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Abstract

In this paper, we study the biharmonic equation in the half-space RY , with N > 2.
We prove in LP theory, with 1 < p < o0, existence and uniqueness results. We
consider data and give solutions which live in weighted Sobolev spaces.
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1 Introduction

The purpose of this paper is the resolution of the biharmonic problem with
nonhomogeneous boundary conditions

A*u=f inRY,
(P) Su=go on ' =RN-1

oyu=g¢g; onl.

Since this problem is posed in the half-space, it is important to specify the
behaviour at infinity for the data and solutions. We have chosen to impose
such conditions by setting our problem in weighted Sobolev spaces, where the
growth or decay of functions at infinity are expressed by means of weights.
These weighted Sobolev spaces provide a correct functional setting for un-
bounded domains, in particular because the functions in these spaces satisfy
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an optimal weighted Poincaré-type inequality. The weights chosen here behave
at infinity as powers to |z|. The reason of this choice is given by the behaviour
at infinity of the fundamental solution Ey to the biharmonic operator in R,
Let’s recall for instance that

Cs
||’

and in particular if f € 2(RY), the convolution Ey * f behaves at infinity as
En. In this work, we shall consider more general data f; and the solutions will
have a behaviour at infinity which will naturally depend on the one of data
in Rﬁ and on the boundary. We have also tried to give another motivation to
this choice, more precisely for the biharmonic problem, in the subsection 2.4,
after the definition of spaces.

Es(x) =cglz|, Eix)=c4In|z|, Es(z)=

Our analysis is based on the isomorphism properties of the biharmonic op-
erator in the whole space and the resolution of the Dirichlet and Neumann
problems for the Laplacian in the half-space. This last one is itself based on
the isomorphism properties of the Laplace operator in the whole space and
also on the reflection principle inherent in the half-space. Note here the double
difficulty arising from the unboundedness of the domain in any direction and
from the unboundedness of the boundary itself.

This paper is organized as follows. Section 2 is devoted to the notations and
fundamental results. In Section 3, we study the biharmonic operator in the
whole space and we establish isomorphism properties which we will use in the
sequel. At last, Section 4 is devoted to the resolution of Problem (7). The main
result is Theorem 4.1, where we obtain generalized solutions u € W*(RY)
to biharmonic problem, where [ indicates the behaviour at infinity of these
solutions. In a forthcoming work, we shall examine the case of regular data
and the homogeneous problem with singular boundary conditions.

2 Notations, spaces, motivation and known results
2.1 Notations

For any real number p > 1, we always take p’ to be the Holder conjugate of
D, i.€.

1 1

p D
Let © be an open set of RNV, N > 2. Writing a typical point z € R as
= (2',zy), where 2/ = (z1,...,2y_1) € RVt and xy € R, we will especially

look on the upper half-space RY = {z € RY; 2y > 0}. We let RY denote



the closure of RY in RY and let T' = {z € RY; zy = 0} = RY~! denote its
boundary. Let |z| = (22 + --- + 2%)'/? denote the Euclidean norm of x, we
will use two basic weights

o= (1+|z)Y? and lg o = In(2 + |z[?).

92
oz’

)

similarly 0? = 0; 0 0; =

0
We denote by 0; the partial derivative E
T

92
aZZj = 0;00; = ndn, More generally, if A = (A,...,A\y) € NV is a
multi-index, then
P VY oM
P=0M W =, where |\ =\ -+ Ay

o A1 N
axl "'aIN

In the sequel, for any integer ¢, we shall use the following polynomial spaces:
— 2, is the space of polynomials of degree smaller than or equal to g;
— @f is the subspace of harmonic polynomials of Z;

— ngA2 is the subspace of biharmonic polynomials of Z;;

— szqA is the subspace of polynomials of 3”?, odd with respect to xy, or
equivalently, which satisfy the condition ¢(z’,0) = 0;

— Ji{]A is the subspace of polynomials of f@qA, even with respect to xy, or
equivalently, which satisfy the condition dyp(z’,0) = 0;

with the convention that these spaces are reduced to {0} if ¢ < 0.

For any real number s, we denote by [s| the integer part of s.

Given a Banach space B, with dual space B’ and a closed subspace X of B,

we denote by B” 1. X the subspace of B’ orthogonal to X, i.e.
B 1 X={feB;WwelX, (f,o)=0} =(B/X)".

Lastly, if k € Z, we shall constantly use the notation {1,...,k} for the set of
the first k positive integers, with the convention that this set is empty if & is
nonpositive.

2.2 Weighted Sobolev spaces

For any nonnegative integer m, real numbers p > 1,  and 3, we define the
following space:

Q,

Wi (Q) ={u € 7'(Q); 0< N <k, o* (g o)t 0*u € LP(Q); 0

B 1< <m0 (g ) P e (),



where
-1 if ¥ +ad{l,...,m}

k= N e N
m—g—a if > +aed{l,...,m}

In the case # = 0, we simply denote the space by W7?(Q2). Note that W.""(2)
is a reflexive Banach space equipped with its natural norm:

a—m — p
[ e—— (% lo™= M (I 0)* Dul’

1/p
a—m p
X e g 0 0l

E4+1<|A|<m

We also define the semi-norm:

1/p
oy = (X 1o O 0" D ulle))
' [A|l=m

The weights in the definition (1) are chosen so that the corresponding space
satisfies two properties. On the one hand, 9(Rf) is dense in WO’ZLZBP(RJX). On
the other hand, the following Poincaré-type inequality holds in W,/ (RY):

Theorem 2.1. Let « and 3 be two real numbers and m > 1 an integer such

that
Z—i—aé{l,...,m} or (B—1)p# —1.

Then the semi-norm | - lwsz(Rﬁ) defines on W'"{ (RY)/ Py a norm which is
equivalent to the quotient norm, with ¢ = inf(q, m — 1), where q is the highest
degree of the polynomials contained in W, (RY).

