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BIHARMONIC PROBLEM IN THE HALF-SPACE
WITH TRACES IN WEIGHTED SOBOLEV SPACES

CHERIF AMROUCHE and YVES RAUDIN

(26th June 2006)

Abstract

In this paper, we study the biharmonic equation in the half-space ]Rf, with N > 2.
We prove in L? theory, with 1 < p < 0o, existence, uniqueness and regularity results; then
we are interested in singular boundary conditions. We consider data and give solutions
which live in weighted Sobolev spaces.
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1. Introduction

The purpose of this paper is the resolution of the biharmonic problem
with nonhomogeneous boundary conditions in the half-space

(P) : A%y =f ian, u=go and Oyu=g; onT.

Since this problem is posed in the half-space, it is important to specify the
behaviour at infinity for the data and solutions. We have chosen to impose
such conditions by setting our problem in weighted Sobolev spaces, where the
growth or decay of functions at infinity are expressed by means of weights.
These weighted Sobolev spaces provide a correct functional setting for un-
bounded domains, in particular because the functions in these spaces satisfy
an optimal weighted Poincaré-type inequality. Our analysis is based on the
isomorphism properties of the biharmonic operator in the whole space and
the resolution of the Dirichlet and Neumann problems for the Laplacian in
the half-space. This last one is itself based on the isomorphism properties of
the Laplace operator in the whole space and also on the reflection principle
inherent in the half-space. Note here the double difficulty arising from the
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unboundedness of the domain in any direction and from the unboundedness
of the boundary itself.

We begin to establish the existence of generalized solutions to prob-
lem (P), i.e. solutions which belong to weighted Sobolev spaces of type
Wf’p (Rf ). Then we are interested both in the existence of strong solutions

which belong to spaces of type W;_;_g (]Rf ), and singular solutions which be-

long to W,"5(RY) or WP (RY) in the case f = 0 with singular boundary
conditions. We also establish the existence of solutions which belong to the
intermediate spaces W;J;I{(Rf )-

It turns out that the use of classical Sobolev spaces is inadequate in this

case, contrary to the study of elliptic problems of type:
(Q): u+ Au=f ian, u=go and Iyu=g; on T,

where it is more reasonable to consider data and solutions in standard
Sobolev spaces. For example, if f € LQ(Rf), go € H7/2(RN*1) and g1 €
H2(RN~1), problem (Q) admits an unique solution u € H*(RY). In the
case of problem (P), if we assume that f € L?(RY), the solution u can
not be better than in Wé’Q(Rf) and its traces u|pr and Onulr respectively

in WJ/Q’Q(RNA) and W§/2’2(RN*1). Moreover, we can observe that these
spaces are respective subspaces of the first.

On the one hand, we can find in the literature an approach via homo-
geneous spaces. For instance, when f € LZ(Rf ), that consists in finding

solutions to (P) satisfying V4u € LQ(RJI)ML, but that gives no information
on the other derivatives, nor specifes the behavior at infinity for the data
and solutions.

On the other hand, Boulmezaoud has established (c¢f. [6]) in a Hilber-

tian framework, the existence of solutions u € Wg’ﬁ(Rf ) for data f €
Wejrll’Q(]Rf ) and regularity results. However, owing to some critical cases,
this framework excludes in particular the dimensions 2 and 4.

To reduce the set of critical values, we have used a special class of

weighted Sobolev spaces with logarithmic factors (cf. [2]).

2. Notations and functional framework

For any integer N > 2, writing a typical point = = (z1,...,zx) € RY as
x = (2/,zn), we denote by Rﬂ\r] = {z € RY; 2y > 0} the upper half-space
of RN and ' = {(2/,0); 2’ € R¥~1} = R¥~! its boundary.

We shall use the two basic weights ¢ = (14-|z[2)'/? and Ig ¢ = In(2+]|z[?),
where |z| = (22 + -+ - 4+ 23;)"/? is the Euclidean norm of z.

Let A = (A\1,...,An) € N¥ be a multi-index and 9; = 9/dz;, then
N =M. 8]’§,N denotes a differential operator of order |A\| = A\ +-- -+ An.



