). Multiplying the first equation of problem
(4.4) by r'7% |2.[P72 2., since in two dimensional, A(r!=%) = (1 — £)2p~1-%

we get after integration by part in B,
(p—l)thT ‘Z|p 2|Vz|2 +fB' agr' ™% |z|P +EfB' rTh |z P =
p

s (L= 8 [, vt 7P + fo |zePSEr=2 4 [, ! Pzl g

Note that ag > 32 , then

)

5 1 1 / _p 1 p2/ _q1_r / 1—2 1
— ===z Tz P < =(1-2 rTITE |2 |P + 2|2 P gl .
(32 |p 2|) B |s| p( 2) B, |s| - ‘s| | |

R

Moreover, since r > R,

1 Pio —1-2 1 P2 -z
7<1—7>/ P s a2 [ L. 4
p 2 . pR 2 B,

Inequalities (4.5) and (4.6) give

5 1 1 1 p2/ » / 1 1
= |-z -—==0-3 72|z |P < 2z |P .
3=y =3l pr0 =37 [, 7B < [ r

R

Since 2 < p < 32 we have 55 — %f% f—(lff) > 0, if R > R*, with R*

sufficiently large. Thus, from the previous mequahty we obtain

1 p=1
Jo, 775 zel? S Cu [ v 8 2P gl < Cilfp, 7R |gIP)e ([, 77 E 12l?)

Then
/ r P < C / régl?,
b B,

R

where the constant C is independent of R and ¢. The sequence (z.) is then
bounded in L” , (Bg), which is a reflexive space, so zz — z in L”, (Bjy),
PR 3

and

HZHLP J(BR) < hmlnf I| ze HLP S(BR) C'||g||Lp Bl
where z satisfies the equation

0
—Az—I——Z—g—aoz in Bpy.
Oy

23
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Let us show that V22 € LP(B}) and aajl € LP(B}y). Now, the fact that the

function g — agz is bounded in L% (Bf) implies that it is bounded in LP(B}).
3

Since, V? 2. remains bounded in L?(BY},), then V? z € LP(B};) and

IV2 2llomy) < lminf [|V2 2llro(my) < Cllgller sy (4.7)
L

Thus, aa—z € LP(B%) and we have Estimate (4.3). It remains to prove that z = 0
Z1

on OBj. Since V? z is bounded in LP(Bf) Then, if Q is a bounded domain
such that Br C 2, setting Q = QN BY, we have

ze — v in W2P(Q).

Since zz = 0 on OB, then v = 0 on 0Bj. Moreover, since z. — z in
in%,o(Bﬁ%), then v =z |gand so z=0 on 9By. ¢

We know, according to Proposition 3.18, that for f given in Wofl’p(R2) N

Wlo’q (R?), where p and q verify relation % = % + %7 we obtain that VZu and

Pu - belong to W 4(R?). But if f is only given in W (R2), we cannot find the
same regularity on V2 u and 8 . Then we look at f in L? (RQ) with o +

close to 1. Moreover, takmg account of the conditions put by Pokorny in [10]
on « and (3 one takes a = 5 and 3 =

Theorem 4.2 Assume 2 < p < 32 and f € L4 ,(R?). Then, O x f €
2

11
4B, (0 f) e Lh (B, 20« f) € L} (R and V2O« f €

ol S

1
°4

|O * fHL’: (R2) T H%(O * f)”L(’;%(]RQ) + Ha%l(o * f)”L”%%(D@) +

(A& (O ey ®ey < Cliflley | @2)-
2'4 24

-
=

(4.8)

Proof : From [10], we have O x f € L, _,(R?), 8%2((9 x f) € Ly 1 (R?),
2751 q
8%1((’) x f) € Lp -, ( 2), for all e > 0. It remains to prove that O x f €
L? | | (R?), and ((9 x f) € L ,(R?). For R > R*, we use the following
24 2°2
partition of umty
¢1,02 €CZ(R?), 0< 1,02 <1, pr+pa=1 in R?
w1 =1 in Br and Supp¢i C Brti.

