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This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has an anisotropic properties, the problem is set in Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

Introduction

Let Ω be an exterior domain of R 2 or the whole space R 2 . We consider the following Oseen's problem:

-ν∆u + λ ∂u ∂x 1 + ∇π = f in Ω, div u = g in Ω, (1.1) 
u = u * on ∂Ω, with the condition on u at infinity

lim |x|→+∞ u(x) = u ∞ . (1.2) 
The viscosity ν, the external force f , the boundary values u * on ∂Ω and g are given. The unknown velocity field u is assumed to converge to a constant vector u ∞ , and the scalar function π denotes the unknown pressure. C. W. Oseen [START_REF] Oseen | Neuere Methoden und Ergebnisse in der Hydrodynamik[END_REF] obtained (1.1) by linearizing the Navier-Stokes equations, describing the flow of a viscous and incompressible fluid. Some authors worked on this problem. We can cite Finn [START_REF] Finn | On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems[END_REF][START_REF] Finn | Estimates at infinity for stationary solutions of the Navier-Stokes equations[END_REF], more recently Galdi [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], Farwig [START_REF] Farwig | A variational approach in weighted Sobolev spaces to the operator -∆ + ∂/∂x 1 in exterior domains of R 3[END_REF][START_REF] Farwig | The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces[END_REF], Farwig and Sohr [START_REF] Farwig | Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains[END_REF] and Amrouche and Razafison [START_REF] Amrouche | Weighted Sobolev paces for a scalar model of the stationary Oseen equation in R 3 , to appear[END_REF]. When Ω = R 2 , the system (1.1) is written as follows

-ν∆u + λ ∂u ∂x 1 + ∇π = f in R 2 , div u = g in R 2 , (1.3) 
1 with the same condition at infinity. Taking the divergence of the first equation of (1.3), we obtain a decoupled set of equations ∆π = f + ν∆g -λ ∂g ∂x 1 in R 2 , (1.4)

-ν∆u + λ ∂u ∂x 1 = f -∇ π in R 2 .
(1.5)

We use the results obtained in [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for the Poisson equation to solve Equation (1.4). Now observe that each component u j of the velocity satisfies

-ν∆u j + λ ∂u j ∂x 1 = f j - ∂π ∂x j in R 2 .
(1.6)

Then, we see that if we solve the scalar equation

-ν∆u + λ ∂u ∂x 1 = f in R 2 , (1.7) 
we can apply to Oseen problem the results obtained for this last equation. The aim of this paper is then to study the scalar Oseen equation (1.7). Since the fundamental solution of this equation has anisotropic decay properties, see (3.6), (3.9) we will work in Sobolev spaces with isotropic weight and anisotropic weight introduced by Farwig [START_REF] Farwig | A variational approach in weighted Sobolev spaces to the operator -∆ + ∂/∂x 1 in exterior domains of R 3[END_REF] in the particular Hilbertian case (p = 2). The case λ = 0 yields the Laplace's equation studied by Amrouche-Girault-Giroire [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] in weighted Sobolev spaces. This paper is divided into five sections. In section 2, we introduce the functional spaces and we recall some preliminaries results. We give also a density result of D(R 2 ) in an anisotropic weighted space and characterization of homogeneous Sobolev spaces. In the section 3, by adapting a technique used by Stein, we obtained results on the Oseen's potential which we used then to solve Equation (1.7), where the left hand side f is given on the one hand in L p (R 2 ) and on the other hand in W -1,p 0 (R 2 ). We also looked at the case where f belongs at the same moment to two space with different powers p and q. We considered, in the section 4, the case where f belongs to spaces L p with anisotropic weights. Finally, in the section 5, we considered the limit case when λ tends to zero and we compared the solution obtained with the Poisson's equation. The main results of this paper are given by the below theorems.

In Theorem 1, we give (L p , L q ) continuity properties for the Oseen opertors

f -→ O * f , f -→ ∂ ∂xi (O * f ) and f -→ ∂ 2 ∂xj ∂x k (O * f ).
We observe that the continuity results obtained for the Oseen equation (1.7) are better than the classic properties of the Riesz's potential associated to the Laplacian operator, corresponding to the case λ = 0. Theorem 1 Let f ∈ L p (R 2 ) with 1 < p < ∞. Then,

∂ 2 ∂xj ∂x k (O * f ) ∈ L p (R 2 ), ∂ ∂x1 (O * f ) ∈ L p (R 2
) and satisfy the estimate

∂ 2 ∂x j ∂x k (O * f ) L p (R 2 ) + ∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) .
Moreover,

1) i) if 1 < p < 2, ∇ (O * f ) ∈ L 3p 3-p (R 2 ) ∩ L 2p 2-p (R 2
) and satisfies

∇ (O * f ) L 3p 3-p (R 2 ) + ∇ (O * f ) L 2p 2-p (R 2 ) ≤ C f L p (R 2 ) . ii) If p = 2, ∇ (O * f ) ∈ L r (R 2
), for any r ≥ 6 and the following estimate holds.

∇ (O * f ) L r (R 2 ) ≤ C f L p (R 2 ) . iii) If 2 < p < 3, ∇ (O * f ) ∈ L 3p 3-p (R 2 ) ∩ L ∞ (R 2
) and we have the estimate.

∇ (O * f ) L 3p 3-p (R 2 ) + ∇ (O * f ) L ∞ (R 2 ) ≤ C f L p (R 2 ) . 2) if 1 < p < 3 2 , O * f ∈ L 3p 3-2p (R 2 ) ∩ L ∞ (R 2 ) and satisfies O * f L 3p 3-2p (R 2 ) + O * f L ∞ (R 2 ) ≤ C f L p (R 2 ) .
In Theorem 2, we give some similar results in the case when f belongs to a negative weighted Sobolev space W -1,p 0 (R 2 ) and we observe again that we obtain results better than in the case λ = 0. Theorem 2 Let f ∈ W -1,p 0 (R 2 ) satisfying the compatibility condition

f, 1 W -1,p 0 (R 2 )×W 1,p ′ 0 (R 2 ) = 0, when 1 < p ≤ 2. i) If 1 < p < 3, then u = O * f ∈ L 3p 3-p (R 2 )
is the unique solution of Equation (3.1) such that ∇ u ∈ L p (R 2 ) and ∂u ∂x1 ∈ W -1,p 0 (R 2 ). Moreover, we have the estimate

u L 3p 3-p (R 2 ) + ∇ u L p (R 2 ) + ∂u ∂x 1 W -1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) ,
and

u ∈ L 2p 2-p (R 2 ) when 1 < p < 2, u ∈ L r (R 2 ) for any r ≥ 6 when p = 2 and u ∈ L ∞ (R 2 ) when 2 < p < 3. ii) If p ≥ 3, then Equation (3.1) has a solution u ∈ W 1,p 0 (R 2 )
, unique up to a constant and we have

inf k∈R u + k f W 1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
Theorem 3 is concerned by the case where f belongs to L p spaces with anisotropic weight. Theorem 3 Assume that 2 < p < 32 11 and f ∈ L

p 1 2 , 1 4 (R 2 ), we have u = O * f ∈ L p -1 2 , 1 4 (R 2 ), ∂u ∂x2 ∈ L p 0, 1 4 (R 2 ), ∂u ∂x1 ∈ L p 1 2 , 1 4 (R 2 ) and ∇ 2 u ∈ L p 1 2 , 1 4 (R 2 )
. Moreover, we have the estimates

R 2 (1 + r) -p 2 (1 + s) p 4 |u| p dx + R 2 (1 + r) p 2 (1 + s) p 4 (| ∂u ∂x1 | p + |∇ 2 u| p ) dx + R 2 (1 + s) p 4 | ∂u ∂x2 | p dx ≤ C R 2 (1 + r) p 2 (1 + s) p 4 |f | p dx.

Functional Spaces and preliminaries

In this paper, p is a real number in the interval ]1, +∞[ and it's conjugate is denoted by p ′ . A point in R 2 is denoted x = (x 1 , x 2 ) and we denote:

r = |x| = (x 2 1 + x 2 2 ) 1/2 , ρ = (1 + r 2 ) 1/2 , s = r -x 1 , s ′ = r + x 1 , for a, b ∈ R, η a b = (1 + r) a (1 + s) b . For R > 0, B R
denotes the open ball of radius R centered at origin and B ′ R = R 2 \B R . For any j ∈ Z, P j is the space of polynomials of degree lower than or equal j and if j is negative we set, by convention, P j = 0. Let B be a Banach space, with dual space B ′ and a closed subspace X of B. We denote by B ′ ⊥ X the subspace of B ′ orthogonal to X defined by:

B ′ ⊥ X = {f ∈ B ′ ; ∀v ∈ X, f, v = 0}. For m ∈ N * , we set k = k(m, p, α) =    -1 if α + 2 p / ∈ {1, ..., m} m -α -2 p if α + 2 p ∈ {1, ..., m} (2.1) 
and we define the weighted Sobolev spaces

W m,p α (R 2 ) =    u ∈ D ′ (R 2 ); ∀λ ∈ N 2 : 0 ≤ |λ| ≤ k, ρ (α-m+|λ|) (lg ρ) -1 ∂ λ u ∈ L p (R 2 ); k + 1 ≤ |λ| ≤ m, ρ (α-m+|λ|) ∂ λ u ∈ L p (R 2 )    .
where lg ρ = ln (1 + ρ). It is a reflexive Banach space, equipped with its natural norm:

u W m,p α (R 2 ) = ( 0≤|λ|≤k ρ α-m+|λ| (lg ρ) -1 ∂ λ u p L p (R 2 ) + k+1≤|λ|≤m ρ α-m+|λ| ∂ λ u p L p (R 2 ) ) 1 p .
Its semi-norm is defined by

|u| W m,p α (R 2 ) = ( |λ|=m ρ α ∂ λ u p L p (R 2 ) ) 1 p .
The logarithmic weight appears only when α+ 2 p ∈ {1, ...m}. We refer to Kufner [START_REF] Kufner | Weighted Sobolev spaces[END_REF], Hanouzet [START_REF] Hanouzet | Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace Rend[END_REF], and Amrouche-Girault-Giroire [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for a detailed study of the space W m,p α (R n ). However, we recall some properties and results that we use in this paper. For any λ ∈ N 2 , the mapping

u ∈ W m,p α (R 2 ) -→ ∂ λ u ∈ W m-|λ|,p α (R 2 ) (2.2)
is continuous. When α + 2 p / ∈ {1, .., m}, we have the following continuous embedding and density

W m,p α (R 2 ) ⊂ W m-1,p α-1 (R 2 ) ⊂ ... ⊂ W 0,p α-m (R 2 ), (2.3) 
where,

W 0,p α (R 2 ) = u ∈ D ′ (R 2 ); ρ α u ∈ L p (R 2
) and note that the mapping

u ∈ W m,p α (R 2 ) -→ ρ γ u ∈ W m,p α-γ (R 2 ) (2.4)
is continuous, what is not the case if α + 2 p ∈ {1, .., m}. The space W m,p α (R 2 ) contains the polynomials of degree lower or equal to j, denoted P j , where j ∈ N is defined by

j = [m -α -2 p ], if α + 2 p / ∈ Z - j = m -1 -α -2 p , otherwise. (2.5)
The following theorem is fundamental (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF])

Theorem 2.1 Let m ≥ 1 an integer and α a real number, then there exists a constant C such that

∀u ∈ W m,p α (R 2 ), inf λ∈Pj u + λ W m,p α (R 2 ) ≤ C|u| W m,p α (R 2 ) , (2.6) 
where j is the highest degree of polynomial contained in W m,p α (R 2 ).