Now, we define the space
° S
WrLRY) = ZRY) A,

which will be characterized in Lemma 2.3 as the subspace of functions with
null traces in W,/ (RY). From that, we can introduce the space W_"";(RY)
as the dual space of TW,"5(RY). In addition, we have the following Poincaré

inequality on W™ P(RY) (cf. [4]):

Theorem 2.2. Under the assumptions of Theorem 2.1, | - ’mep(Rf) s a norm

@,

on I/f/;né’(Rf) which is equivalent to the full norm || - HW;r,lbp(Rﬁ)'

We shall now recall some properties of the weighted Sobolev spaces W;” ’ﬁp (Rf ).



We have the algebraic and topological imbeddings:

N
WIP(RY) — WIWPRY) — - s WP (RY) if;+a ¢ {1,...,m}.

N
When — +a =75 € {1,...,m}, then we have:
p

Wog e s W o W e s Wl 0,

N
Note that in the first case, for any v € R such that — +a —~v ¢ {1,...,m}
p
and m € N, the mapping
e W p(]RN) — 'u € W0F ﬁ(Rf)
is an isomorphism. In both cases and for any multi-index A € NV, the mapping
u€ WIP(RY) — 9 e WM P(RY)

is continuous. Finally, it can be readily checked that the highest degree ¢ of
the polynomials contained in W' P(RY) is given by

or
Ytae{jez j<0} and fp> -1,

N .
lm — ( + a)] ,  otherwise.
p

2.3 The spaces of traces

N | ¥ tac{t.m} and (B-1p= -1,
m—|—+« _17 1f
p

(2)

In order to define the traces of functions of W P(RY) (here we don’t consider
the case § # 0), for any o € |0, 1[, we introduce the space:

WP (RY) = {uG@'(RN), wu € LP(RY) and Vi=1,...,N,
oo (3)
/ t1 "pdt/ u(z +te;) — u(z )\pda:<oo},
0

where w = o if N/p # 0 and w = o(lg 0)"/? if N/p = o, and ey, ..., ey is the
canonical basis of R, It is a reflexive Banach space equipped with its natural
norm:

1/p
[Ar— (Hw“ +Z/ et [ Jule+ te) — ule )|pdx>

LP(RN)



which is equivalent to the norm

&

Similarly, for any real number o € R, we define the space:

lu(z) — u(y)[P de dy) 1/p'

LP(RN) RNX]RN |z — y|N+op

WoP(RY) = {u c 7'(RY); w* u e LP(RY),

/ |0 (z) u(x) — (W) u)l” | dy < 00}7

|z — y|N+op

where w = g if N/p+a # o and w = o(Ig 0)"/"~ if N/p+ a = o. For any
s € RT, we set

Wer®Y) = {ue R 0 N <k, 07N (lg o) Pu e IRV,
1SN -1 o N0t e PR A = [s), 0w e Wn(RY) ),

where k = s — N/p—a if N/p+a € {o,...,0+ [s]}, with 0 = s — [s] and
k = —1 otherwise. It is a reflexive Banach space equipped with the norm:

a—s — p
Julhygry = (3 o™ (g o) Pl

0< A<k
a—s+Al an, (1P 1/ A
+ Z o 9 uHLP(RN) + Z 10 UHWQP(RN)'
k4+1<|A<[s]—1 [Al=[s]

We can similarly define, for any real number 3, the space:
WoB®RY) = {0 e ZR); (g o) v € Wer(®RY) .

We can prove some properties of the weighted Sobolev spaces Ws’g(RN ). We

&%)

have the algebraic and topological imbeddings in the case where N/p + a ¢
{o,...,0+[s] —1}:
WIBRY) — Wi HRY) — - s WTF

WS p(RN> - Wc[ys+ [s]—s, B

—[s], ,B(RN)a
(RN) o Wafs,ﬂ(RN)'

When N/p+a=j€{o,...,0+[s] — 1}, then we have:

) +1
Woh = = Wolih = Waliha = = WY p[s] g1
: [s], p [s]-j+1,p [s]—d.p
W;,Zﬁ) T Warlsl-s,p 7T a—a—j-&-lﬁ - Wa—o—jﬂ—l - Wa s, 8-1"



If u is a function on ]RN7 we denote its trace of order 5 on the hyperplane I'
by:

VieN, vu:a € RV e dhu(a’,0).
Let’s recall the following trace lemma due to Hanouzet (c¢f. [10]) and extended
by Amrouche-Necasova (cf. [4]) to this class of weighted Sobolev spaces:

Lemma 2.3. For any integer m > 1 and real number «, the mapping
. m—1
Y =001 vm) - 2(RY) — T[] 2R,
§=0
can be extended to a linear continuous mapping, still denoted by ~,

m—1
v WIHRY) — ] W,

j=0

Moreover v is surjective and Kery = V?/Z“p(Rf).
2.4  Motivation

Problem (P) has been investigated by Boulmezaoud (cf. [7]) in weighted
Sobolev spaces in L? theory for N > 3 and without the critical cases cor-
responding to logarithmic factors. The aim of this work is to give results in
LP theory, with 1 < p < o0, to reduce critical values and especially to reach
weaker solutions from more singular data.

Let’s throw light on this functional framework in the L? case. If we consider
Problem (P) with homogeneous boundary conditions, i.e. go = g1 = 0, we can
give the following variational formulation: For any given f € V/, find u € V
such that
Yo eV, /]RN AulAvdr = (f,0) .y -
+

Which is the appropriate space V' to use the Lax-Milgram’s lemma? We must
have firstly, for any v € V, Av € L*(RY) and secondly, the coercivity condition

for the bilinear form: (u, v) — /N AuAvdz.
R+

By Theorem 2.2, we have:

Yo € Wo (RY), [ollyze@y, < C [V

L2 RN)

Moreover,

©92.2
Vo e Wy *(RY), |!V2v\|L2(RN = [|Av]l L2 gy,



hence the coercivity of the form. Consequently, Problem (P) with go = ¢; = 0

is well-posed on V = I/(ID/(QJ’Z(Rf ). Which are the appropriate spaces of traces
for the complete problem? Thanks to Lemma 2.3,

uwe WEARY) = (you, yau) € W2 (RV ) x Wy > (RN-Y),

consequently we must take (go, g1) € Wo/>2(RV=1) x W/ *(RY¥-1) in the
problem with nonhomogeneous boundary conditions.