We set u = O % f and we split u into u = wuy + ug, where u; = ;.4 and
= o.u. Since Supp u; C Bry1 so, up € L, , (R?) and satisfies

274

lurllr | | @2y <Clfllcy | @2
2’4

11

204
Furthermore, wus is solution of the following problem

—Aug + 8u2 = f in R2?,
where f = f —l—NuAgol +~2V uV g — ug‘pl. Since the regularity of o f de-
termines that of f, then f € L% ,(R2). Setting v = (1 + )3 uy, we have
2’4

v E LTL;,E 0(R2), and satisfies Equation

a 1 = 1 1 a 1
“Av+ 8—“ (149} =2V V(49! — w1+ - (14 9))
1

A simple calculation yields
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(A= 32)(1+s)T =L 252 +5+2)(1+5) 1,

then, us[A(1 + )3 — W(l + 5)3] = agv, where ag is defined in (4.2). Hence,
v satisfies problem (4.1), where g = (14 )1 f — 2V uy .V (1 4 )7 € L%’O(B}%).
Applying Lemma 4.1, there exists a unique w € L? O(B}%) solution of this

problem. Setting z = v — w, we have z € L” , _ 0(R2), and satisfies
2 )

—Az+ 2 +apz=0 inR2

Bml

Then z = 0, which implies that v € L’:%’O(R% and

loller ) ey <Clalley ) < ClMf ey @
1.

ll
2°4

Hence ug € LP , ; (R?) and

e

_1
27

luzllr | @2y <CIFllee | e,
24

11
2'4

which proves that u € L” , , (R?) and satisfies

11
2°4

||U||LP (R2) <C||fHL (R2)- (4.9)

m\»—A
e
N\»—A
N»—A

Now, using the fact that us satisfies
~A(ny)3us) + 52 ()3 ug) = F,
where
1/2 1/2 1/2 d 12
_ 1;4 = (771?4 2) — 2V u.V (771;4 w2) +u L (171;4 @) € LP(R?).

From Theorem 3.9, there exists a function v such that VZv € LP(R?) and
83—”1 € LP(R?) satisfying

1 o 1/2
—Av+ 22 = —A(ny)3ug) + 52 (02 u2).
Moreover,
9 Ov
V=0l e g2y + ||87x1||LP(R2) < COF|Lr@ey < Cllf”Lp L @) (4.10)

We set w = VZv — V2 (771/4u2) since V2u € ﬂLp 1 (R?), then w €
2 4
e>0
n L?_,(R?) and satisfies

£>0
—Aw+ g% =0, in RZ
Then w = 0, which imply that
V? (n)]3u) € LN (R?).
We obtain then
VZu e L4

LR, Feelf (R,

w3
Sl
ol
Sl
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and the estimate

ou
V2 ullr @) +l5— ”L 4 ®) <Clflley | w2 (4.11)
21 €Tl

l
' 4

m\»—A

This finishes the proof. ¢

Setting
K? 5() = {veD'(Q); r(1+s)" € LP(Q)},

which is a reflexive Banach space when it is equipped by its natural norm. With
the same arguments we prove the following result. The case § = 3 corresponds
to Theorem 4.2.

Theorem 4.3 Assume 2 <p < 373 and 0<pB< 7. Then, for f € K% B(RQ),
3
we have O x f € Kf%’ﬁ(R%, 872(O x f) € Kgﬂ(RQ), 8%1(0* ) e K;B(R2)
and V2 (O * f) € K¥ Q(RQ). Moreover, we have the estimates
2

0% Flie ooy + 1555 (O Fllcg o) + 5% (© % Py ey +

(4.12)
||v2(0*f)”K” ,(®2) <C||f||K” 5 (®)-

For o, f € R we denote by

LP

by (B = {veD'(Q) p*(1+5) ve LP(R%)},

which is a reflexive Banach space when it is equipped by its natural norm

||U||L (R2) = Hpa(l"’_sl)ﬁUHLP(R?)-

,B(s")
Proposition 4.4 For all given f € L2 [y ,)(Rz), with § > 0 close to zero,
2) 3 \8
Equation (3.1) has a unique solution u € K%,l O(RQ), such thatVu €L , O(RQ).
, -3