We define the space

H p = {v ∈ L p (R 2 ), divv = 0}.
Theorem 2.1 permits to prove that the following divergence operator is an isomorphism (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]):

div : L p ′ (R 2 )/H p -→ W -1,p ′ 0 (R 2 ) ⊥ P [1-2 p ]
(2.7)

The next result is a consequence of Theorem 2.1 (see [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF]):

Proposition 2.2 Let m ≥ 1 be an integer and a distribution u such that

∀λ ∈ N 2 : |λ| = m, ∂ λ u ∈ L p (R 2 ). (i) If 1 < p < 2, then there exists a unique polynomial K(u) ∈ P m-1 such that u + K(u) ∈ W m,p 0 (R 2 ), and inf µ∈P [m-2 p ] u + K(u) + µ W m,p 0 (R 2 ) ≤ C|u| W m,p 0 (R 2 ) (2.8) (ii) If p ≥ 2, then u ∈ W m,p 0 (R 2 ) and inf µ∈P [m-2 p ] u + µ W m,p 0 (R 2 ) ≤ C|u| W m,p 0 (R 2 ) . (2.9) 
When 1 < p < 2, we have the following charecterization of the space W 1,p 0 (R 2 ):

W 1,p 0 (R 2 ) = {v ∈ L 2p 2-p (R 2 ); ∇ v ∈ L p (R 2 )}. (2.10)
We recall the spaces introduced in [2]:

W 1,p 0 (R 2 ) = u ∈ W 1,p 0 (R 2 ); ∂u ∂x 1 ∈ W -1,p 0 (R 2 ) , (2.11) 
which is a Banach space for its natural norm:

u f W 1,p 0 (R 2 ) = u W 1,p 0 (R 2 ) + ∂u ∂x 1 W -1,p 0 (R 2 ) .
Also, we define

W 2,p 0 (R 2 ) = u ∈ W 2,p 0 (R 2 ); ∂u ∂x 1 ∈ L p (R 2 ) , (2.12) 
which is a Banach space for its natural norm:

u f W 2,p 0 (R 2 ) = u W 2,p 0 (R 2 ) + ∂u ∂x 1 L p (R 2 ) .
Its dual space denoted W -2,p ′ 0 (R 2 ) can be characterized as follows (see also Remark 2.5).

Proposition 2.3 Let f ∈ W -2,p ′ 0 (R 2 ). Then, i) if p = 2, there exists f 0 ∈ W 0,p ′ 2 (R 2 ), F ∈ (W 0,p ′ 1 (R 2 )) 2 , H ∈ (L p ′ (R 2 )) 2×2 and h ∈ L p ′ (R 2 ) such that for all v ∈ W 2,p 0 (R 2 ), we have f, v f W -2,p ′ 0 (R 2 )× f W 2,p 0 (R 2 ) = f 0 , v W 0,p ′ 2 ×W 0,p -2 + F, ∇ v W 0,p ′ 1 ×W 0,p -1 + H, ∇ 2 v L p ′ ×L p + h, ∂v ∂x1 L p ′ ×L p .
(2.13)

ii) If p = 2 we take, on a one hand, the weight ρ lg ρ instead of ρ in the definition of W 0,p ′ 1 (R 2 ) and W 0,p -1 (R 2 ), on the other hand, ρ 2 lg ρ instead of ρ 2 in the definition of W 0,p ′ 2 (R 2 ) and W 0,p -2 (R 2 ).

Proof : i) Suppose p = 2. Let E = W 0,p -2 (R 2 ) × (W 0,p -1 (R 2 )) 2 × (L p (R 2 )) 2×2 × L p (R 2
), equipped with the norm:

ψ E = ψ 0 W 0,p -2 + n i=1 ψ i W 0,p -1 + n j,k=1 ψ j,k L p + Ω L p ,
where ψ = (ψ 0 , ψ i , ψ j,k , Ω). It is clear that the following operator is an isometric

T : v ∈ W 2,p 0 (R 2 ) -→ (v, ∇ v, ∇ 2 v, ∂v ∂x 1 ) ∈ E . For all f ∈ W -2,p ′ 0 (R 2 ), the operator defined by L(h) = f, T -1 h is continuous on T ( W 2,p 0 (R 2 )
) which is a closed subspace of E . Then, by the Hahn-Banach theorem, we can extend L to an element L of the dual of E . Now, by the Riesz theorem, there exists

f 0 ∈ W 0,p ′ 2 (R 2 ), F ∈ (W 0,p ′ 1 (R 2 )) 2 , H ∈ (L p ′ (R 2 )) 2×2 and h ∈ L p ′ (R 2 ) satisfying (2.13). ii) if p = 2, we take ρ lg ρF i ∈ L p ′ (R 2 ), in the definition of W 0,p ′ 1 (R 2 ), ρ 2 lg ρf 0 ∈ L p ′ (R 2 ) in the definition of W 0,p ′ 2 (R 2
) and we proceed as the case i). Let us note that, when 1 < p < 2, thanks to Theorem 2.1, we can take F = 0 . ♦ This proposition permits to prove the next result

Proposition 2.4 D(R 2 ) is dense in W 2,p 0 (R 2 ). Proof : Let f ∈ W -2,p ′ 0 (R 2 ) such that ∀ϕ ∈ D(R 2 ), f, ϕ f W -2,p ′ 0 (R 2 )× f W 2,p 0 (R 2 ) = 0. (2.14) i) If p ′ = 2
, by the previous proposition, there exist (2.13). In particular, taking v = ϕ ∈ D(R 2 ) in this equation, we have by (2.14):

f 0 ∈ W 0,p ′ 2 (R 2 ), F ∈ (W 0,p ′ 1 (R 2 )) 2 , H ∈ (L p ′ (R 2 )) 2×2 and h ∈ L p (R 2 ) satisfying
f 0 -divF + div(divH ) - ∂h ∂x 1 = 0,
in distributions sense. Now, by (2.3), we have the continuous embedding and density W 1,p 0 (R 2 ) ⊂ W 0,p -1 (R 2 ). Then, by duality, we have the embedding

W 0,p ′ 1 (R 2 ) ⊂ W -1,p ′ 0 (R 2 ), so F ∈ (W -1,p ′ 0 (R 2 )) 2 , which implies divF ∈ W -2,p ′ 0 (R 2 ).
By the same argument, we deduce f 0 ∈ W -2,p ′ 0 (R 2 ), thus the last equation yields

∂h ∂x 1 = f 0 -divF + div(divH ) ∈ W -2,p ′ 0 (R 2 ) ∩ W -1,p ′ 0 (R 2 ).
So, Equation (2.13) can be writen:

f, v f W -2,p ′ 0 (R 2 )× f W 2,p 0 (R 2 ) = f 0 -divF +div(divH )- ∂h ∂x 1 , v W -2,p ′ 0 (R 2 )×W 2,p 0 (R 2 ) . Let v ∈ W 2,p 0 (R 2 ). Since D(R 2 ) is dense in W 2,p 0 (R 2 ), there exists a sequence ϕ k ∈ D(R 2 ) such that ϕ k -→ v in W 2,p 0 (R 2 )
. We obtain then,

f, v f W -2,p ′ 0 (R 2 )× f W 2,p 0 (R 2 ) = lim k→∞ f 0 -divF +divdivH - ∂h ∂x 1 , ϕ k W -2,p ′ 0 ×W 2,p 0 = 0.
ii) If p = 2, we take (ρ lg ρ)F ∈ L p ′ (R 2 ) and (ρ 2 lg ρ)f 0 ∈ L p ′ (R 2 ) we obtain, by the previous embeddings,

F ∈ (W -1,p ′ 0 (R 2 )) 2 and f 0 ∈ W -2,p ′ 0 (R 2
). Proceeding as in case i), the result holds and finishes the proof. ♦ Remark 2.5 Property (2.13) is equivalent to

W -2,p ′ 0 (R 2 ) = f ∈ D ′ (R 2 ); f = f 0 + divF + div(divH ) + ∂h ∂x 1 , (2.15) 
where f 0 , F , H and h are defined in Proposition 2.3.

Using the same technics as in the proof of the Payne-Weinberger inequality, we get the following:

Lemma 2.6 Let u ∈ D ′ (R 2 ) such that ∇ u ∈ L p (R 2 ). i) If 1 < p < 2 then
, there exists a unique constant u ∞ , defined by

u ∞ = lim r→∞ 1 2π 2π 0 u(rcos θ, rsin θ) dθ, (2.16 
)

such that u -u ∞ ∈ W 1,p 0 (R 2 ).
(2.17)

Moreover, we have u -u ∞ ∈ L 2p 2-p (R 2 ), (2.18) 
with the estimate

u -u ∞ L 2p 2-p (R 2 ) ≤ C ∇ u L p (R 2 ) , (2.19 
)

and 2π 0 |u(rcos θ, rsin θ) -u ∞ | p dθ ≤ C r p-2 {|x|>r} |∇ u| p dx. (2.20) ii) If p > 2, then u ∈ W 1,p 0 (R 2 ) and verifies |u(x)| ≤ Cr 1-2 p u W 1,p 0 (R 2 ) and r 2 p -1 |u(x)| -→ 0. (2.21)
The next result is a corollary of the previous lemma.

Corollary 2.7 Let u ∈ D ′ (R 2 ) such that ∇ 2 u ∈ L p (R 2 ). Then, i) if 1 < p < 2, there exists a unique vector A ∈ R 2 such that ∇ u + A ∈ L 2p 2-p (R 2 ),
where A is defined by

A = -lim r→∞ 1 2π 2π 0 ∇ u(rcos θ, rsin θ)dθ. (2.22) Moreover, u + A.x ∈ W 2,p 0 (R 2 ) and satisfies inf k∈R u + A.x + k W 2,p 0 (R 2 ) ≤ C|u| W 2,p 0 (R 2 ) . (2.23) ii) If p ≥ 2, then u ∈ W 2,p 0 (R 2 ) and inf λ∈P1 u + λ W 2,p 0 (R 2 ) ≤ C|u| W 2,p 0 (R 2 ) . (2.24)
Now, with these last result, we can give precisely definition of limit at infinity.