For any integer ¢, &, stands for the space of polynomials of degree
smaller than or equal to g; gqu (resp. (@qu) is the subspace of harmonic
(resp. biharmonic) polynomials of Z; %A (resp. </1{1A) is the subspace of
polynomials of (ng, odd (resp. even) with respect to zy, or equivalently,
which satisfy the condition ¢(2/,0) = 0 (resp. dne(z’,0) = 0); with the
convention that these spaces are reduced to {0} if ¢ < 0.

For any real number s, we denote by [s] the integer part of s.

Given a Banach space B, with dual space B’ and a closed subspace X of

B, we denote by B’ 1 X the subspace of B’ orthogonal to X, i.e.
B LX={feB:WweX, (fv)=0}=(B/X).

For any k € Z, we shall denote by {1,...,k} the set of the first k£ positive
integers, with the convention that this set is empty if k is nonpositive.

For any real number p > 1, we always take p’ to be the Holder conjugate
of p,i.e. 1/p+1/p =1.

Let ©Q be an open set of RY. For any m € N, p € ]1, oo|, (a, 8) € R?,
we define the following space:

Wg?bp(ﬁ) :{u € 2'(Q); 0 <A <k, oI (lg Q)Bfl M e LP(Q);

¢
F+1< N <m, oo (1go)? Otue /(@)

N
where k=m— — —aif N/p+a € {l,...,m}, and k = —1 otherwise.
p

In the case 3 = 0, we simply denote the space by Wo"?(2). Note that
W;"’ﬁp () is a reflexive Banach space equipped with its natural norm:

a—m — p
lullmrioy = (32 10*™ P (g 0~ 0ulfp
’ 0<|A<k

a—m D 1/p
3 e g o) Pl )
E4+1<|A|<m

We also define the semi-norm:

o 1/p
ulym oy = (3 o (g0)° ullfugy) -

[A|l=m

The weights in the definition (1) are chosen so that the corresponding space
satisfies two properties. On the one hand, Z(RY) is dense in ngp(Rf). On
the other hand, the following Poincaré-type inequality holds in Wg’lbp RY)
(cf. [4]): N

if ?—l—agé{l,...,m} or (8—1)p+# -1, (2)



then the semi-norm | - |Wm,5 PRY) defines on Wg"/’@p (RY)/ 2, a norm which

is equivalent to the quotient norm,
PN
\V/U € Wzﬁp(R'i')’ ||U”W;T’lbp(R$)/yq/ § C|U|W$ZBP(R<I§)’ (3)

with ¢/ = inf(q,m — 1), where ¢ is the highest degree of the polynomials
contained in W (RY).

o

Now, we define the space W, "4 (RY) = Q(Rf)”'HWsz(R%, and the dual
space of WZL’;(Rf) is denoted by W__gl_pé(Rf) Under the assumption (2),

o
m

the semi-norm | - ’W;V?,ﬁp(Rﬁ) is a norm on Wa”g(RiV) which is equivalent to
the full norm || - ngj’;(Rf)-

We shall now recall some properties of the weighted Sobolev spaces
Wgnbp (RY). We have the algebraic and topological imbeddings:

N
: -1, 0, :
WP (RY) = WP (RY) oo s Wt o(RY) if ot ¢{1,....,m}

N
When — +a =7 € {1,...,m}, then we have:
p

m,p . m—j+1,p m—j,p . 0,p
Waois = o Waiing @ Waja— 2 Woln s

N
Note that in the first case, for any v € R such that —+a—~ ¢ {1,...,m}
p

and m € N, the mapping u € bep(Rf) — olu € ng,};’ﬂ(Rf) is an
isomorphism. In both cases and for any multi-index A € NV, the mapping
u € W;n:gp(Rf) — 0Pu € nglM’p(Rf) is continuous. Finally, it can be
readily checked that the highest degree ¢ of the polynomials contained in

Wg?’ﬂp (RY) is given by

N
S+ aed{l,...,m} and —1)p>—1
—(—N+a>—1 if{p ¢ yand (5~ 1)p
q: p

or & +ae{je j<0}and fp> 1,
[m — (% +oz)} otherwise.