Remark 2.4. If we consider the problem for the operator I + A?:

u+A?u=f inRY,
(Q) Ju=9g0 on T,
ONu = g1 on I

we have the following variational formulation with gy = ¢; = 0: For any given
f eV find u €V such that Yo € V,

/MuvdH/M AuAvdz = (f, )y, -

This form satisfies naturally the coercivity condition on V = H3(RY), where
HZ(RY) denotes here the classical Sobolev space of functions v € H*(RY)
such that v = dyv = 0 on I'. For the nonhomogeneous problem, we must take
(90, 91) € HY2(RNTY) x HY2(RVH). [

2.5 The Laplace equation in Rf

We shall now recall the fundamental results of the Laplace equation in the
half-space, with nonhomogeneous Dirichlet or Neumann boundary conditions.
These results have been proved by Boulmezaoud (c¢f. [6]) in the particular
case where p = 2 for N > 3, then generalized by Amrouche-Necasova (cf. [4])
and Amrouche (¢f. [5]) in L? theory for N > 2, with solutions of some critical
cases by means of logarithmic factors in the weight. Let’s also quote the partial
results of Maz’ya-Plamenevskii-Stupyalis (¢f. [9]) for the Stokes system in R?
with the velocity obtained in Wy *(R3) or Wi"*(R3), and those of Tanaka (cf.
[12]) for the same problem and the velocity vector field in W"***(R3) with
m > 0.

Let’s first recall the main result of the Dirichlet problem

_ 0 RN
(Pp) {Au-f in R,

u=g on I



with a different behaviour at infinity according to [.

Theorem 2.5 (Amrouche-Necasova). Let | € Z such that
N N
?gé{l,...,l} and ;g&‘{l,...,—l}. (4)

For any f € W, "P(RY) and g € W} YPP(T') satisfying the compatibility
condition

Vo € dy ny (T s0> = (9, On9)r (5)

TP RY) W (RY)

where {.,.)p denotes the duality between WHPP(T) and W22 (T), problem
(Pp) has a solution u € VVll’p(Rf), unique up to an element of Qf[fflfN/p].

The second recall deals with the problem with more regular data.

Theorem 2.6 (Amrouche-Necasova). Let | € Z and m > 1 be two integers
such that

N N
?gf_{l,...,l—i—l} and ;g,é{l,...,—l—m}. (6)

For any f € W:,Z:ll’p(Rf) and g € VVWH 1/, "P(T), satisfying the compatibility
condition (5), problem (Pp) has a solution u € W "P(RY), unique up to an
element of =Q{[1A717N/p]-

Concerning the Neumann problem
Au=f inRY,
(Pw) { -
Ovu=g¢g onl,
let’s first recall the existence and unicity result with the weakest hypotheses.

Theorem 2.7 (Amrouche). Let | € Z such that
N N
?gé{l,...,l} and ;g{l,...,—l%—l}. (7)

For any f € W)P(RY) and g € W,_; Ypp(p ) satisfying the compatibility condi-
tion

Yo € Mgy (T, 90>W°’P(RN)XW°’P/(RN) {99 =0, (8)

where (., .)p denotes the duality between W,_ l/p P(T") and Wlljl/p 7 (I"), problem

(Pn) has a solution u € W Y(RY), unique up to an element of J/[2A_Z_N/p}.

As for the Dirichlet problem, we can prove the following result:



Theorem 2.8. Let | € Z and m > 0 be two integers such that

N N
Sl and g {L I —m), (9)

condition (8), problem (Py) has a solution u € W"2P(RY), unique up to an
element of JVBA_I_N/M.

For any f € W L(RY) and g € ijll*l/p’p(f‘) satisfying the compatibility

Remark 2.9. Note that for these four theorems, the solutions continuously
depend on the data with respect to the quotient norm. 0

3 Biharmonic operator in RY

In this section, we shall give some isomorphism results relative to the bihar-
monic operator in the whole space. We shall rest on these for our investigation
in the half-space. At first, we characterize the kernel

K= {’UE WHPRY); A%v=0 in RN}.
Lemma 3.1. Let [ € Z.
. N A2
Z) If; ¢ {1, ey _l}, then K - @[Q—Z—N/p}'
N
i) If — €{1,...,~1}, then K = 2% .
p
Proof. Let u € K. As we know that A%u = 0 and moreover u € W/P(RN) C
Z'(RN), the space of tempered distributions, we can deduce that u is a poly-

nomial on RY. But according to (2), we know that the highest degree ¢ of the
polynomials contained in W;»?(RY) is given by:

N
1—1—N/p if;—l—le{jEZ;jSO},
[2—1— N/p] otherwise.

q:

We can thus see the conditions of the statement appear precisely. ]

More generally, for any integer m € N, we define the kernel
K™= {v e WIPPRY);, A2 =0 in RN} :

The same arguments lead us to a result which includes the precedent, corre-
sponding then to case m = 0.

10



Lemma 3.2. Letl € Z and m € N such that
N N m
7,) ;%{1,,_l_m}7 IfheTLK _1@[2 I— N/p}

N
ii) —e{l,...,—l —m}, then K™ yllN/p
p

We can now formulate the first result of isomorphism in R”:

Theorem 3.3. Let | € Z. Under hypothesis (4), the following operator is an
1somorphism:

A? VVZ2 p(RN)/g% I-N/p] — W1_2 p(RN) 1 gzmz N/p]*

Proof. Let us recall (¢f. [2]) that under assumption (4), the operator
A WEPRNY PGy — WPPRY) L P8 (10)

is an isomorphism. By duality, we can deduce that it is the same for the
operator

A Wzo’p(RN)/@[A—l—N/p] — W P(RY) L PNy (11)

If we suppose now that [ — N/p’ < 0, we can compose isomorphisms (10) and
(11) to deduce that the operator

2, -2,

A? W p(RN)/‘@[Q I-N/p] — W p(RN) 1 ‘@[%-&-Z—N/p’] (12)
is an isomorphism. By duality, we can deduce that the operator

A WEPRN) Py — WP RY) L PR (13)
is an isomorphism provided that we have —I — N/p < 0.