Definition 2.8 Let u ∈ D ′ (R 2 ) such that ∇ u ∈ L p (R 2
). We say that u tends to u ∞ ∈ R at infinity and we denote

lim |x|→∞ u(x) = u ∞ , if lim r→∞ 2π 0 |u(rcos θ, rsin θ) -u ∞ |d θ = 0. Remark 2.9 Let u ∈ D ′ (R 2 ) such that ∇ u ∈ L p (R 2 ). If 1 < p < 2, we have the equivalence of the following propositions i) u -u ∞ ∈ W 1,p 0 (R 2 ), ii) lim |x|→∞ u(x) = u ∞ in the sense of Definition 2.8 .
Finally, we recall the following lemma Lemma 2.10 Let r and p two reals such that 1 < r < ∞ and p > 2. Let u ∈ L r (R 2 ) and ∇ u ∈ L p (R 2 ). Then u is a continuous function on R 2 and

lim |x|→∞ u(x) = 0.
3 The scalar Oseen equation in R 2 .

In this section, we propose to solve the scalar Oseen equation (1.7). In order to simplify the notations, we assume without loss the generality λ = ν = 1:

-∆u + ∂u ∂x 1 = f in R 2 , (3.1) 
where f ∈ D ′ (R 2 ). To that end, let us define the operator

T : u -→ -∆u + ∂u ∂x 1 . (3.2)

Study of the kernel

We consider the kernel of the operator T when it is defined on the tempered distributions S ′ (R 2 ). Let u be an element of the kernel, by Fourier's transform we can write

4π 2 |ξ| 2 û(ξ) + 2iπξ 1 û(ξ) = 0. Setting û(ξ) = v(ξ) + iw(ξ), it follows that 4π 2 |ξ| 2 v(ξ) -2πξ 1 w(ξ) = 0, 2πξ 1 v(ξ) + 4π 2 |ξ| 2 w(ξ) = 0. (3.3)
Since the determinant of the above system is 16π 4 |ξ| 4 + 4π 2 |ξ| 2 , we deduce that, for ξ = 0, the support of û is included in {0}. Then we have

û(ξ) = c α δ (α) , c α ∈ C, with a finite sum.
By the inverse Fourier's transform, we get

u(x) = d α x α , d α ∈ C, with a finite sum,
then, u is a polynomial. Setting for all integer k

S k = {q ∈ P k ; -∆q + ∂q ∂x 1 = 0}, (3.4) 
if T is defined on S ′ (R 2 ), then ker T = S k , and we have:

Lemma 3.1 Let f ∈ S ′ (R 2
) be a tempered distribution and let u ∈ S ′ (R 2 ) be a solution of (3.1). Then u is uniquely determined up to polynomial of S k .

Let us notice that S 0 = R and S 1 is a space of polynomials of degree less than or equal one and independent of x 1 .

The fundamental solution

Following the idea of [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], we look for the fundamental solution O of the scalar Oseen equation under the shape

O(x) = e x 1 2 f ( r 2 ),
we find by a direct computations:

-∆O + ∂O ∂x 1 = 1 2πr 2 e x 1 2 ( r 2 ) 2 f ′′ ( r 2 ) + r 2 f ′ ( r 2 ) -( r 2 ) 2 f ( r 2 ) ,
where, for y = r 2 ,

y 2 f ′′ (y) + yf ′ (y) -y 2 f (y) = 0
is the modified Bessel equation. The singular solution at y = 0, K 0 of this equation cannot be given explicitly however, we can give an esimates in a neighborhood of zero and when y is large as follow.

(i) When y is small

K 0 (y) = ln 1 y + ln 2 -γ + σ(y), (3.5) 
where γ is the Euler constant and σ satisfies

d k σ dy k = o(y -k ).
Then, when r is close to zero,

O(x) = - 1 2π e x 1 2 ln 1 r + 2ln 2 -γ + σ(r) . (3.6) 
(ii) When r -→ +∞, using the asymptotic developpement given in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] we have

K 0 ( r 2 ) = π r 1 2 e -r 2 1 - 1 4r + O(r -2 ) , K ′ 0 ( r 2 ) = π r 1 2 e -r 2 -1 - 3 4r + O(r -2 ) .
As the divatives of O are given by

∂O ∂x 1 = - 1 4π e x 1 2 K 0 ( r 2 ) + x 1 r K ′ 0 ( r 2 ) , (3.7) 
∂O ∂x 2 = - x 2 4πr e x 1 2 K ′ 0 ( r 2 ). (3.8)
We deduce then the behavior of the fundamental solution O and these derivatives when r tends to the infinity.

O(x) = - 1 2 √ πr e -s 2 1 - 1 4r + O(r -2 ) , (3.9) 
∂O ∂x 1 = - 1 4 √ πr e -s 2 s r - r + 3x 1 8r 2 + O(r -2 ) , (3.10) 
∂O ∂x 2 = x 2 4r
√ πr e -s

2 1 + 3 4r + O(r -2 ) . (3.11)
Using the inequality:

∀b ∈ R, e -s/2 ≤ C b (1 + s) b .
we obtain the following anisotropic estimates

|O(x)| ≤ C r -1 2 (1 + s) -1 , | ∂O ∂x1 (x)| ≤ C r -3 2 (1 + s) -1 , | ∂O ∂x2 (x)| ≤ C r -1 (1 + s) -1 .
(3.12)

Let f and g two functions defined on an interval

I ⊂ R. We denote f ∼ g on J ⊂ I if there exist two positive constants C 1 and C 2 such that C 1 g(t) ≤ f (t) ≤ C 2 g(t) for all t in J.
To study the integrability properties of the fundamental solution and its derivatives, we need the following result.

Lemma 3.2 Assume that 2 -α -min( 1 2 , β) < 0.
Then, there exists a constant C > 0 such that, for all µ > 1, we have

|x|>µ r -α (1 + s) -β dx ≤    Cµ 2-α-min( 1 2 ,β) , if β = 1 2 , Cµ 3 2 -α ln r, if β = 1 2 .
(3.13)

Proof : First we prove the following result.

∂Br

r -α (1 + s) -β dσ ∼    r 1-α-min( 1 2 ,β) if β = 1 2 , r 1 2 -α ln r, if β = 1 2 .
(3.14)

Using the polar coordinates, we have for s = r(1 -cos θ):

I = ∂Br r -α (1 + s) -β dσ = 2r 1-α π 0 (1 + r(1 -cos θ)) -β dθ.
Since r 2 sin 2 θ = 2rs -s 2 then,

I = 2r 1-α 2r 0 (1 + s) -β (2rs -s 2 ) -1 2 ds. i) When 0 < s ≤ 1, 1 + s ∼ 1, then 1 0 (1 + s) -β (2rs -s 2 ) -1 2 ds ∼ r -1 2 1 0 s -1 2 ds ∼ r -1 2 .
ii) When 1 < s < r, 1 + s ∼ s and 2rs -

s 2 = s(2r -s) ∼ rs then r 1 (1 + s) -β (2rs -s 2 ) -1 2 ds ∼ r -1 2 r 1 s -1 2 -β ds ∼ r -min( 1 2 ,β) . and, if β = 1 2 , we get r 1 (1 + s) -β (2rs -s 2 ) -1 2 ds ∼ r -1 2 ln r.
iii) When r < s < 2r, 1 + s ∼ r and 2rs -s 2 ∼ r(2r -s)

then 2r r (1 + s) -β (2rs -s 2 ) -1 2 ds ∼ r -1 2 -β 2r r (2r -s) -1 2 ds ∼ r -β .
So,

I ∼ r 1-α-min( 1 2 ,β) r min( 1 2 ,β)-1 2 + 1 + r min( 1 2 ,β)-β ∼    r 1-α-min( 1 2 ,β) if β = 1 2 , r 1 2 -α ln r, if β = 1 2 .
By this equivalence we deduce:

|x|>µ r -α (1 + s) -β dx < +∞ ⇐⇒ 2 -α -min( 1 2 , β) < 0. (3.15)
When this condition is satisfied we obtain our result. ♦ Using Lemma 3.2 with estimate (3.12) we deduce

∀p > 3, O ∈ L p (R 2 ) and ∀p ∈ ] 3 2 , 2[, ∇ O ∈ L p (R 2 ), (3.16) 
that means that in particular O ∈ W 1,p 0 (R 2 ) for any 3 2 < p < 2. Note also that

O ∈ L 1 loc (R 2 ) and ∇ O ∈ L 1 loc (R 2 ), (3.17) 
and for

B R = R 2 \ B(0 , R) ∀p > 3, O ∈ L p (B R ) and ∀p > 3 2 , ∇ O ∈ L p (B R ). (3.18)
With the L ∞ weighted estimates obtained in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] (Thms 3.5, 3.7 and 3.8), we get estimates on the convolution of Ȏ with a function ϕ ∈ D(R 2 ) as follows Lemma 3.3 For any ϕ ∈ D(R 2 ) we have the estimates

| Ȏ * ϕ(x)| ≤ C ϕ 1 |x| 1 2 (1 + |x| + x 1 ) 1 2 , (3.19) | ∂ ∂x 1 ( Ȏ * ϕ)(x)| ≤ C ϕ 1 |x| 3 2 (1 + |x| + x 1 ) 1 2 , (3.20) | ∂ ∂x 2 ( Ȏ * ϕ)(x)| ≤ C ϕ 1 |x|(1 + |x| + x 1 ) , (3.21) 
where C ϕ depends on the support of ϕ and Ȏ(x) = O(-x).

Remark 3.4 1)

The behavior on |x| of Ȏ * ϕ and its first derivatives is the same that that of Ȏ but, the behavior on 1 + s ′ is a little bit different.

2) By Lemma 3.2 and these last estimations we find that

∀q > 3 2 , Ȏ * ϕ ∈ W 1,q 0 (R 2 ). (3.22)

Oseen potential and existence results

Using the weak-type (p,q) operators and the Marcinkiewicz interpolation's Theorem, we have the following

Theorem 3.5 Let f given in L p (R 2 ). Then ∂ 2 ∂xj ∂x k (O * f ) ∈ L p (R 2 ), ∂ ∂x1 (O * f ) ∈ L p (R 2
) and satisfy the estimate

∂ 2 ∂x j ∂x k (O * f ) L p (R 2 ) + ∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) . (3.23) Moreover, i) if 1 < p < 3 2 , then O * f ∈ L 3p 3-2p (R 2 ) and satisfies O * f L 3p 3-2p (R 2 ) ≤ C f L p (R 2 ) . (3.24) ii) If 1 < p < 3, then ∂ ∂xi (O * f ) ∈ L 3p 3-p (R 2
) and verifies the estimate

∂ ∂x i (O * f ) L 3p 3-p (R 2 ) ≤ C f L p (R 2 ) . ( 3 

.25)

Proof : By the Fourier's transform, we obtain from Equation (3.1):

F( ∂ 2 ∂x j ∂x k (O * f )) = -4π 2 ξ j ξ k 4π 2 |ξ| 2 + 2πiξ 1 F(f ). Since the function ξ → m(ξ) = -4π 2 ξj ξ k 4π 2 |ξ| 2 +2πiξ1 is of class C 2 in R 2 \{0} and satisfies for every α = (α 1 , α 2 ) ∈ N 2 | ∂ |α| m ∂ξ α (ξ)| ≤ B|ξ| -α ,
where, |α| = α 1 + α 2 and B is a constant. Then, the linear operator