In order to define the traces of functions of Wg"P(RY) (here we don’t
consider the case § # 0), for any o € ]0, 1], we introduce the space:

W PRY) = {u c Z/RY); wouec LP(RY) and Vi=1,...,N,
+oo
/ t—i-op dt/ lu(x + te;) — u(z)|P de < oo},
0 RN
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where w = g if N/p # o and w = o(1g0)"/? if N/p = o, and ey, ..., ey is
the canonical basis of RY. Tt is a reflexive Banach space equipped with its
natural norm. Similarly, for any real number o« € R, we define the space:

ngP(RN) = {u € Ql(RN); w* %y € LP(RN),

0°(2) u(z) ~ 0°(y) u(y))
Jowan ey e <0}

where w = g if N/p+ a # 0 and w = Q(lgg)l/("_a) if N/p+a = o. For
any s € R™, we set

Wer®Y) = {ue 7'®RY); 0< |\ <k, oM (Ig0) ! 9 u € LPRY);

k1< <[ -1, 0o 0 e IPRYN); olu e W (RY) |

where k = s — N/p—aif N/p+a € {o,...,0+ [s]}, with 0 = s — [s] and
k = —1 otherwise. We also define, for any real number (3, the space:

Wih®RY) = {ve 7/ RY); (go)’v e War®RY)}.

If w is a function on Rf, we denote its trace of order j on the hyperplane I'
by:

VieN, yu:a e RV 6gvu(x',0).

Let’s recall the following trace lemma due to Hanouzet (c¢f. [8]) and extended
by Amrouche-Necasova (cf. [4]) to this class of weighted Sobolev spaces:

LeEMMA 2.1. For any integer m > 1 and real number «, the mapping
7 m—1
Y= (707’717 s 77m—1) : -@(Rf) - H -@(RN_l)v
§=0
can be extended to a linear continuous mapping, still denoted by ~,
m—1

v WPRY) — [ WY,
j=0

Moreover vy is surjective and Kery = Wa P(RY).



3. Biharmonic operator in RV

Let ¢ € Z. Combining isomorphism results for A in RY (c¢f. [2] and [3]),
we can show that the following operators are isomorphisms

2 —
A2 WEPRN)/ PGy — W PPRY) L 28T, s (5)
3, 2 _17 2
A2 WAL RN) PRy — Wit "®Y) L 250y n (6)
2
AQ . W;_;_g(RN)/e@[%,g,N/p] I Weo-;-g(RN) 1 'gz[%j_[_]\[/pl]a (7)

respectively under the following hypotheses

N N

g%{l,,g} and ;%{1,,—6}, (8)
N N
ﬁgé{l,...,ﬁ—i—l} and ;qﬁ{l,...,—ﬁ—l}, 9)
N N
SELtr2) amd gL 02} (10)

4. Generalized solutions of A2 in ]Rf

For any ¢ € Z, we introduce the space %, as a subspace of WqAQ:
B :{u€<@$2; u:(?NuzoonF}.

THEOREM 4.1 (Generalized solutions). Let ¢ € Z. Under hypothesis (8),
for any f € W[Q’p(Rf), go € Wngl/p’p(I’) and g1 € ngfl/p’p(lj) satisfying
the compatibility condition

Vo € Bloyi—N/p)s

(o @by 2 + (91, ¢}y — (90, 0nAp) =0, (1D

RY) x> (RY)
problem (P) admits a solution u € Wf’p(Rf), unique up to an element of

Blo—1—Nyp), and there exists a constant C' such that

inf u+ , <
GEBt N/ || qHWEQ P(Rf) >

C (HfHWl72’p(R_,1Y) + HQOHWZ_I/I%P(F) + Hgluwel—l/np(r)) .
PROOF. 1) We characterize the kernel .# of the operator (A% ~p,71) in

Wf’p (RY). Thanks to the reflection principle for the biharmonic equation
(cf. Farwig [7]), we show that if ¢ € Z, assuming that N/p ¢ {1,...,—(},



then 2" = Pjy_y_n/p). Moreover, we define the two operators IIp and Iy
respectively for any r € saka and s € J%A, by:

1

TN 1 TN
Ipr(x) = B / tr(z',t)dt and Ilys(x) = 3 acN/ s(a',t) dt,
0 0

satisfying the following properties:
Vreaf,  Allpr=r inRY,  Tpr=0yIpr=0 onT,
Vs € ME, Allys =s in RY, Hys=0nOys=0 onl.