To combine (12) and (13), it remains to be noted that if [ — N/p’ < 0, then we
2
have ‘@[%-&-Z—N/p’] = QZ[QH N/p] = Pla+i-nyp); and symmetrically, if —[—N/p <

0, we have ,@éilfN/p] = (@[27171\,/1,] = P3_1-n/p|- Morover, if we note that the
reunion of those two cases covers all integers | € Z, we can deduce that for
any [ € Z satisfying (4), the operator

A% WP p(RN)/y[z L — WiPP(RY) L gmz N/p') (14)

is an isomorphism. Il

We can establish now a result for more regular data, with two preliminary
lemmas.

11



Lemma 3.4. Let m > 1 and | < —2 be two integers such that

N
—¢{L....,~l—m}, (15)
p

then the following operator is an isomorphism:

m

A WIEPRNY ) P57 g — Wi P P(RY).

Proof. We use here another isomorphism result (¢f. [3]). Let m > land | < —1
be two integers. Under hypothesis (15), the Laplace operator

A WnTLLp(RN)/f@[?—pN/p] — Wi P(RY), (16)

is an isomorphism. Then, replacing m by m — 1 and [ by [ 4+ 1, we can obtain
that for m > 2 and [ < —2, under hypothesis (15), the operator

AW hRY) [ PRy — Wi T(RY), (17)
is an isomorphism. Moreover (cf. [2]), for | < —2, the operator
A : Wll-fl)(RN)/‘@[AflfN/p] I Wli‘rlip(RN) (18)

it N/pe¢ {1,...,—1—1},

is an isomorphism. Then, combining (17) and (18), we can deduce that for
m > 1 and [ < —2, under hypothesis (15), the operator

A WIENRYN) PRy — WiEP(RY), (19)

m m

is an isomorphism. Replacing now m by m+1 and [ by [ —1 in (16), we obtain
that for m > 0 and [ < 0, under hypothesis (15), the operator
A Wm—‘tlzp(RN)/‘@é—l—N/p] — WHHRY), (20)

m

is an isomorphism. The lemma follows from the composition of isomorphisms

(19) and (20). O
Lemma 3.5. Let m > 1 an integer such that

N

o 1 or m=1,
then the biharmonic operator

A? - Wm+2’p(RN>/e@[§iN/p} - W:zl:lz’p<RN) L Pu-nyp)

m—1

15 an isomorphism.

12



Proof. Let’s note that it suffices to prove that the operator is surjective. Here
again, we compose two Laplace operators. We have the following isomorphism
(cf. [2]): for m € N,

A stm’p(RN)/’@ﬁfN/p} — W, P (RY) L Pn-nyy)

N 21
if —#1 or m=0. (21)
p
Replacing m by m — 1, we obtain that for m > 1, the operator
AW h(RY) PRy — Wi EP(RN) L Pn-nyp
. (22)
1f —#1 or m=1,
p
is an isomorphism. Composing with (20), for [ = —1, we obtain the result. [

We can now give a global result for the biharmonic operator.

Theorem 3.6. i) Let | € Z such that
N N
— ¢ {l,...,l+1} and —¢&{1,...,—[—1},
p p

then the biharmonic operator
A I/Vl3 P(RN)/322 I1—N/p] - VVH—l (RN) 1 <@2+l N/p']

1S5 an isomorphism.
ii) Let | € Z and m > 2 be two integers such that

N
?gé{l,...,l—l—Q} and —gé{l —m},
then the biharmonic operator
A? W:::ﬁ p(RN)/‘@[Z I-N/p] — WTZL+Z2 P(RN> 1 ’@[2+l N/p']

15 an tsomorphism.

Proof. For | < —1, it’s clear that lemmas 3.4 and 3.5 exactly cover points i)
and 73). It remains to establish the theorem for [ > 0.
According to [2], for [ > 0, the following operator is an isomorphism:

A M/ll T(RY) — M/lllfp(RN) 1 f@[%H—N/p/]

i NJp' ¢ {1, 1+ 1}, (23)

13



For m > 1 and [ > 1, we also have the isomorphism:
AW ERP(RY) — WP (RY) L PR ww
it N/p' ¢ {1,...,1+1}.

Replacing m by m — 1 and [ by [ + 1, we deduce for m > 2 and [ > 0, the
isomorphism:

(24)

A WRHRY) — Wit P P(RY) L P54 ) (25)
N ¢ {11+ 2).

Replacing m by m + 1 and [ by [ — 1 in (24), we obtain for m > 1 and [ > 2,
the isomorphism:

A WEPPRY) — W B(RY) L Q[ZA—N/p/]
itNp ¢ (1,0,

And now replacing m by m+1 in (21), we obtain for m > 1, the isomorphism:

(26)

A WWT—T—FIZP(RN)/'@[?—N/M — Wish(RY) L Pn-nyy)

27

if N/p' # 1. (27)

Finally, if we return to (16) with [ = —1 and m + 1 instead of m, we have for
m > 1, the isomorphism:

A WITBRP(RY) ) Py Ny — WiP(RY). (28)

Then, combining (26), (27) and (28), we obtain for m > 1 and [ > 0, the
isomorphism:

A W;”LQ”’(RN)/@[%FN/M - WnT#ZZ(RN) 1 ‘@[ZA—N/P']
it N/p' ¢ {1,...,1}.

It remains to justify orthogonality conditions to compose (29) with (23) and
(25), which will give us respectively the isomorphisms of points i) and ii).

Let f € W P(RN) L @@il_N/p,] with m > 1, then we have f L P50,
and according to (23) or (25), there exists u € W, .J(RY) such that Au = f.
We will show that v L ‘@[ZA—N/p’}' Let ¢ € ‘@[lA—N/p’}’ we know that there exists

@Y € @[Q_A'_Z_N/pl] such that 1p = AQO, 1.€. € @[%—T-l—N/p’]'
a) Case m = 1: u € WLE(RY), f € W yP(RY) L c@éil,]v/p/].