T : f → ∂ 2 ∂x j ∂x k (O * f )(x) = R 2 e 2πixξ -4π 2 ξ j ξ k 4π 2 |ξ| 2 + 2πiξ 1 F(f )(ξ) dξ is continous from L p (R 2 ) to L p (R 2 ). So, ∂ 2 ∂xj ∂x k (O * f ) ∈ L p (R 2
) and satisfies

∂ 2 ∂x j ∂x k (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) . (3.26) 
(see E. Stein [START_REF] Elias | Singulars Integrals and Differentiability Properties of Functions[END_REF], Thm 3.2, p.96.) Now, from Equation (3.1), we deduce that

∂ ∂x1 (O * f ) ∈ L p (R 2
) and the estimate

∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C ∆(O * f ) L p (R 2 ) + f L p (R 2 ) , (3.27) 
which proves the first part of proposition and Estimate (3.23). Next, to prove i) and ii), we adapt the technic used by Stein in [START_REF] Elias | Singulars Integrals and Differentiability Properties of Functions[END_REF] which studied the convolution of f ∈ L p (R n ) with the kernel |x| α-n . We split the function

K into K 1 + K ∞ where, K 1 (x) = K(x) if |x| ≤ µ and K 1 (x) = 0 if |x| > µ, K ∞ (x) = 0 if |x| ≤ µ and K ∞ (x) = K(x) if |x| > µ.
The function K denotes successively O and ∂O ∂xi and the positive number µ will be fixed in the sequel. 1) Estimate (3.24). According to (3.6), we have

O 1 ∈ L 1 (R 2 ) and by (3.16), O ∞ ∈ L p ′ (R 2 ), then, O 1 * f exists almost everywhere and O ∞ * f exists every- where so, O * f = O 1 * f + O ∞ * f exists
almost everywhere. Next, we shall show that f → O * f is of weak-type (p, q) with q = 3p 3-2p in the sense that:

mes {x ; |(O * f )(x)| > λ} ≤ C p,q f L p (R 2 ) λ q
, for all λ > 0.

(3.28)

We have:

mes {x ; |O * f | > 2λ} ≤ mes {x ; |O 1 * f | > λ} + mes {x ; |O ∞ * f | > λ}, and 
mes {x ; |(O 1 * f )(x)| > λ} ≤ O 1 p L 1 (R 2 ) f p L p (R 2 ) λ p , O ∞ * f L ∞ (R 2 ) ≤ O ∞ L p ′ (R 2 ) f L p (R 2 ) .
Note that it is enough to prove inequality (3.28) for

f L p (R 2 ) = 1. i) Estimate of I = |x|<µ |O(x)| dx. If 0 < µ ≤ 1, then by (3.6), I ≤ Cµ. If µ > 1, I = |x|<1 |O(x)| dx + 1<|x|≤µ |O(x)| dx. Since O ∈ L 1 loc (R 2 ), then |x|<1 |O(x)| dx ≤ C ≤ Cµ.
Further, from estimate (3.12) and using lemma 3.2, we have

1<|x|<µ |O(x)| dx ≤ C 1<|x|<µ r -1 2 (1 + s) -1 dx ≤ Cµ, then, ∀µ > 0, O 1 L 1 (R 2 ) ≤ Cµ. (3.29) ii) Estimate of J = |x|>µ |O(x)| p ′ dx. If µ > 1, |O(x)| p ′ ∼ e -p ′ s 2 r -p ′ 2 ≤ Cr -p ′ 2 (1 + s) -p ′ . Then by Lemma 3.2, for p ′ > 3, we have J ≤ Cµ 3 2 -p ′ 2 . If 0 < µ ≤ 1, J = µ<|x|<1 |O(x)| p ′ dx + |x|>1 |O(x)| p ′ dx = J 1 + J 2 .
Proceeding as previously, we get

J 2 ≤ C ≤ Cµ 3 2 -p ′ 2 .
We have also

J 1 = µ<|x|≤1 e p ′ x 1 2 | -ln r + 2ln 2 + γ + o(r)| p ′ dx ≤ C ≤ Cµ 3 2 -p ′ 2 .
Then,

for p ′ > 3 and µ > 0, O ∞ L p ′ (R 2 ) ≤ Cµ 3-p ′ 2p ′ .
(3.30)

Setting λ = Cµ 3-p ′ 2p ′ which implies µ = C ′ λ 2p ′ 3-p ′ = C ′ λ 2p 2p-3 , we get mes {x ∈ R 2 ; |(O ∞ * f )(x)| > λ} = 0.
So, for 1 < p < 3 2 , we have

mes {x ∈ R 2 ; (|O * f )(x)| > 2λ} ≤ C O 1 p L 1 (R 2 ) λ p ≤ C µ p λ p ≤ C 1 λ 3p 3-2p
, which proves inequality (3.28).

2) Estimate (3.25). We have also

K 1 ∈ L 1 (R 2 ) and K ∞ ∈ L p ′ (R 2 ) where, K = ∂O ∂xi , i = 1, 2. i) Estimate of |x|>µ | ∂O ∂xi (x)| p ′ dx.
Using estimate (3.12), we get for µ ≥ 1 and p < 3:

|x|>µ | ∂O ∂x i (x)| p ′ dx ≤ Cµ 3 2 -3p ′ 2 ≤ Cµ 3 2 -p ′ . (3.31) For µ < 1, |x|>µ | ∂O ∂x i (x)| p ′ dx = µ<|x|<1 | ∂O ∂x i (x)| p ′ dx + |x|>1 | ∂O ∂x i (x)| p ′ dx. The case µ ≥ 1 yields |x|>1 | ∂O ∂x i (x)| p ′ dx ≤ C ≤ Cµ 3 2 -p ′ .
We have also

µ<|x|<1 | ∂O ∂x i (x)| p ′ dx ≤ 1 µ r 1-q dr π 0 e p ′ 2 rcos θ |sin θ + C ′ | p ′ dθ ≤ C 1 µ r 1 2 -q dr ≤ Cµ 3 2 -p ′ .
So, by these two inequalities and (3.31), we get

∂O ∂x i L p ′ (R 2 ) ≤ Cµ 3-2p ′ p ′ . (3.32) ii) Estimate of J = |x|<µ | ∂O ∂xi (x)| dx. If 0 < µ < 1, J = |x|<µ |e x 1 2 | x 2 r 2 + o( 1 r )| dx = µ 0 π -π e r 2 cos θ |sin θ + C ′ |drdθ ≤ C µ 0 dr ≤ Cµ ≤ Cµ 1 2 . If µ ≥ 1, J = |x|<1 | ∂O ∂x i |dx + 1<|x|<µ | ∂O ∂x i |dx = J 1 + J 2 .
The preceding case yields

J 1 ≤ C ≤ Cµ 1 2
. By Estimate (3.12) and Lemma 3.2 we have

J 2 ≤ C |x|<µ dx r(1 + s) ≤ C µ 0 r -1 2 dr ≤ Cµ 1 2 .
We obtain then

∂O ∂x i L 1 (R 2 ) ≤ Cµ 1 2 . (3.33) Since O ∈ L 1 loc (R 2 ) and ∂O ∂xi ∈ L 1 loc (R 2 ), then ∂ ∂xi (O * f ) = ∂O ∂xi * f .
As previously, we have, for 1 < p < 3 and all λ > 0:

mes {x ∈ R 2 ; | ∂ ∂x i (O * f )(x)| > 2λ} ≤ C 1 λ 3p 3-p .
Now, using the Marcinkiewicz Theorem, the operator R :

f → O * f is continuous from L p (R 2 ) into L 3p 3-2p (R 2 ) and R i : f → ∂ ∂xi (O * f ) is continuous from L p (R 2 ) into L 3p 3-p (R 2 ). ♦ Remark 3.6 i) We can prove that O ∈ L 3,∞ (R 2 ), i.e sup µ>0 µ 3 mes {x ∈ R 2 ; |O(x)| > µ} < +∞. (3.34)
So that, thanks to the weak Young inequality (cf. Reed-Simon [START_REF] Reed | Fourier Analysis Self-Adjointness[END_REF]):

O * f L 3p 3-2p ,∞ (R 2 ) ≤ C O L 3,∞ (R 2 ) f L p,∞ (R 2 ) . (3.35)
This estimate shows that if 1 < p < 3 2 , there exist p 0 and p 1 such that 1 < p 0 < p < p 1 < 3 2 and such that the operator

T : f -→ O * f is continuous from L p0 (R 2 ) into L 3p 0 3-2p 0 ,∞ (R 2 ) and from L p1 (R 2 ) into L 3p 1 3-2p 1 ,∞ (R 2 ).
The interpolation Marcinkiewicz theorem allows again to conclude that the operator T :

L p (R 2 ) -→ L 3p 3-2p (R 2 ) is continuous.
ii) The same remark is true for ∇ O which belongs to L By Theorem 3.5 and the Sobolev embedding we easily obtain the following result.

Theorem 3.7 Let f ∈ L p (R 2 ) with 1 < p < ∞. Then, ∂ 2 ∂xj ∂x k (O * f ) ∈ L p (R 2 ), ∂ ∂x1 (O * f ) ∈ L p (R 2
) and satisfy the estimate

∂ 2 ∂x j ∂x k (O * f ) L p (R 2 ) + ∂ ∂x 1 (O * f ) L p (R 2 ) ≤ C f L p (R 2 ) . (3.36) Moreover, 1) i) if 1 < p < 2, ∇ (O * f ) ∈ L 3p 3-p (R 2 ) ∩ L 2p 2-p (R 2
) and satisfies

∇ (O * f ) L 3p 3-p (R 2 ) + ∇ (O * f ) L 2p 2-p (R 2 ) ≤ C f L p (R 2 ) . (3.37) ii) If p = 2, ∇ (O * f ) ∈ L r (R 2
) for any r ≥ 6 and the following estimate holds.

∇ (O * f ) L r (R 2 ) ≤ C f L p (R 2 ) . (3.38) iii) If 2 < p < 3, ∇ (O * f ) ∈ L 3p 3-p (R 2 ) ∩ L ∞ (R 2
) and we have the estimate. 

∇ (O * f ) L 3p 3-p (R 2 ) + ∇ (O * f ) L ∞ (R 2 ) ≤ C f L p (R 2 ) . (3.39) 2) if 1 < p < 3 2 , O * f ∈ L 3p 3-2p (R 2 ) ∩ L ∞ (R 2 ) and satisfies O * f L 3p 3-2p (R 2 ) + O * f L ∞ (R 2 ) ≤ C f L p (R 2 ) . ( 3 
if f ∈ L p (R 2 ) with 1 < p < 3 2 , then O * f ∈ L q (R 2
) for all q ∈ ] 3p 3-2p , +∞[, property a little weaker than (3.40). ii) the same remark is true for ∇ (O * f ).