Then we otain a second characterization of the kernel # which links it
to the kernels of the Dirichlet problem and the Neumann problem for the
Laplacian in the half-space (c¢f. [4] and [5]): let £ € Z and assume that
N/p ¢{1,...,—(}, then

H = Bye-njp) = U2y S INA Dy (12)

Note that ZBja_s_n/p = {0} if = — N/p <0.

Using a Green formula and the density of @(Rf ) in WZ P (Rf ), we can
easily prove the necessity of the compatibility condition (11).

2) We establish the result in the case f = 0, i.e. for the homogeneous
problem:

(P : A% =0 in Rf, u=gg and Oyu=g; onl.

Thanks to the relation (12), the compatibility condition (11) is equivalent
to both conditions:

VT S ‘Q{[EA*N/})/]’ <g07aNT>F = O a.nd VS S J‘/[ZA*N/})’P <g1,3>r - O

These conditions assure the existence (cf. [4] and [5]) of ¢ € Wg P(RY) and
¢ e Wf’p (Rﬂf ), respectively solutions to the problems

AY =0 in Rﬁ, ¥=gg on I,
A(=0 in Rf, On(=g1 on T.

We can readily verify that the function defined by
u=aNIN(C—9)+0 € WoP(RY)
verifies problem (P). Furthermore, we remark that u also satisfies
Au=29%(¢—9) in RY, w=gy on T.

Then, again thanks to [4] and an unicity argument, we can deduce that
ue W)P(RY).



3) In the general case, thanks to Lemma 2.1, we consider a lifting function
ug € Wg’p(Rf) of (go, 1), so that to solve (P) is equivalent solving

(P*): A’u=f inRY, u=0yu=0 onT,

where f € W, »P(RY) with the orthogonality condition f L B\ s n/p-
¢ + S [2+¢—N/p']

N2
Now, thanks to (3), we can write f = div div F, where F € Wf’p(Rﬂ\r]) .
step 1. Assume that 2+ ¢ — N/p" < 0. Let F be the extension of F to
RN by 0 and f = div div F € W, »?(R"). By isomorphism (5), since here
we have (@éieiN/p,] = {0}, there exists Z € Wez’p(RN) such that f = A2z
in RN. Writing z = Zlgx, we have f = A%z in RY, with = € WP (RY),
z|p € W;_l/p’p(f‘) and Onz|p € Wel_l/p’p(F). Since HBpoye—nypy) = 10},
the compatibility condition vanishes and point 2) yields the existence of a
solution v € WZ P (Rf ) to the homogeneous problem

(P%) A?v=0 inRY, v=2z and Oyv=0nyz onl.

The function u = z — v answers to problem (P*) in this case.
step 2. Assume that 2 — ¢ — N/p < 0. We have shown in the case
24 ¢ — N/p' <0, that the operator

A2 WrP(RY) ) Blao-nyp) — W, 2P (RY)

is an isomorphism. Thus, by duality we can deduce if 2 — ¢ — N/p < 0, the
isomorphism

A% W PRY) — W2 P(RY) L By -

step 3. Assume that 24+¢—N/p’ > 0 and 2—£— N/p > 0, which implies
¢ € {-1,0,1}. If £ € {—1,0}, we use again the extension F of F to R" by
0. By isomorphism (7), since here we have ,@[%f]v/p,] = {0}, there exists

G ¢ I/Vgl’p(RN)N2 such that A’G = F in RY. Writing G = ©|R$7 we have
A2G = F in RY. Then setting z = div div G, we obtain 2z € W/"P(RY)
such that A%z = f in RY; moreover we have z[. € Wffl/p’p(l‘) and
Onzlp € ngfl/p’p(lj). Since o ¢—n/p) = {0}, point 2) yields a solution
v E Wf’p(Rf) to problem (P*). Then the function u = 2z — v answers to
problem (P*) for £ € {—1,0}. Now we can deduce the case ¢ =1 by duality

from ¢ = —1.
It remains to combine the three steps to obtain the isomorphism

A?: W?’p(Rf)/@[Q_K_N/p] — W[Zp(Rf) 1 %[2_‘_(_]\[/]7/],

for any ¢ € Z verifying (8). This answers globally to problem (P*) and thus
to general problem (P). O



5. Weak solutions of A? in Rf

THEOREM 5.1 (Weak solutions). Let ¢ € Z. Under hypothesis (9), for

any f € WA}{”(Rf), 9o € W;:ll/p’p(F) and g1 € WZ__ll/p’p(F) satisfying the
compatibility condition (11), problem (P) admits a solution u € Wgﬁ RY),
unique up to an element of Blo_¢_nyp), and which continuously depends on

the data with respect to the quotient norm.