/ / N
Let us note that ¢ € W%” (RV) and ¢ € W*? (RN), since o ¢{1,...,1}. We

(29)

/ / N
also have the imbedding W2/ (RY) «— Wh” (RYN), since o # [ + 1. Then,
we have 1 = Ap € W27 (RY). This implies

14



(u, )y

z+1(RN)><W_1 , 0’ (RN) <u7 A90>W1 IU(RN)XW—l ,p’ (RN)

I+1

- <AU, SO> l:—ll p(RN)le N (]RN)

= <f7 SO)WZ:—II p(RN)XI/Vl 0 (RN)

b) Case m > 2: w € W H(RY), f e W, 5 OPRY) L ‘@[%il—N/p’}'

N
Since | > 0, we have — +m +1 ¢ {1, ...,m}, therefore we can deduce the
p

N
chain of imbeddings W, 5(RY) — ... — W;;P(RY). Moreover — # [ + 2,
P

then we also have W /P(RY) — .. — WEERN) — W, [P(RY). After
that, we repeat the reasoning of case m = 1.
Then, we have u € W' /[(RY) L ¢ v, and (29) shows us that there exists

z € Wmt2P(RN) such that Az = u. Thus it follows that the operator
A WVTZLhirlZ p(RN)/gZ[Q - N/p] W;:JrlQ p(RN) 1 ‘@[24-1 N/p']

is an isomorphism. Il

4 Generalized solutions of A? in RY

In this section, we shall deal with Problem (P) in the half-space.

For any ¢ € Z, we introduce the space %, as a subspace of BZQAQ:
B, = {uE@A;u:(?Nu:OonF}.

We shall establish the main theorem:

Theorem 4.1. Let | € 7 such that
N N
— 1,...,1 and — 1,..., =1}
p, ¢ 1 } 5 ¢ 1 }

For any f € W, >P(RY), g0 € W)~ YPP(TY gnd ¢, € I/Vll_l/p’p(F) satisfying
the compatibility condition

Vo € Bloti—n/p;

(), 2 + (g1, AQ)p — (g0, InAp) =0, (30)

RY)xw > (RY)

problem (P) admits a solution uw € WP(RY), unique up to an element of

15



Blo—1-nJp), and there exists a constant C' such that

1 <
qe@[l?f,N/p] lu + gllyzr@y) <

¢ (HfHWlQ"”(Ri\_’) + ||90||Wl2—1/m<p) + HngW}‘I/M(p)) .

NB: (g1, Ap)r denotes the duality bracket (g, Ayp) nd

(90, ONAgp)p the duality bracket (go, ONAP), 2-1/p.
l

Wllil/p’ P(F) ijll/p/a p’ (F)7 a

Oy
4.1  Characterization of the kernel

Let us denote by £ the kernel of the operator
(A%, 70,m) : WPP(RY) — WP(RY) x W70 (D) < WP (D),

i.€.
%:{UEVVZQ’])(R%; A’y =0 in RY, uz@Nu:OonF}.

The following characterization uses the reflection principle (cf. Farwig [8]).

Lemma 4.2. Let | € Z.
. N
Z) If ; ¢ {1, ceey —l}, then H = ,@[Q,Z,N/p}.

N
i) If I e{l,..., =1}, then X = PB1_1_nyp.

Proof. Given u € £, we set

., u(z', xN) if xy >0,
w2z’ zn) = :
(—u — 2xNOyu — 23 Au) (2, —zy)  if 2y <O.

Then we have @ € ./(RY) and we show that A%a = 0 in RY. We can deduce
that %, and consequently u, is a polynomial. Furthermore, u € I/Vl?’p(Rf)
implies that its maximum degree is the same as in Lemma 3.1. O

More generally, for any m € N, we denote by ™ the kernel of the operator
(A% 90, m) : Wit PP (REY) — Wi 2P (RE) < Wi /Pr () x =),
i.€.

%m:{u€W$L2’p(Rf); A’u=0inRY, u=0yu=0on F}.

Identical arguments lead us to the following result:

16



Lemma 4.3. Letl € Z and m € N.
, N
i) If; ¢ {1,...,—l—m}, then ™ = %[Q_I_N/p].

N
i) If — e {1,..., =l —m}, then X = B1_1_n/p.
p
We now introduce the two operators I1p and Ily, defined by:

1 T
Vr € Z°, HDr:§/Ntr(x’,t)dt,
0

1 T
VSG%A, HNS:§£L'N/ NS(ZL'/,t) dt.
0

So we obtain the second characterization of & ™:

Lemma 4.4. Let | € Z and m € N. Under hypothesis (4), we have

H™ = Bpai-nyp) = Upd Sy © UnA5_nyp- (31)
Proof. A direct calculation with these operators yields the following formulas:

Allpr =r in RY,
1
Vr € Z”, onIlpr = SINT in RY, (32)

HDT = 8NHDT =0 on F,

and
Allys = s in Rf,

]_ x
Vs € %A, OnIlys = 5 (st —i—/ " s(2',t) dt) in ]Rf, (33)
0
HNS:aNHNS:O on I'.

Moreover, for any r € @2 and s € 4,2, lpr € Py and lys € P 5. Thus,
ifre %[él—]\f/p] and s € JI/[_AZ_N/p}, we can deduce that IIpr € Bp_i_nyy and
HNS € %[Q,Z,N/p}.

Conversely, if we consider u € Bja_;_n/p), then we have Au € W[A_I_N/p]. Since
‘@[él—N/p] - JZ{[él—N/p] D ‘/V[—Al—N/p]’ there exists (r,s) € JZ{[él—N/zD] X ‘/V[—Al—N/p]
such that Au = r+s in RY. According to formulas (32) and (33), the function
z = u — Hpr — Hys satisfies: A = 0 in RY and z = dyz = 0 on I'. The
function z belonging to JZZ[QA_Z_N/Z)] N Jl/[QA_l_N/p] = {0}, then v = IIpr + ys.
Furthermore, the sum (31) is direct, because if (r,s) € &%y X M5y
such that Ilpr = Ilys = u, then Au = r = s. That implies Au = 0 in RY
with u = yu =0 on T', hence v =0 in RY. O

The following proposition clarifies the kernel %j,_;_y/, in the simplest cases.
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N
Proposition 4.5. Let | € Z such that — ¢ {1,...,—l}.
D

Proof. If —l — N/p < 0, then we have By C 1. Now, if ¢ € P
with ¢ = dyp = 0 on I', we necessarily have ¢ = 0. If 0 < -l — N/p < 1,
then Bo_ 1Ny = $Bo = {(p € ngN; p=0np =0 on F}. Now, if p € Hy
with ¢ = dyp = 0 on T, a direct calculation shows that ¢(z) = cz%, where
ceR. [l

Remark 4.6. This proposition yields an answer to important particular cases:

i) If {>0o0r (I =—1and N/p> 1), then Bjo_;_n/p = {0}
ii) If { = —1 and N/p < 1, then Bpz_n/y) = B> = Ry O

4.2 The compatibility condition

We shall now show the necessity of condition (30) in Theorem 4.1.