By using Theorem 3.7 and Lemma 3.1 it is clear that if f ∈ L p (R 2 ) then the solutions of Equation (3.1) are of the form:

u = O * f + Q, with Q ∈ S [2-3 p ] . (3.41) 
What means that O * f is the unique solution of Equation (3.1) if 1 < p < 3 2 , up to a constants if 3 2 ≤ p < 3 and up to an elements of S 1 if p ≥ 3. By Theorem 3.7, we have the following result for a given f ∈ L p (R 2 ). Theorem 3.9 Let f ∈ L p (R 2 ), then Equation (3.1) has at least a solution u of the form (3.41) such that ∇ 2 u ∈ L p (R 2 ), ∂u ∂x1 ∈ L p (R 2 ) and verify the estimate

∇ 2 u L p (R 2 ) + ∂u ∂x 1 L p (R 2 ) ≤ C f L p (R 2 ) . (3.42) Moreover, 1) if 1 < p < 3 2 , then u ∈ L 3p 3-2p (R 2 ) ∩ L ∞ (R 2 ), ∇ u ∈ L 3p 3-p (R 2 ) ∩ L 2p 2-p (R 2 ) and satisfy u L 3p 3-2p (R 2 ) + u L ∞ (R 2 ) + ∇ u L 3p 3-p (R 2 ) + ∇ u L 2p 2-p (R 2 ) ≤ C f L p (R 2 ) . (3.43) 2) i) if 3 2 ≤ p < 2, then ∇ u ∈ L 3p 3-p (R 2 ) ∩ L 2p 2-p (R 2 ) and satisfies ∇ u L 3p 3-p (R 2 ) + ∇ u L 2p 2-p (R 2 ) ≤ C f L p (R 2 ) , (3.44) 
ii) if p = 2, ∇ u ∈ L r (R 2 ) for any r ≥ 6 and the following estimate holds.

∇ u L r (R 2 ) ≤ C f L p (R 2 ) . (3.45) iii) if 2 < p < 3, then ∇ u ∈ L 3p 3-p (R 2 ) ∩ L ∞ (R 2
) and:

∇ u L 3p 3-p (R 2 ) + ∇ u L ∞ (R 2 ) ≤ C f L p (R 2 ) . (3.46)
3) If p ≥ 3, then u ∈ W 2,p 0 (R 2 ) and we have the estimate

inf λ∈S1 u + λ W 2,p 0 (R 2 ) ≤ C f L p (R 2 ) .
(3.47) Remark 3.10 Another demonstration of Theorem 3.9 consists in using the Fourier's approach. Let (f j ) j∈N ⊂ D(R 2 ) a sequence converging to f in L p (R 2 ). Then the sequence (u j ) given by:

u j = F -1 (m 0 (ξ) fj ), m 0 (ξ) = (4π|ξ| 2 + 2iπξ 1 ) -1 , (3.48)
is a solution of Equation (3.1) with the right-hand side f j . Let us recall now the:

Lizorkin Theorem Let D = {ξ ∈ R 2 ; |ξ 1 | > 0, |ξ 2 | > 0} and m : D -→ C, a continuous fonction such that its derivatives ∂ k m ∂ξ k 1 1 ∂ξ k 2 2
are continuous and verify

|ξ 1 | k1+β |ξ 2 | k2+β ∂ k m ∂ξ k1 1 ∂ξ k2 2 ≤ M, (3.49) 
where

k 1 , k 2 ∈ {0, 1}, k = k 1 + k 2 and 0 ≤ β < 1.
Then, the operator

T : g -→ F -1 (m 0 F(g)), m 0 (ξ) = 1 4π 2 |ξ| 2 + 2iπξ 1 , is continuous from L p (R 2 ) into L r (R 2 ) with 1 r = 1 p -β. Applying this continuous property with f j ∈ L p (R 2 ), β = 2 3 we show that (u j ) is bounded in L 3p 3-2p (R 2 ) if 1 < p < 3
2 so, this sequence admits a subsequence still denoted (u j ) which converges weakly to u solution of Equation (3.1) with right-hand side f . For the derivative of u j with respect to x 1 , the multiplier which intervenes is on the form m(ξ) = 2iπξ 1 (4π 2 |ξ| 2 + 2iπξ 1 ) -1 , so that (3.49) is satisfied for β = 0, so r = p. The same property takes place for the second derivatives with m(ξ) = -4π 2 ξ 1 ξ 2 (4π 2 |ξ| 2 + 2iπξ 1 ) -1 . We verify finally, with β = 1 3 , that the first derivative of (u j ) with respect to x 2 is bounded in

L 3p 3-p (R 2 ) which implie ∂u ∂x2 ∈ L 3p 3-p (R 2 ). ♦
In order to study Equation (3.1) with a right-hand side f ∈ W -1,p 0 (R 2 ), we give the following definition of the convolution of f with the fundamental solution

O: ∀ϕ ∈ D(R 2 ), O * f, ϕ =: f, Ȏ * ϕ W -1,p 0 (R 2 )×W 1,p ′ 0 (R 2 ) ,
where Ȏ(x) = O(-x).

Theorem 3.11 Let f ∈ W -1,p 0 (R 2 ) satisfying the compatibility condition f, 1 W -1,p 0 (R 2 )×W 1,p ′ 0 (R 2 ) = 0, when 1 < p ≤ 2. (3.50) i) If 1 < p < 3, then u = O * f ∈ L 3p 3-p (R 2 )
is the unique solution of Equation (3.1) such that ∇ u ∈ L p (R 2 ) and ∂u ∂x1 ∈ W -1,p 0 (R 2 ). Moreover, we have the estimate

u L 3p 3-p (R 2 ) + ∇ u L p (R 2 ) + ∂u ∂x 1 W -1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) , (3.51 
)

and u ∈ L 2p 2-p (R 2 ) When 1 < p < 2, u ∈ L r (R 2
) for any r ≥ 6 when p = 2 and u ∈ L ∞ (R 2 ) when 2 < p < 3. ii) If p ≥ 3, then Equation (3.1) has a solution u ∈ W 1,p 0 (R 2 ), unique up to a constant and we have

inf k∈R u + k f W 1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
(3.52)

Proof : Let f ∈ W -1,p 0 (R 2
) satisfying the condition (3.50). Thanks to Lemma 3.3 and Remark 3.

4, if ϕ → 0 in D(R 2 ), we have Ȏ * ϕ → 0 in W 1,p ′ 0 (R 2 ) for all p ∈ ]1, 3[ which implies that O * f ∈ D ′ (R 2
). We know also, by Isomorphism (2.7), that there exists

F ∈ L p (R 2 ) such that f = divF and F L p (R 2 ) ≤ C f W -1,p 0 (R 2 ) . (3.53) i) Suppose now that 1 < p < 3. Then, ∂ ∂x j (O * f ), ϕ D ′ (R 2 )×D(R 2 ) = -O * f, ∂ϕ ∂x j D ′ (R 2 )×D(R 2 ) = F , ∇ ( Ȏ * ∂ϕ ∂x j ) L p (R 2 )×L p ′ (R 2 ) = F , ∇ ∂ ∂x j ( Ȏ * ϕ) L p (R 2 )×L p ′ (R 2 ) .
Moreover, by (3.23),

| ∂ ∂x j (O * f ), ϕ D ′ (R 2 )×D(R 2 ) | ≤ F L p (R 2 ) ∇ ∂ ∂x j ( Ȏ * ϕ) L p ′ (R 2 ) ≤ C f W -1,p 0 (R 2 ) ϕ L p ′ (R 2 ) .
There is

∂ ∂x j (O * f ) L p (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
With the same condition on p as in the previous case, for all ϕ ∈ D(R 2 ), we have

O * f, ϕ D ′ (R 2 )×D(R 2 ) = -F , ∇ ( Ȏ * ϕ) L p (R 2 )×L p ′ (R 2 ) ,
and by (3.25)

| O * f, ϕ D ′ (R 2 )×D(R 2 ) | ≤ F L p (R 2 ) ∂ ∂x j ( Ȏ * ϕ) L p ′ (R 2 ) ≤ C f W -1,p 0 (R 2 ) ϕ L 3p 4p-3 (R 2 ) . Note that 1 < p < 3 ⇐⇒ 1 < 3p 4p-3 < 3. Consequently, O * f ∈ L 3p 3-p (R 2 ) and O * f L 3p 3-p (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
Moreover, by the Sobolev embedding,

O * f ∈ L 2p 2-p (R 2 ) if 1 < p < 2, O * f belongs to L r (R 2 ) for all r ≥ 6 if p = 2 and belongs to L ∞ (R 2 ) if 2 < p < 3.
We thus showed that if 1 < p < 3, the operator

R : W -1,p 0 (R 2 ) ⊥ P [1-2 p ′ ] -→ W 1,p 0 (R 2 ) ∩ L 3p 3-p (R 2 ), f -→ O * f, (3.54) is continuous.
ii) Suppose now that p ≥ 3 and let f ∈ W -1,p 0 (R 2 ). Then we have the relation

(3.53). Now, since D(R 2 ) is dense in L p (R 2 ), there exists a sequence F m ∈ D(R 2 ) such that F m → F in L p (R 2 ). Set f m = divF m and ψ m = O * f m . For all ϕ ∈ D(R 2 ), we have ∂ψ m ∂x j , ϕ = F m , ∇ ∂ ∂x j ( Ȏ * ϕ) .
Then, according to inequality (3.36), we have

| ∂ψ m ∂x j , ϕ | ≤ C F m L p (R 2 ) ϕ L p ′ (R 2 ) , ≤ C f W -1,p 0 (R 2 ) ϕ L p ′ (R 2 ) . (3.55) So that, ∇ ψ m is bounded in L p (R 2
). We can apply Theorem 2.1: for each m, there exists a constant C m such that

ψ m + C m ∈ W 1,p 0 (R 2 ) and ψ m + C m W 1,p 0 (R 2 ) ≤ C f W -1,p 0 (R 2 ) .
From this follows that ψ m +C m converges weakly to some function u ∈ W 1,p 0 (R 2 ) and -∆u + ∂u ∂x 1 = f, so that Equation (3.1) admits a solution u and moreover u ∈ W 1,p 0 (R 2 ). ♦ Remark 3.12 i) If 1 < p < 2, as the solution u of Equation (3.1) given by Theorem 3.11 belongs in particular to W 1,p 0 (R 2 ), we deduce that lim |x|→∞ u(x) = 0, in the sense of Definition 2.8. Consequently, for any given constant u ∞ , the

distribution v = u + u ∞ is the unique solution of Equation (3.1) which is such that ∇ v ∈ L p (R 2 ), ∂v ∂x1 ∈ W -1,p 0 (R 2
) and satisfying the condition at infinity

lim |x|→∞ v(x) = u ∞ .
ii) If 2 < p < 3, by Lemma 2.10, the same result holds with a pointwise convergence.

Corollary 3.13 Assume 1 < p < 3. If u is a distribution such that ∇ u ∈ L p (R 2 ) and ∂u ∂x1 ∈ W -1,p 0 (R 2 ).
Then, there exists a unique constant k such that

u + k ∈ L 3p 3-p (R 2 ) and u + k L 3p 3-p (R 2 ) ≤ C( ∇ u L p (R 2 ) + ∂u ∂x 1 W -1,p 0 (R 2 ) ). (3.56) Moreover, if 1 < p < 2, then u + k ∈ L 2p 2-p (R 2
) and u(x) tends to the constant -k when |x| tends to infinity in the sense of Definition 2.8. If p = 2, then u + k belongs to L r (R 2 ) for any r ≥ 6. If 2 < p < 3, then u belongs to L ∞ (R 2 ), is continuous in R 2 and tends to -k pointwise.