PROOF. Since N/p' # ¢ + 1, let’s remark that we have the imbedding
Wejrll’p RY) — W[Z’p (RY), then we can easily check that the kernel and
the compatibility condition are identical to the ones of Theorem 4.1.

1) We consider a lifting function u, € W;’p(Rﬂf) of (go,91), so that
to solve (P) is equivalent solving (P*), where f € W[l’p (RY) with the
orthogonality condition f L B ¢ n/p-

2) Assume that [ < —2. Thanks to (3), we can write f = div F', where

N ~ N
F ¢ W&’{(Rf) . Let’s denote by F' € WEJ’FZ{(RN) the extension by 0 of

FtoRY and f = div F ¢ Wejrll’p(RN). By isomorphism (6), since here
we have ‘@[%—T-E—N/p’] = {0}, there exists Z € W;’_ﬁ(RN) such that f = A2z
in RV, Writing z = 2’1@7 we have f = A%z in RY, with z € Wé)’jf{(Rf),

z|p € ng_ll/p’p(F) and Onz|p € W;;ll/p’p(F). Thanks to [4] and [5], we also

can generalize the result about the homogeneous problem (P°) in point 2)

of the proof of Theorem 4.1. Thus there exists v € Wegﬁ(Rf ) solution to

(P*) and the function u = z — v answers to (P*).
3) Assume that ¢ > —1. There exists an unique pu € <75

A [0+2—N/p'|
that for any %,y

such

(Fsr) 10 DL (mNy / o T INIPENIY g oy da
N

» 1, -
o+1 RN xW 2 (RY)

which we can write

r o = ONT - —1/p, p!
<f7 >WZ:Lll’p(Rf)><W1,’ZPL1(Rf) <€07 N >W£1+11/p’p(F)><W_€1_/€’p(F)’

setting & = o 21NNV gy € W;_;ll/p’p(f‘). That is precisely the
compatibility condition of the Dirichlet problem (cf. [4])

Af=f in RY, €=¢& on T,

which admits then a solution § € W;ﬁ(Rf ). Now we use the characteriza-
tion (12). Since f L Bloyr_n/p), We have

Vr € ‘Q{[EAfN/p/]’ <A§, HDT> = <f7 HDT> =0.

-1, ° 1,p’
Wt PRI xW 2 (RY)

9



By a Green formula and the imbedding W}jf{(ﬂ%ﬁ ) — W, SP(RY), we can
deduce that

A —
Vr e «Qf[g_N/p/], (¢, AHDT)W[}{p(Rf)XV?/I,’e’il(Rﬂ) =0.

Thus, we have

Vr € fszf[gA_N/p,], <£,T>W_Lp =0,

P RN W RY)
which is again the compatibility condition for the Dirichlet problem
AY=¢ in RY, 9=0 on T,
which admits then a solution ¢ € W;ﬁ(RJX ). Similarly we have

Vs € C/I/[ZAfN/p/P <A£,HNS> = <f, HNS> = 07

_ o /
Wz+1f PRY)xwh P (RY)
therefore we have

VS c JV[ﬁN/p’]’ <§, S>W71 N 07

ST ED WL )
which is the compatibility condition for Neumann problem (cf. [5])
A¢=¢in RY, On(=0 on T,
which admits then a solution ¢ € WZ’_’{ (RY). The function defined by
u=aNIN(C—9)+0 € WIP(RY)
verifies problem (P*). Furthermore, we remark that u also satisfies
Au=20%C—-9)+€¢ in RY, w=0 on T.