Moreover, there exists a constant C' > 0 such that

[ull k2 JE) T [Vaullz L (B2) <Cfllg2
3L -3

151
50 =

@y (413)

Proof : By the density of D(R?) in L21 51y ,)( 2) (see [2]), there exists a
sequence (fx) of D(R?) such that f — f in L e )( 2). Since fi € D(R?),
so fr € K2 B(RQ), 0 < 3 < %. Then, from Theorem 4.2, Equation

5

fAukJrg—Zf = fp in R2 (4.14)

has a solution uy = O * f, € K2, 0(R2) such that Vu € Kg@(RQ), V2uy €
2 ’
K? B(RQ) and g%’f € K2 5<R2)- Multiply Equation (4.14) by huy where h =
2> 3

O %192 (§ > 0), O is the fundamental solution of the operator —A — 8%1’ we
obtain after two integrations by part

1
/ |V ug|* hdr + 7/ 2 (—Ah— oh —))dr = frhuy dz. (4.15)
R2 2 R2 3x1 R2

Since —Ah — (,;97}11 =792 we have
2 1 2,.6-2
|V ugl®hde + 5| kTt = fehug dx,
R2 R2 R2
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and as h > 0 we get then the two inequalities

/ uir®™? < 2| fyhuydz, (4.16)
R? R?

/|Vuk|2hdx < / fr hug dz. (4.17)
R2 R2

A simple calculation yields

(ca- D yaanito 220 (14t (4_5—1—“"”1>,

o1 4 1+r r T
then
0 51 1 2—-9§ 51
A — — > — JE— >
(A= ) (=MD > - M E )i 20,

1+6/2
for 0 < M < 222+_5§2 (%g) . Then, there exists M > 0 such that h(z) >

M (1+7)371, so from inequality (4.17), we obtain
M (1—|—7‘)%71 |V up|?de < / fr hug de. (4.18)
R2 R2
The Cauchy-Schwarz inequality gives

fehupde < ( fEh2 20 dm) (/ 22 dx)
R2 R2 R2

So, from inequalities (4.16) we get

/ P 2ulde < 4| fER*r?0dx
R2 R2
1+7r

(1 + 31)175

We adapt the result of Theorem 3.5 obtained in [10], we have h2 r!1=9 (14+5')1 7% €
L>(R?), then uy € K2 _ (R?) and there exists C' > 0 such that
2

4 fE h2pl0 (1+ s’)l_(S dz,
RQ

—~1,0

lullxz @2y <Cllfellrs | <Cllflles (4.19)
5-1,0 35-3(") 353
Now, using inequalities (4.18) and (4.19), we deduce that Vu, € L3 0(]Rz)
4 2
and
IVurlzy | @) <Clifellzs < Clfllz2 : (4.20)
§-30 3.5-3) 5536

3 bR

So, the sequences uy and vy = Vu, remain bounded in Kﬁ,l O(R2) and in
51,
L% O(R2) respectively. These spaces are reflexives, therefore extracting a
4 2

subsequence if necessary, we have

up —=u in K3 | O(Rz) and Vugp = Vu in L% | O(RQ)7
24 i~

with the estimates

< liminf - 4.21
||“HK2%.71’0(R2) < limin ||uk||K2%71’O(R2) 7CHf||L2%%71(S/)7 (4.21)

16 1y
22720

IVaulsy | o <EminfVelss | o <CIflis, . @22

We get then Estimate (4.13) and we verify easily that u is a solution of Equa-

tion 3.1. Uniqueness is given by the fact that the space K3 | o contains no
3-1,

polynomials. ¢
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5 Behaviour of uy, when A\ — 0

Assume 1 < p < 2, f € LP(R?) and, for A > 0, consider the equation

au/\ o . 2

Setting

y =Xz, ux(z)=v(y) and f(z)=X*g(y),
then v satisfies the equation

ov

—A + —
v(y) i

(y) = g(y) in R?, (5.2)
where clearly, g € LP(R?). We know by Theorem 3.9, that, if 1 < p < 2,

Equation (5.2) has a solution v such that, in particular, Vv € L5 (R?), Vv €
LP(R?), (%’1 € LP(R?) and satisfies