Proof : Setting g = -∆u + ∂u ∂x1 ∈ W -1,p 0 (R 2 ). Since P [1-2 p ′ ]
contains at most a constants and according to the density of D(R 2 ) in W 1,p 0 (R 2 ), then g satisfies the compatibility condition (3.50). By the previous theorem, there exists a unique v ∈ L 3p 3-p (R 2 ) such that ∇ v ∈ L p (R 2 ) and ∂v ∂x1 ∈ L p (R 2 ), satisfying T (u-v) = 0 (T is the Oseen operator, see (3.2)), with the estimate

v L 3p 3-p (R 2 ) ≤ C( ∆u W -1,p 0 (R 2 ) + ∂u ∂x1 W -1,p 0 (R 2 ) ) ≤ C( ∇ u L p (R 2 ) + ∂u ∂x1 W -1,p 0 (R 2 ) ).
(3.57) Setting w = u-v, we have for all i = 1, 2, ∂w ∂xi ∈ L p (R 2 ) and satisfies T ( ∂w ∂xi ) = 0. We deduce then by Lemma 3.1 that ∇ u = ∇ v, then there exists a unique constant k such that v = u + k. The last properties are consequence of Lemma 2.6 and Lemma 2.10.

Remark 3.14 Let u ∈ D ′ (R 2 ) such that ∇ u ∈ L p (R 2 ). i) When 1 < p < 2,
thanks to Proposition 2.2, we know that there exists a unique constant k such that u + k ∈ L 2p 2-p (R 2 ). Here, the fact that in add

∂u ∂x1 ∈ W -1,p 0 (R 2 ) we have, in more u + k ∈ L 3p 3-p (R 2 ). ii) When 2 ≤ p < 3, u is only in W 1,p 0 (R 2 ) but is in no space L r (R 2 ). But, if moreover ∂u ∂x1 ∈ W -1,p 0 (R 2 ) then, u + k ∈ L 3p 3-p (R 2 ) for some unique constant k and u ∈ L r (R 2 ) for any r ≥ 6 if p = 2 and u ∈ L ∞ (R 2 ) otherwise.
As consequence of Theorems 3.9 and 3.11 we solve Equation (3.1) when the data f belongs to intersection of two weighted spaces. We have then the two following results.

Proposition 3.15 Suppose that f ∈ W -1,p 0 (R 2 ) ∩ W -1,q 0 (R 2 ) with 1 < p < q <
∞ and satisfies the compatibility condition (3.50). Then, Equation (3.1) has a solution u ∈ W 1,p 0 (R 2 ) ∩ W 1,q 0 (R 2 ) satisfying

∇ u L p (R 2 ) + ∇ u L q (R 2 ) + ∂u ∂x1 W -1,p 0 + ∂u ∂x1 W -1,q 0 (R 2 ) ≤ C( f W -1,p 0 (R 2 ) + f W -1,q 0 (R 2 ) ).
(3.58)

Moreover: i) The solution u is unique if p < 3 and up to a constant if p ≥ 3. It is equal to O * f if p < 3. ii) If p < q < 2, then u ∈ L 3p 3-p (R 2 ) ∩ L 2q 2-q (R 2 ) and verifies u L 3p 3-p (R 2 ) + u L 2q 2-q (R 2 ) ≤ C( f W -1,p 0 (R 2 ) + f W -1,q 0 (R 2 ) ). (3.59) iii) If p < q = 2, then u ∈ L r (R 2 ) for any r ≥ 3p 3-p and u L r (R 2 ) ≤ C( f W -1,p 0 (R 2 ) + f W -1,q 0 (R 2 ) ). (3.60) iv) If p < 3 and q > 2 then u ∈ L 3p 3-p (R 2 ) ∩ L ∞ (R 2 ) with the estimate u L 3p 3-p (R 2 ) + u L ∞ (R 2 ) ≤ C( f W -1,p 0 (R 2 ) + f W -1,q 0 (R 2 ) ). (3.61) Proof : Let f ∈ W -1,p 0 (R 2 ) ∩ W -1,q 0 (R 2
) and satisfies the compatibility condition (3.50) with 1 < p < q < ∞. We know that there exists u ∈ W 1,p 0 (R 2 ) and v ∈ W 1,q 0 (R 2 ) solutions of (3.1). Moreover, by a uniqueness argument we have necessary ∇ u = ∇ v and Estimate (3.58) comes from (3.51)

. i) Now, in the one hand, if p ≥ 3, then u -v = k, where k is an arbitrary constant, so u = v + k ∈ W 1,p 0 (R 2 ) ∩ W 1,q 0 (R 2 ). If on the other hand p < 3, then u = O * f . ii) Suppose that q < 2, we know that u = O * f ∈ L 3p 3-p (R 2 ) and u = v ∈ L 2p 2-p (R 2 ) and satisfies Estimate (3.59). iii) If q = 2, then, by Theorem 3.11, u = O * f ∈ L 3p 3-p (R 2 ) and u = v ∈ L r (R 2 ) for any r ≥ 3p 3-p . iv) If p < 3 and q > 2, we know that u = O * f ∈ L 3p 3-p (R 2 ). Since ∇ u ∈ L q (R 2 ) with q > 2, then u ∈ L ∞ (R 2
) and we have Estimate (3.61).

Remark 3.16 When f ∈ W -1,q 0 (R 2 ) with q ≥ 3, we saw that O * f is not necessary defined. But if moreover f ∈ W -1,p 0 (R 2 )
with p < 3, and satisfying the compatibility condition (3.50), then O * f has a sense in W 1,p 0 (R 2 ) and belongs to W 1,q 0 (R 2 ).

Proposition 3.17 Let f ∈ L p (R 2 ) ∩ W -1,p 0 (R 2 ) satisfying the compatibility condition (3.50). Then Equation (3.1) has a solution u = O * f such that ∇ u ∈ W 1,p (R 2 ), ∂u ∂x1 ∈ W 1,p (R 2 ) ∩ W -1,p 0 (R 2
) and satisfies the estimate

∇ u W 1,p + ∂u ∂x 1 W 1,p + ∂u ∂x 1 W -1,p ≤ C( f L p + f W -1,p 0 
).

(3.62)

Moreover: i) if p < 3 2 , u is unique, belongs to L 3p 3-2p (R 2 ) ∩ W 1, 3p 3-p (R 2
) and verifies the estimate

u L 3p 3-2p (R 2 ) + u W 1, 3p 3-p (R 2 ) ≤ C( f L p + f W -1,p 0 ). (3.63) ii) If 3 2 ≤ p < 3, u is unique in W 1, 3p 3-p (R 2
) and satisfies the estimate

u W 1, 3p 3-p (R 2 ) ≤ C( f L p (R 2 ) + f W -1,p 0 (R 2 ) ). (3.64) iii) If p ≥ 3, u belongs to ∈ W 2,p 0 (R 2 ) ∩ W 1,p 0 (R 2 )
, unique up to a constant, and

inf k∈R ( u + k W 2,p 0 (R 2 ) + u + k f W 1,p 0 (R 2 ) ) ≤ C( f L p + f W -1,p 0 ). (3.65) 
Proof : The proof is the same that that given in the previous proposition.

Now we take f more regular, for example f ∈ W -1,p 0 (R 2 ) ∩ W 0,q 1 (R 2 ) and we look which regularity we obtain for the solution u. Proposition 3.18 Let p and q two reals numbers such that 1 < p < ∞ , q > 2 and

1 p = 1 q + 1 2 . Suppose that f ∈ W -1,p 0 (R 2 ) ∩ W 0,q 1 (R 2
) and satisfies the compatibility condition (3.50) Then the unique solution of Equation (3.1) given by Proposition 3.15 satisfies the complementary properties

∇ 2 u ∈ W 0,q 1 (R 2 ) and ∂u ∂x1 ∈ W 0,q 1 (R 2 )
Proof : From the relation 1 p = 1 q + 1 2 we have 1 < p < 2 and since q > 2, then

P [1-2 q ′ ] = P [1-2 p ] = {0}. Since W 0,q 1 (R 2 ) ⊂ W -1,q 0 (R 2 ) then f ∈ W -1,p 0 (R 2 ) ∩ W -1,q 0 (R 2
) and satisfies the compatibility condition (3.50) for p and q. i) If 2 < q < 3, Equation (3.1) has a unique solution u ∈ L

3p 3-p (R 2 ) ∩ L 3q 3-q (R 2 ) such that ∇ u ∈ L p (R 2 ) ∩ L q (R 2 ) and ∂u ∂x1 ∈ W -1,p 0 (R 2 ) ∩ W -1,q 0 (R 2 ). Further, -∆(ρ ∂u ∂x j ) + ∂ ∂x 1 (ρ ∂u ∂x j ) = ρ ∂f ∂x j -2∇ ρ ∇ ( ∂u ∂x j ) - ∂u ∂x j ∆ρ + ∂u ∂x j ∂ρ ∂x 1 =: F
In the one hand, since ∇ u ∈ L q (R 2 ), in view of (2.3), (2.2) and (2.4), the terms ρ ∂f ∂xj , ∇ ρ∇ ( ∂u ∂xj ) and ∂u ∂xj ∆ρ belong to W -1,q 0 (R 2 ). In the other hand, since

∇ u ∈ L p (R 2
) the term ∂u ∂xj ∂ρ ∂x1 belongs to L p (R 2 ). By the Sobolev embedding and the relation between p and q, L p (R

2 ) ⊂ W -1,q 0 (R 2 ) because W 1,q ′ 0 (R 2 ) ⊂ L p ′ (R n
) and we deduce that F ∈ W -1,q 0 (R 2 ). Then there exists by Theorem 3.11 a unique v j ∈ L 3q 3-q (R 2 ) such that ∇ v j ∈ L q (R 2 ) and

∂vj ∂x1 ∈ W -1,q 0 (R 2 ) satisfying -∆(v j -ρ ∂u ∂xj ) + ∂ ∂x1 (v j -ρ ∂u ∂xj ) = 0.
We deduce that w j = v j -ρ ∂u ∂xj is a polynomial. Since ∇ v j ∈ L q (R 2 ) and q > 2 we have, by Proposition 2.2, v j ∈ W 1,q 0 (R 2 ) ⊂ W 0,q -1 (R 2 ). We have also ρ ∂u ∂xj ∈ W 0,q -1 (R 2 ), so w j ∈ P [1-2 q ] = P 0 . Then, there exists a constant k such that ρ ∂u ∂xj = v j + k ∈ W 1,q 0 (R 2 ), which imply ∂u ∂xj ∈ W 1,q 1 (R 2 ) and so ∇ 2 u ∈ W 0,q 1 (R 2 ). The same argument prove that ∂u ∂x1 ∈ W 0,q 1 (R 2 ). ii) If q ≥ 3, Equation (3.1) has in view of Proposition 3.15 ii) a unique solution u ∈ W 1,q 0 (R 2 ) ∩ W 1,p 0 (R 2 ). The right-hand side F also belongs to W -1,q 0 (R 2 ) and we proceed as previously. ♦ 4 Study in anisotropic weighted spaces.