Lemma 4.7. Let |l € Z such that
N
?gfé{l,...,l}. (34)

Let f € W, P(RY), go € W2 YPP(T) and g € W'TVPP(T). If problem (P)
admits a solution in VVlZ’p(Rf), then we have the compatibility condition:

Vo € Blasi-nipls (f10), 20 + (91, Ap)p — (90, On D) = 0,

o 2, p/
RY)x w27 (RY)

where (g1, Ap)p denotes the duality bracket (g1, Ap), 1-1/p. and
1

)W)
(g0, ONAp) denotes the duality bracket <g0,8NA¢>WZQ_1/,,,p(F)XW__ll_l/p@p/(F).

Remark 4.8. By Proposition 4.5, if [ — N/p’ < 0 and particularly if [ < 0,
we have Xa1i-n/y] = {0}. Thus there is no compatibility condition in these
cases. ]

Proof. So we assume that [ > 1. The first point is to justify the dualities in the
spaces of traces. Noting that under hypothesis (34), for any ¢ € BN/,

we havt? = WEE (RY) and also ¢ € /I/Vf’/frlg(Rf), we can deduce that Ay, €
il;ll/p PAT) and OnAp|p € Wil_ig/p "P(T). It remains to verify the imbeddings
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_ /7 / —1 /7 /
WP () s WD), (35)
L) s W VE (D), (36)

i) To show (35), we break down this imbedding into

WP RN s WO (RN, (37)
WO RV e WP (RN, (38)

where (38) is equivalent by duality to

W RN o Wk (RN, (39)
N -1 1 N
Observe that (37) holds if and only if —l+1# 1—}?, i.e. — # I, which
-1 1
is included in (34). Likewise (39) is satisfied if and only if +1# —, ie
p p
N
— # —l + 1, which can’t happen for [ > 1.
p
#1) Similarly, the imbedding (36) is equivalent to
LT R S WL RV (40)
I/VllJrl/p 7P(RN71) N M/loi‘ffl/p/ (RNfl). (41)

N
The imbedding (40) holds if and only if — # [ — 1, which is included in (34).
p
N
The imbedding (41) is satisfied if and only if — ¢ {—I+ 1, =] + 2}. Since
p
N N
[ > 1, it suffices that — # 1 for [ = 1. Assume that [ = 1 and — = 1,
p

p
N
then we have — = N — 1 and thus Blori-njp) = Bu-n)- f N > 3, there
p

is no compatibility condition because Zj,_n) = {0}. If N = 2, then we have
N

p=p =2and — =1, but that is excluded by (34).
p

Now it is clear that for any u € @(@) we have
Vo € Biori—np, /N o AN*udr = / uAdypdx’ — / Onu Ap dr'.
RY r r

Let u € I/Vlz’p(]Rf) and ¢ € HBpyi—n/y)- Thanks to the density of @(@)
in W2P(RY), there exists a sequence (uy)reny C @(@) such that ux — u

in W2P(RY). Therefore A2uy, — A2u in W, 2P(RY), uy — w in W' /P?(T)
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and Oyur — Oyu in W'll*l/p’p(l“). Writing the previous formula for any wuy, we
obtain by passing to the limit as k — oo

Vi € By, (A, 90>w;“ = (u, INAP) — (Onu, Ap), .

° /
R )x WP (RY)

This proves the necessity of condition (30). O
4.8 The homogeneous problem

Here we consider the homogeneous problem in Rf, i.e. f =0, with standard
boundary conditions. Let the problem

A*u=0 inRY,
(P°) Ju=go  onT,

Oyu=g¢g; onl,
with go € le_l/p’p(F) and ¢; € VVll_l/p’p(F).

Lemma 4.9. Let | € Z. Under hypothesis (4), for any go € I/Vf_l/p’p(F) and
g1 € W YPP(DY satisfying the compatibility condition

Vo € %[2“71\//;;/] {91, A@r — (9o, aNA90>r =0, (42)

problem (P°) admits a solution u € WPP(RY), unique up to an element of
Blo—1-N/p), with the estimate

inf | ||U + QHWLZP(Rf) S C <||ggHle_1/p,p(F) + HngWll_l/p’p(F)) .

9€EB2_1-N/p

Proof. Firstly, thanks to Lemma 4.4, note that condition (42) is equivalent to
both conditions

Vr € fo[ﬁN/p/], (g0, OnT)p = 0, (43)
Vs € ‘/V[ZQN/p’]a <gla S>1“ = 0. (44)

Consider the Dirichlet problem:

(R") AY =0 inRY,
¥9=¢gy9 onl.

Since go € W/ VPP(I) = Wlli(llj)/p’p(f‘), Theorem 2.6 holds with m = 1

N
and [ — 1 instead of [. Then hypothesis (6) becomes v ¢ {1,...,1} and
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N
— ¢ {1,...,—1}. Moreover compatibility condition (5) corresponds precisely
D
to (43). We can deduce that problem (R°) admits a solution ¥ € W>?(RY).

Consider now the Neumann problem:

(8%) A(=0 inRY,
Ov(=¢g1 onl.