By [4] and an unicity argument, we can deduce that u € W;’J’r’i (Rf ). O

6. Strong solutions of A? in RY

THEOREM 6.1 (Strong solutions). Let ¢ € Z. Under hypothesis (10), for

any f € W&_g(Rf), go € W;:Ql/p’p(f‘) and g1 € Wf_:;/p’p(F) satisfying the
compatibility condition (11), problem (P) admits a solution u € WZ’_’;(Rf),
unique up to an element of Bjo_y_nyp), and which continuously depends on

the data with respect to the quotient norm.

PROOF. In the case | < —2, the arguments are similar to the ones of
Theorem 5.1. If ¢ > —1, since N/p’ # ¢ + 2, we have the imbedding
WZOJ’rg(Rf ) — sz_ll’p (RY). Then, thanks to Theorem 5.1, there exists a
solution u € ijf{(Rﬂ ) to problem (P*) and classical regularity arguments

allow us to show that u € W;jf; RY). O

10



7. Singular boundary conditions

THEOREM 7.1. Let | € Z and assume that

N N
AL =) end g {12 (13)

For any go € W,_, Lp. "P(T) and g1 € W, L=1/p. "P(T) satisfying the compatibility
condition

Vo € BN/ > (91, Ap)r — (90, OINAp)p = 0, (14)

problem (P°) has a solution u € W?;g(Rf), unique up to an element of
Blo—1—N/p), and which continuously depends on the data with respect to the
quotient norm.

PROOF. 1) Let | € Z and m > 2 be two integers. We introduce the
spaces

WP RY) = {ue W P(RY); u=0yu=0onT},

0, 0,
Y2 RY) = {v e WEBRY); A e Wit (R}

Note that YZ 1(Rf ) is a reflexive Banach space equipped with its natural
norm:

lollyy, @y = ollyony) + 18%yos | y)-

Then we can show that under hypothesis (13), the space 2 (RN ) is dense

in Y/, (RY). We deduce that the mapping (y0, 71) : @(RN) — QRN
can be extended to a linear continuous mapping

1 —1-1/p,
(0, 1) = YL (RY) — W PP(T) x Wiy /PP (D)

and moreover we have for any v € Y, ( ) and ¢ € I/V4 rro(R
<A v 90>W€0+g I(Ri\»f)xwg«;llz 1(]RN <U A 90>W0 P(RN) WO ,p’ (RN) =

IR (15)

<U 8NA§0> 1 1/p, p(F)XW1+1/p p’ )

1/p p(F)le/p p’ I) <8NU A§0>

2) Let #* = {z € WPH(RY); A% =0in RY, z=dyz=0onT} be
the kernel of this operator. Thanks to the formula (15), we can observe that
Problem (P?) is equivalent to the formulation:

Find v € Yfl(IRN)/Ji/b such that for any v € W “_Z(Rf),

Q
( ) <U A ’U> OPRN)XWOP (Rf) = <917AU> <gO7aNAU>I‘

11



3) We shall solve problem (Q) by duality. According to Theorem 6.1,
problem (P*) admits an unique solution v € W4’€i2(Rf )/ PBla40—nyp), under

hypothesis (13). Moreover, v satisfies the estimate

< )
HvHWf’giz(Rﬁ)/@[zqu/p’] s ¢ HfHWEﬂ/Q(Rﬁ)

Consider the linear form T': f +—— (g1, Av)p — (g0, OINAv). We can show
that it is continuous on WE’Z_’LQ RY) L PBlo—¢—n/p- Then, according to Riesz
representation theorem, there exists an unique u € W?;g(Rf )/ Bla—o—n/yp)
such that T'f = (u, f>Wf;’2’(Rﬁ)xWEﬁ2(Rf)' This means that v is a solution

to problem (Q) and ¢ = Blo—1—N/p)- O
We can complete these results by an intermediate case, with a proof

similar to the previous one:

THEOREM 7.2. Letl € Z and assume that
N N
ggé{l,...,é—l} and 5%{1,...,—5—1—1}. (16)

For any gy € ng:ll/p’p(f‘) and g1 € W[_ll/p’p(I’) satisfying the compatibility
condition (14), problem (P°) has a solution u € W;;’{(Rf), unique up to
an element of Bja_¢_Nyp), and which continuously depends on the data with
respect to the quotient norm.
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