In this section we consider the case where the weight is anisotropic, in the form r α (1 + s) β or η α β = (1 + r) α (1 + s) β . Note that the behavior at infinity of these weights is not uniform. In fact, in the parabola s = 1 we have r α (1 + s) β ∼ η α β ∼ r α and out of a sector S λ,R = {x ∈ R 2 ; x 1 > λ r, 0 < λ < 1}, we have r α (1 + s) β ∼ η α β ∼ r α+β . It's for this reason these functions are called anisotropic weights. For R > 0 we denote by B R the ball centered at origin with the radius R, B ′ R = R 2 \ B R and we define the space

L p α,β (Ω) = v ∈ D ′ (Ω); η α β v ∈ L p (Ω) ,
where Ω = R 2 or any open domain of R 2 . We begin by study the problem

-∆z + ∂z ∂x1 + a 0 z = g in B ′ R , z = 0 on ∂B ′ R , (4.1) 
where g ∈ L p 

a 0 = 1 8r 2s 2 + s + 2 (1 + s) 2 . (4.2)
First we have the following

1 2 ,0 (B ′ R ). There exists R * > 0 such that, if R > R * , Problem (4.1) has a unique solution z ∈ L p -1 2 ,0 (B ′ R ), such that ∇ 2 z ∈ L p (B ′ R ) and ∂z ∂x1 ∈ L p (B ′ R ). Moreover there exists C > 0 such that z L p -1 2 ,0 (B ′ R ) + ∂z ∂x 1 L p (B ′ R ) + ∇ 2 z L p (B ′ R ) ≤ C g L p 1 2 ,0 (B ′ R ) . (4.3) 
Proof : For all ε > 0, since g ∈ L p 1 2 ,0 (B ′ R ) and a 0 > 0, the problem

-∆z ε + ∂zε ∂x1 + a 0 z ε + ε z ε = g in B ′ R , z ε = 0 on ∂B ′ R . (4.4) has a unique solution z ε ∈ W 2,p (B ′ R ). Multiplying the first equation of problem (4.4) by r 1-p 2 |z ε | p-2 z ε , since in two dimensional, ∆(r 1-p 2 ) = (1 -p 2 ) 2 r -1-p 2 , we get after integration by part in B ′ R (p -1) B ′ R r 1-p 2 | z ε | p-2 | ∇ z ε | 2 + B ′ R a 0 r 1-p 2 |z ε | p + ε B ′ R r 1-p 2 |z ε | p = 1 p (1 -p 2 ) 2 B ′ R r -1-p 2 |z ε | p + ( 1 p -1 2 ) B ′ R |z ε | p x1 r r -p 2 + B ′ R r 1-p 2 |z ε | p-2 z ε g .
Note that a 0 ≥ 5 32r , then

( 5 32 -| 1 p - 1 2 |) B ′ R r -p 2 |z ε | p ≤ 1 p (1 - p 2 ) 2 B ′ R r -1-p 2 |z ε | p + B ′ R r 1-p 2 |z ε | p-1 |g| . (4.5) 
Moreover, since r > R,

1 p (1 - p 2 ) 2 B ′ R r -1-p 2 |z ε | p ≤ 1 pR (1 - p 2 ) 2 B ′ R r -p 2 |z ε | p . ( 4.6) 
Inequalities (4.5) and (4.6) give

( 5 32 -| 1 p - 1 2 | - 1 pR (1 - p 2 ) 2 ) B ′ R r -p 2 |z ε | p ≤ B ′ R r 1-p 2 |z ε | p-1 |g|. Since 2 < p < 32 11 , we have 5 32 -| 1 p -1 2 | -1 pR (1 -p 2 ) 2 > 0, if R > R *
, with R * sufficiently large. Thus, from the previous inequality we obtain

B ′ R r -p 2 |z ε | p ≤ C 1 B ′ R r 1-p 2 |z ε | p-1 |g| ≤ C 1 ( B ′ R r p 2 |g| p ) 1 p ( B ′ R r -p 2 |z ε | p ) p-1 p . Then B ′ R r -p 2 |z ε | p ≤ C B ′ R r p 2 |g| p ,
where the constant C is independent of R and ε. The sequence (z ε ) is then bounded in L p

-1 2 ,0 (B ′ R ), which is a reflexive space, so z ε ⇀ z in L p -1 2 ,0 (B ′ R ), and 
z L p -1 2 ,0 (B ′ R ) ≤ lim inf ε→0 z ε L p -1 2 ,0 (B ′ R ) ≤ C g L p 1 2 ,0 (B ′ R ) ,
where z satisfies the equation

-∆z + ∂z ∂x 1 = g -a 0 z in B ′ R .
Let us show that ∇ 2 z ∈ L p (B ′ R ) and ∂z ∂x1 ∈ L p (B ′ R ). Now, the fact that the function g -a 0 z ε is bounded in

L p 1 2 ,0 (B ′ R ) implies that it is bounded in L p (B ′ R ). Since, ∇ 2 z ε remains bounded in L p (B ′ R ), then ∇ 2 z ∈ L p (B ′ R ) and ∇ 2 z L p (B ′ R ) ≤ lim inf ε→0 ∇ 2 z ε L p (B ′ R ) ≤ C g L p 1 2 ,0 (B ′ R ) . (4.7) 
Thus, ∂z ∂x1 ∈ L p (B ′ R ) and we have Estimate (4.3). It remains to prove that z = 0 on ∂B

′ R . Since ∇ 2 z e is bounded in L p (B ′ R ) Then, if Ω is a bounded domain such that B R ⊂ Ω, setting Ω = Ω ∩ B ′ R , we have z ε ⇀ v in W 2,p (Ω). Since z ε = 0 on ∂B ′ R , then v = 0 on ∂B ′ R . Moreover, since z ε ⇀ z in L p -1 2 ,0 (B ′ R ), then v = z | Ω and so z = 0 on ∂B ′ R . ♦ We know, according to Proposition 3.18, that for f given in W -1,p 0 (R 2 ) ∩ W 0,q 1 (R 2 )
, where p and q verify relation 1 p = 1 q + 1 2 , we obtain that ∇ 2 u and ∂u ∂x1 belong to W 0,q 1 (R 2 ). But if f is only given in W 0,p 1 (R 2 ), we cannot find the same regularity on ∇ 2 u and ∂u ∂x1 . Then we look at f in L p α,β (R 2 ), with α + β close to 1. Moreover, taking account of the conditions put by Pokorny in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF] on α and β one takes α = 1 2 and β =

1 4 . Theorem 4.2 Assume 2 < p < 32 11 and f ∈ L p 1 2 , 1 4 (R 2 ). Then, O * f ∈ L p -1 2 , 1 4 (R 2 ), ∂ ∂x2 (O * f ) ∈ L p 0, 1 4 (R 2 ), ∂ ∂x1 (O * f ) ∈ L p 1 2 , 1 4 (R 2 ) and ∇ 2 O * f ∈ L p 1 2 , 1 4 
(R 2 ). Moreover, we have the estimate

O * f L p -1 2 , 1 4 (R 2 ) + ∂ ∂x2 (O * f ) L p 0, 1 4 (R 2 ) + ∂ ∂x1 (O * f ) L p 1 2 , 1 4 (R 2 ) + ∇ 2 (O * f ) L p 1 2 , 1 4 (R 2 ) ≤ C f L p 1 2 , 1 4 
(R 2 ) .

(4.8)

Proof : From [10], we have O * f ∈ L p -1 2 -ε, 1 4 (R 2 ), ∂ ∂x2 (O * f ) ∈ L p 0, 1 4 (R 2 ), ∂ ∂x1 (O * f ) ∈ L p 1 2 -ε, 1 4 (R 2 ), for all ε > 0. It remains to prove that O * f ∈ L p -1 2 , 1 4 (R 2 ), and ∂ ∂x1 (O * f ) ∈ L p 1 2 , 1 4 
(R 2 ). For R > R * , we use the following partition of unity

ϕ 1 , ϕ 2 ∈ C ∞ (R 2 ), 0 ≤ ϕ 1 , ϕ 2 ≤ 1, ϕ 1 + ϕ 2 = 1 in R 2 ϕ 1 = 1 in B R and Supp ϕ 1 ⊂ B R+1 .
We set u = O * f and we split u into u = u 1 + u 2 , where u 1 = ϕ 1 .u and

u 2 = ϕ 2 .u. Since Supp u 1 ⊂ B R+1 so, u 1 ∈ L p -1 2 , 1 4 
(R 2 ) and satisfies

u 1 L p -1 2 , 1 4 (R 2 ) ≤ C f L p 1 2 , 1 4 (R 2 ) .
Furthermore, u 2 is solution of the following problem

-∆u 2 + ∂u2 ∂x1 = f in R 2 , where f = ϕ 2 f + u∆ϕ 1 + 2∇ u∇ ϕ 1 -u ∂ϕ1 ∂x1 . Since the regularity of ϕ 2 f de- termines that of f , then f ∈ L p 1 2 , 1 4 (R 2 ). Setting v = (1 + s) 1 4 u 2 , we have v ∈ L p -1 2 -ε,0 (R 2 ), and satisfies Equation -∆v + ∂v ∂x 1 = (1 + s) 1 4 f -2∇ u 2 .∇ (1 + s) 1 4 -u 2 [∆(1 + s) 1 4 - ∂ ∂x 1 (1 + s) 1 4 ].
A simple calculation yields and the estimate

∇ 2 u L p 1 2 , 1 4 (R 2 ) + ∂u ∂x 1 L p 1 2 , 1 4 (R 2 ) ≤ C f L p 1 2 , 1 4 (R 2 ) . (4.11) 
This finishes the proof. ♦

Setting K p α,β (Ω) = v ∈ D ′ (Ω); r α (1 + s) β ∈ L p (Ω)
, which is a reflexive Banach space when it is equipped by its natural norm. With the same arguments we prove the following result. The case β = 1 4 corresponds to Theorem 4.2.