Theorem 2.8 holds with m = 0. Moreover compatibility condition (8) corre-
sponds precisely to (44). We can deduce that problem (S°) admits a solution
¢ e VVlQ’p (RY). So we can readily verify that the function defined by

is a solution to (P°). However we must show that u € W;»P(RY). For this, we
remark that u satisfies

(T) {Au:Qﬁfv(C—ﬁ) in RY,

U = go on F7
with 202 (¢ — 9) € WX P(RY) and go € W2 /PP(TD),

N
i) If > # —1+ 1, then we have the imbedding W>?(RY) «— W"?(RY). By
(45), we deduce that u € W,"?(RY). Furthermore we have the following Green
formula:

VTE,Q{% / AUT _ o , = uaNT‘ 1-1/ —1/p! p!
=N/ < ’ >szl1’p(Rﬁ)XW1¥li1(R$) < ’ >W171 pp(r)xwfu/f Py’

7.€.

Vr e 'Q{[IA—N/p’}v <2 a]QV(C - 79)7 T> = <gOa aN7a>r .

-1, °1,p
W PRY)x W (RY)

Thus the compatibility condition of problem (7') is satisfied and thanks to
Theorem 2.8, it admits a solution y € T/Vf’p(Rf), unique up to an element of
szf[QAflfN/p]. So the function z = u — y € W,"?(RY) and satisfies

(K) Az=0 ian,
z=0 on I

We can deduce that z € LQ%[QA_Z_N/M, e u = y+r with r € ;zf[zA_l_N/p] C
W2 P(RY), which shows that u € WP(RY).
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N
i) If — = —1 + 1, the previous imbedding does not hold. Then we only have
p

WHP(RY) — WY | (RY), with the introduction of a logarithmic weight in
the second space. By (45), we can deduce that u € I/[/ll_’i_l(Rf). Furthermore

N
we have [ — — < 0, thus there is no compatibility condition for (7°) which
D

admits consequently a solution y € VVZQ’p (RY), unique up to an element of
/P = Ry which is included in W>?(RY). The end of the proof is similar to
the previous case. O

We can now extend this result to more regular data.

Lemma 4.10. Let | € Z and m > 1. Under hypothesis (9), for any go €
WmL2_l/p’p(F) and g1 € VVm+1 YPp(DY  satisfying the compatibility condi-

m

tion (42), problem (P°) admits a solution u € Wm+2 P(RY), unique up to an
element of Bja_i_n/p with the estimate

qe%‘[i?lfw/p] Ju+ QHWTf:f’P(M) < C <H90HW;"LQI/T"F(F) + Hgl””’ﬂiﬁ””’p@)) .

Proof. We strlctly resume the proof of Lemma 4.9. In this case, we note that

go € W(grll +(1z })/p’ (T') and g, € W." +1 1, "P(T), then we use Theorems 2.6

and 2.8. To show that u € Wi 2? (Rf), we must distinguish two cases. If
— 7é —1—m+ 1, then we have the imbedding W,/ ?(RY) — W HLP(RY).

m

N
If — = — —m + 1, then we have W/ »P(RY) — Wrib? (RY). In the

p m m
N : . -
second case, we must remark that [—— < 0, so there is again no compatibility
p
condition for (7). O

Note that we have the chain of ]i\r[nbeddings WIEP(RY) — Wb P(RY) —
- WPP(RY) if and only if — ¢ {1 —m +1,..., 1}, and then Lemma
p

4.10 is a regularity result with respect to Lemma 4.9.

4.4 FEzistence of a solution to problem (P)

We come back to the general problem (P) and Theorem 4.1. By Lemma 2.3,
there exists a lifting function u, € I/Vf’p(Rf) of (g0, 91), i-e. ug = go on I' and
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Onug = g1 on I', such that

ltglhyzry < C (Ngollygamsirey + gnllyiosvegey )

Set h = f—A%u, € W, ?P(RY) and v = u—1u,, then problem (P) is equivalent
to the following with homogeneous boundary conditions:

A*v=h in]Rf, v=0yv=0 onl.

Then, the compatibility condition (30) for Problem (P) becomes:

Vo € Bpri-nip B P)yan gy i @y = O (46)

So, we can consider now the lifted problem

A’y =f in ]R_]X,
(P*) Su=0 on I,
Oyu=0 onl,

where f € W, 2P(RY) and f L Biori-nyp)-
Give at first a characterization of W, ?(RY):

Lemma 4.11. For any [ € Wl_Q’p(Rf), there erists F' = (F})
2
W (RY)™

1<i,j<n €
such that

N
f=divdiv F= > aijzj,

i,7=1

with the estimate

N
Z HFiJ’”WlO’p(Rf) < CHf”Wl_Q’p(Rf)'

i,j=1

Proof. We know by Hardy’s inequality that the norm and the semi-norm in
WQ_’lp, (RY) are equivalent, i.e. there exists a constant C such that

vu € WP (RY),

2
I

< 0, 4 < 2
N2 > HUHWE,lP (Rf) — C HV UHW

N2 .

l

0, p’
07 (RY)

Let
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[} / / N2
T: WA RY) — W (RY)

u—s V2u.

By the previous inequalities, 7" is a linear continuous injective mapplng We
set G =T <W2 i (]RN)), equipped with the norm of W 7 (RN) ,and S =

-1 . 27p N 3
G — W—z (RY). The mapping h € G — (f, Sh>Wl‘2’p(Rf)xﬁ/%f”(Rf)
is a linear functional on G. Thanks to Hahn-Banach theorem, we can extend
/ N2
it to a linear functional on W%” (RY)" denoted by ®. Thanks to Riesz rep-

. . N2
resentation theorem, we know that there exists F' = (Fj;) € W?(RY)" such
that

, 2
Vh = (hy) € WO RY) | (®,h) = /RN Fyj hyj da,
+

with Einstein convention of sumation on repeated indices. Particularly, if h €
G, we have

(f,Sh) = Fij hyjdx,
R

1.€.

VUEW (RN) (fyu) = Fy; 0Xudz.
RN
We can deduce that
Yue Z(RY), (f,u) = (0%F;,u),

ie. f=divdiv F = 8%Fij. O

Now we can establish a first isomorphism result in the half-space:

Proposition 4.12. Let | € Z. Under hypothesis (4), with 2+1— N/p' <0
or 2—1— N/p <0, the biharmonic operator

A% WPP(RY) ) Broionyp) — WP REY) L Bogionym

15 an isomorphism.