IV + V20| orz) < Cllgll o e)- (5-3)

2p
L2-7(R2)

By a simple calculation we obtain from Inequality (5.3) the estimate

v UAHL%(RQ) + IV urllr ey < ClFllie ey, (5.4)

where C does not depend on . We deduce that the sequences V uy and V2 uy
remain bounded in LP(R?) and LP (R?), with p* = ffpp respectively. Now,
setting

—Auy = fy in R? (5.5)

then, the sequence fy is bounded in LP(R?) N Wal’p* (R?). These spaces are
reflexives, extracting a subsequence if necessary, also denoted fy, we have

fr = fin LP(R?) and f, — fin W5 P (R?).

Further, note that p* > 2, then there exists z € Wol’p* (R?) and w € WP (R?)
such that
—Az=—-Aw=f in R

Since V z € LP (R?), Vw € LP" (R?) by Sobolev embedding and V z — Vw is
harmonic so V z—V w = 0 in R? then, there exists k € R € W (R?) such that
z=w+k, thus z € Wg’p(RQ)ﬂWOl’p* (R?). Now, since the norm on W, " (R?)/R
is equivalent to its semi-norm, we deduce from inequality (5.4), that there exists
kx € R and u € W2P(R2) N WP (R2) such that

uy+ky — u in W2P(R?) and in WP (R?).

Since —Au = f in R2?, there exists k € R such that z = u + k. We refind thus
the result obtained by Amrouche, Girault and Giroire in [1] for f € LP(R?).
The following proposition is then aquired.

Proposition 5.1 Assume that 1 < p < 2 and let f € LP(R?). Then Equation
3p
(5.1) has at least a solution uy of the form (3.41) such that Vuy € L35 (R?)N
2p
L7277 (R?), V2uy € LP(R?), and ‘g% € LP(R?). Moreover, if 1 < p < %, then
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uy € L%(RQ) N L>®(R?). Furthermore, there exists ky € R such that, when
A—0,
ux +kx — u in WPP(R?) and in WP (R?),

where u is the unique solution of Poisson’s Equation
—Au = f  inR? (5.6)
with the estimate

IV ull o g2y + IV ullLo@zy < Cllfllee)- (5.7)

For f € W, "P(R?) we have the following result

Proposition 5.2 Assume 1 < p < 2 and let f € ng’p(R2), satisfying the
compatibility condition

<fv 1>W07LP(R2)><WOLPI (R?) = 0. (58)

Then, Equation (5.1) has a unique solution uy € L%(Rz) N LP" (R?) such that
Vuy € LP(R?) and g% e Wy "P(R?). Moreover,

uy —u in WyP(R?) as A —0,
where u is the unique solution of Poisson’s Equation
~Au = f  inR? (5.9)
and the following estimate holds.
[ull Lo m2) + IV ull ey < Cllfllyre @2y (5.10)

Proof : By Isomorphism (2.7), there exists F € LP(R?) such that f = divF
and

[FllLe @2y < Cllflly1rge)- (5.11)
Setting
y= Az, ux(z)=v(y), F(x)=AG(y) and g =divG,

v satisfies Equation (5.2) where g € W, "?(R?) L R. By Theorem 3.11, this

equation has a unique solution v € L% (RQ) AL (R2) such that Vo € LP(RQ)
and aa—;’l = Wo_l’p(Rz), with the estimate

[0l o~ (m2) + IV 0l o2y < Cllglly 17 @2y < CIlGlLrr2)- (5.12)
As previously we get the estimate
lurllpros 2y + IV usllLerzy < C||F|| Lo (g2)- (5.13)

The sequences uy and V uy remain bounded in LP” (R?) and L?(R?) respectively.
These spaces are reflexives, there exists u € LP (R?) such that uy — u in
LP"(R?) and Vuy — Vu in LP(R?). We verify easily that u is a solution
of Poisson’s Equation (5.9) and satisfies Estimate (5.10). Uniqueness follows
by the fact that the space LP~ (R?) contains no polynomials. We deduce that
u € WyP(R?) and we refind also the result obtained in [1] for f € Wy "P(R?). ¢
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