Theorem 4.3 Assume 2 ≤ p < 8 3-β and 0 < β < 1 4 . Then, for f ∈ K p 1 2 ,β (R 2 ), we have O * f ∈ K p -1 2 ,β (R 2 ), ∂ ∂x2 (O * f ) ∈ K p 0,β (R 2 ), ∂ ∂x1 (O * f ) ∈ K p 1 2 ,β (R 2 ) and ∇ 2 (O * f ) ∈ K p 1 2 ,β (R 2 )
. Moreover, we have the estimates

O * f K p -1 2 ,β (R 2 ) + ∂ ∂x2 (O * f ) K p 0,β (R 2 ) + ∂ ∂x1 (O * f ) K p 1 2 ,β (R 2 ) + ∇ 2 (O * f ) K p 1 2 ,β (R 2 ) ≤ C f K p 1 2 ,β (R 2 ) . (4.12) 
For α, β ∈ R we denote by

L p α,β(s ′ ) (R 2 ) = v ∈ D ′ (Ω); ρ α (1 + s ′ ) β v ∈ L p (R 2 ) ,
which is a reflexive Banach space when it is equipped by its natural norm

v L p α,β(s ′ ) (R 2 ) = ρ α (1 + s ′ ) β v L p (R 2 ) . Proposition 4.4 For all given f ∈ L 2 1 2 , δ-1 2 (s ′ ) (R 2 ), with δ > 0 close to zero, Equation (3.1) has a unique solution u ∈ K 2 δ 2 -1,0 (R 2 ), such that ∇ u ∈ L 2 δ 4 -1 2 ,0 (R 2 ).
Moreover, there exists a constant C > 0 such that

u K 2 δ 2 -1,0 (R 2 ) + ∇ u L 2 δ 4 -1 2 ,0 (R 2 ) ≤ C f L 2 1 2 , δ-1 2 (s ′ ) (R 2 ) . ( 4 

.13)

Proof : By the density of

D(R 2 ) in L 2 1 2 , δ-1 2 (s ′ ) (R 2 ) (see [2]), there exists a sequence (f k ) of D(R 2 ) such that f k → f in L 2 1 2 , δ-1 2 (s ′ ) (R 2 ). Since f k ∈ D(R 2 ), so f k ∈ K 2 1 2 ,β (R 2 ), 0 < β < 1 4 . Then, from Theorem 4.2, Equation -∆u k + ∂u k ∂x 1 = f k in R 2 , (4.14) 
has a solution

u k = O * f k ∈ K 2 -1 2 ,0 (R 2 ) such that ∇ u k ∈ K 2 0,β (R 2 ), ∇ 2 u k ∈ K 2 1 2 ,β (R 2 ) and ∂u k ∂x1 ∈ K 2 1 2 ,β (R 2 )
. Multiply Equation (4.14) by hu k where h = Ȏ * r δ-2 , (δ > 0), Ȏ is the fundamental solution of the operator -∆ -∂ ∂x1 , we obtain after two integrations by part

R 2 |∇ u k | 2 h dx + 1 2 R 2 u 2 k (-∆h - ∂h ∂x 1 ) dx = R 2 f k h u k dx. (4.15)
Since -∆h -∂h ∂x1 = r δ-2 , we have

R 2 |∇ u k | 2 h dx + 1 2 R 2 u 2 k r δ-2 = R 2 f k h u k dx ,
and as h ≥ 0 we get then the two inequalities

R 2 u 2 k r δ-2 ≤ 2 R 2 f k h u k dx, (4.16) R 2 |∇ u k | 2 h dx ≤ R 2 f k h u k dx. (4.17) 
A simple calculation yields

(-∆ - ∂ ∂x 1 )(1 + r) δ 2 -1 = 2 -δ 4 (1 + r) δ 2 -2 4 -δ 1 + r - 1 r - x 1 r , then (-∆ - ∂ ∂x 1 ) h -M (1 + r) δ 2 -1 ≥ 1 r 2-δ -M 2 -δ 2r (1 + r) δ 2 -1 ≥ 0, for 0 < M ≤ 2 2+δ/2 2-δ 1-δ 2+δ 1+δ/2
. Then, there exists M > 0 such that h(x) ≥ M (1 + r) δ 2 -1 , so from inequality (4.17), we obtain

M R 2 (1 + r) δ 2 -1 |∇ u k | 2 dx ≤ R 2 f k h u k dx. (4.18)
The Cauchy-Schwarz inequality gives

R 2 f k h u k dx ≤ R 2 f 2 k h 2 r 2-δ dx 1 2 R 2 r δ-2 u 2 k dx 1 2
So, from inequalities (4.16) we get

R 2 r δ-2 u 2 k dx ≤ 4 R 2 f 2 k h 2 r 2-δ dx = 4 R 2 f 2 k 1 + r (1 + s ′ ) 1-δ h 2 r 1-δ (1 + s ′ ) 1-δ dx,
We adapt the result of Theorem 3.5 obtained in [START_REF] Kraćmar | Estimates of Oseen kernels in weighted L p spaces[END_REF], we have h 2 r 1-δ (1+s ′ ) 1-δ ∈ L ∞ (R 2 ), then u k ∈ K 2 δ 2 -1,0 (R 2 ) and there exists C > 0 such that 2 ,0 (R 2 ) respectively. These spaces are reflexives, therefore extracting a subsequence if necessary, we have

u k K 2 δ 2 -1,0 (R 2 ) ≤ C f k L 2 1 2 , δ 2 -1 2 (s ′ ) ≤ C f L 2 1 2 , δ 2 
∇ u k L 2 δ 4 -1 2 ,0 (R 2 ) ≤ C f k L 2 1 2 , δ 2 -1 2 (s ′ ) ≤ C f L 2 1 2 , δ 2 
u k ⇀ u in K 2 δ 2 -1,0 (R 2 ) and ∇ u k ⇀ ∇ u in L 2 δ 4 -1 2 ,0 (R 2 ), with the estimates u K 2 δ 2 -1,0 (R 2 ) ≤ lim inf k→∞ u k K 2 δ 2 -1,0 (R 2 ) ≤ C f L 2 1 2 , δ 2 -1 2 (s ′ ) , (4.21) ∇ u L 2 δ 4 -1 2 ,0 (R 2 ) ≤ lim inf k→∞ ∇ u k L 2 δ 4 -1 2 ,0 (R 2 ) ≤ C f L 2 1 2 , δ 2 -1 2 (s ′ ) . ( 4 

.22)

We get then Estimate (4.13) and we verify easily that u is a solution of Equation 3.1. Uniqueness is given by the fact that the space K 2 where clearly, g ∈ L p (R 2 ). We know by Theorem 3.9, that, if 1 < p < 2, Equation (5.2) has a solution v such that, in particular, ∇ v ∈ L 2p 2-p (R 2 ), ∇ 2 v ∈ L p (R 2 ), ∂v ∂x1 ∈ L p (R 2 ) and satisfies

∇ v L 2p 2-p (R 2 ) + ∇ 2 v L p (R 2 ) ≤ C g L p (R 2 ) . (5.3) 
By a simple calculation we obtain from Inequality (5.3) the estimate

∇ u λ L 2p 2-p (R 2 ) + ∇ 2 u λ L p (R 2 ) ≤ C f L p (R 2 ) , (5.4) 
where C does not depend on λ. We deduce that the sequences ∇ u λ and ∇ 2 u λ remain bounded in L p (R 2 ) and L p * (R 2 ), with p * = 2p 2-p respectively. Now, setting -∆u λ = f λ in R 2 , (

then, the sequence f λ is bounded in L p (R 2 ) ∩ W -1,p * 0 (R 2 ). These spaces are reflexives, extracting a subsequence if necessary, also denoted f λ , we have

f λ ⇀ f in L p (R 2 ) and f λ ⇀ f in W -1,p * 0 (R 2 ).
Further, note that p * > 2, then there exists z ∈ W 1,p * 0 (R 2 ) and w ∈ W 2,p 0 (R 2 ) such that -∆z = -∆w = f in R 2 .

Since ∇ z ∈ L p * (R 2 ), ∇ w ∈ L p * (R 2 ) by Sobolev embedding and ∇ z -∇ w is harmonic so ∇ z -∇ w = 0 in R 2 then, there exists k ∈ R ⊂ W 2,p 0 (R 2 ) such that z = w +k, thus z ∈ W 2,p 0 (R 2 )∩W 1,p * 0 (R 2 ). Now, since the norm on W 2,p 0 (R 2 )/R is equivalent to its semi-norm, we deduce from inequality (5.4), that there exists k λ ∈ R and u ∈ W 2,p 0 (R 2 ) ∩ W 1,p * 0 (R 2 ) such that u λ + k λ ⇀ u in W 2,p 0 (R 2 ) and in W 1,p * 0 (R 2 ).

Since -∆u = f in R 2 , there exists k ∈ R such that z = u + k. We refind thus the result obtained by Amrouche, Girault and Giroire in [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for f ∈ L p (R 2 ). The following proposition is then aquired. 
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 221 sequences u k and v k = ∇ u k remain bounded in K ,0 (R 2 ) and in L 2
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 21 0 contains no polynomials. ♦ 5 Behaviour of u λ when λ → 0 Assume 1 < p < 2, f ∈ L p (R 2 ) and, for λ > 0, consider the equation-∆u λ + λ ∂u λ ∂x 1 = f in R 2 . (5.1) Setting y = λx, u λ (x) = v(y) and f (x) = λ 2 g(y), then v satisfies the equation -∆v(y) + ∂v ∂y 1 (y) = g(y) in R 2 , (5.2)

Proposition 5 . 1

 51 Assume that 1 < p < 2 and let f ∈ L p (R 2 ). Then Equation (5.1) has at least a solution u λ of the form (3.41) such that ∇ u λ ∈ L 3p 3-p (R 2 ) ∩ L

2p 2 -

 2 p (R 2 ), ∇ 2 u λ ∈ L p (R 2 ), and ∂u λ ∂x1 ∈ L p (R 2 ). Moreover, if 1 < p < 3 2 , then

  Now, using inequalities (4.18) and (4.19), we deduce that ∇ u k ∈ L 2

	-1 2	(s ′ )	.	(4.19)
	and			δ 4 -1 2 ,0 (R 2 )

,∞ (R 2 ).

(∆ -∂ ∂x1 )(1 + s)

, where a 0 is defined in (4.2). Hence, v satisfies problem (4.1), where g = (1 + s)

2 ,0 (B ′ R ). Applying Lemma 4.1, there exists a unique w ∈ L p

Hence

(R 2 ) and

(R 2 ) and satisfies

(R 2 ) . (4.9)

Now, using the fact that u 2 satisfies -∆(η

From Theorem 3.9, there exists a function v such that ∇ 2 v ∈ L p (R 2 ) and

) and satisfies

We obtain then

where u is the unique solution of Poisson's Equation

with the estimate

For f ∈ W -1,p 0 (R 2 ) we have the following result

(5.8)

Then, Equation (5.1) has a unique solution

where u is the unique solution of Poisson's Equation

and the following estimate holds.

Proof : By Isomorphism (2.7), there exists F ∈ L p (R 2 ) such that f = divF and

Setting 

(5.12)

As previously we get the estimate

The sequences u λ and ∇ u λ remain bounded in L p * (R 2 ) and L p (R 2 ) respectively. These spaces are reflexives, there exists u ∈ L p * (R 2 ) such that u λ ⇀ u in L p * (R 2 ) and ∇ u λ ⇀ ∇ u in L p (R 2 ). We verify easily that u is a solution of Poisson's Equation (5.9) and satisfies Estimate (5.10). Uniqueness follows by the fact that the space L p * (R 2 ) contains no polynomials. We deduce that u ∈ W 1,p 0 (R 2 ) and we refind also the result obtained in [START_REF] Amrouche | Weighted Sobolev spaces for Laplace's equation in R n[END_REF] for f ∈ W -1,p 0 (R 2 ). ♦