Proof. Let’s first assume that 2 +1 — N/p’ < 0. Let f € VVl_Z’p(RN) Then
by Lemma 4.11, we can write f = 0}, Fj; with (Fij),; ..y € W p(RN)N

If we extend Fj; to RY by 0, we obtain (Ej)lgi j<n € W) p(RN) , and
thus f = 8%15@- e W, P(RV) as extension of f such that Hf||Wl72,p(RN)~ <
C ||fHWf2vP(R§)~ By Theorem 3.3, there exists 2 € W*?(RN) such that f =
A%z in RY and writing 2 = 2|y, we have f = A%z in RY, with z € WP (RY),
2l € WYPP(D) and dyzl. € W) TYPP(D). Since By njwy = {0}, there
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is no compatibility condition for Lemma 4.9 which asserts the existence of a
solution v € W?(RY) to the homogeneous problem

A’v=0 inRY, v=2z and dyv=0nyz onl. (47)
The function u = z — v answers to problem (P*) in this case.
So we have shown that if 2+ — N/p’ < 0, the operator
A WP RY) By — WP (RY) (48)
is an isomorphism. Thus by duality we obtain the isomorphism
A WPP(RY) — W P(RY) L By, (49)

if2—1—N/p<0. 0

It remains to solve (P*) if
24+1—N/p>0 and 2—-1—N/p>0. (50)

It suffices to check the cases [ € {—1,0,1}, outside which condition (50) does
not hold. For that, we establish a preliminary proposition:

Proposition 4.13. Let | € {—1,0} such that N/p # 1 if | = —1. For any
f € WYP(RY), there exists z € W"P(RY) such that A%z = f.

Proof. Under these hypotheses, consider the extension f of fto RN by 0,
so f € WYP(RN). Show at first that there exists 2 € W;"?(RN) such that
A2z = f.

a) If | = —1, then f € W%P(RY) and we have N/p # 1. Thus Lemma 3.4 of
isomorphism in RY holds with m = 2 and [ = —3, hence the existence of
z e WHP(RYN) such that A2 = f.

b) If | = 0, then f € LP(RY). Here again Lemma 3.4 holds with m = 2 and
I = —2, hence the existence of Z € W;'?(RY) such that A2 = f.

Then we come back to the restriction z = §|R§ for which we have naturally
A?z = fin RY. O

Now we can fill the gap of Proposition 4.12:

Proposition 4.14. Let | € {—1,0,1} such that

N N
A1 dfl=1 and —#1 if I=—1.
p p
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Then the biharmonic operator
A WP (RY)/ Bio-iony) — Wi P (RY) L Barionyp)

1 an 1somorphism.

Proof. At first we will use Lemma 4.11 and Proposition 4.13 to solve (P*) for
l € {-1,0}.
Let f € I/Vl_z’p(]Rﬂ\:) with | € {—1,0} verifying (4). By Lemma 4.11, there
2
exists F' = (Fj;); oy € VVlO’p(Rf)N such that f = divdiv F. It suf-
fices to apply Proposition 4.13 to all the components Fj; of F to find Z =
2
(Zig)r<i e € WHP(RY)™ such that A’Z = F in RY. Setting z = div div Z,
we obtain z € I/Vl?’p(Rf) such that A%z = f in RY because the operators div

and A commute. Thus we have z|. € W"/P?(T') and dyz|. € W~ /PP(T),
and Lemma 4.9 asserts the existence of a solution v € W?(RY) to problem
(47), since we have still Zpo41-n/py) = {0} (¢f. Remark 4.8). Then the function
u = z — v answer again to problem (P*) for [ € {—1,0}.

Finally to solve the case [ = 1, we proceed by duality from the case [ = —1.
We have the isomorphism

o _ . N
A% WA RY)/ By — WP RY) i~ # 1, (51)
therefore by duality, the isomorphism
o _ . N
A2 WEP(RY) — W 2P(RY) L By if 7 #1. (52)
O

Remark 4.15. It is also possible to solve directly the case [ = 1. The first
step is to extend Proposition 4.13 to [ = 1 with N/p' # 1. Here we consider
the extension f € W{"?(RV) of f € W"P(RY) defined by:

f(@' zy) if xy >0,
f@ zy) = 30 if xy =0,
—f(@,—xy) if zy <O.
Then we use Lemma 3.5 with m = 2, which asserts the existence of a function
Z € WPP(RY) such that A?Z = fin RN, if N/p' # 1 and f L 28 .
There are two cases: cither N/p’ > 1, then 2 v, = {0} and there is no
condition on f; or N/p' < 1, then gzﬁ_N/p,] = P, and we must have f 1L 2.
But N/p' < 1 implies that W"?(RY) < L'(RY) and we have

/ fdz =0,
RN
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as a straightforward consequence of this extension of f. That exactly means
that f 1 . Thus z = Z[gy € W,"P(RY) satisfies A%z = f in RY.
+

The second step is to resume the proof of Proposition 4.14 for [ = 1 with
N/p" # 1. 1f N/p' > 1, we have still Bz_n/y) = {0}, so the same reasoning
holds; if N/p' < 1, we know that Hjs5_n/p = R 23 and Lemma 4.9 requires
the following compatibility condition for problem (47):

Yo € R:c?\,, <3NZ,A<P>F - <270NA90>1“ =0,

which boils down to

(Onz,1)p = 0. (53)
But remember that f must satisfy the orthogonality condition for (P*), i.e.
(f, x?V>W1*2*”(R§)xv(f/2_'f'(Rﬁ) = 0 and moreover we have f = A%z in RY; thus

2, .2 _ -
(A®z, xN>Wf2*p(Rf)xﬁ/2_*f’(Rf) = 0. It suffices to write the Green formula

2, .2 - _ 2 - —
<A Z’$N>Wf2’p(Rf)xi/?/%f,(Rﬁ) = <8N2,A3:N>F = -2 (Onz, 1)p,
to see that (53) holds. 0O

To finish the proof of Theorem 4.1, it remains to combine Propositions 4.12
and 4.14, which provides the isomorphism

A% WEP(RY) )/ Bociongy — WPP(RY) L Biorionym, (54)

for any [ € Z verifying (4). This answers globally to problem (P*) and thus
to general problem (P) by means of the lifting function mentioned above.
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