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BIHARMONIC PROBLEM IN THE HALF-SPACE
WITH TRACES IN WEIGHTED SOBOLEV SPACES

CHÉRIF AMROUCHE and YVES RAUDIN

(26th June 2006)

Abstract

In this paper, we study the biharmonic equation in the half-space RN
+ , with N ≥ 2.

We prove in Lp theory, with 1 < p <∞, existence, uniqueness and regularity results; then
we are interested in singular boundary conditions. We consider data and give solutions
which live in weighted Sobolev spaces.

Keywords and phrases: Biharmonic problem, Half-space, Weighted Sobolev spaces.

1. Introduction

The purpose of this paper is the resolution of the biharmonic problem
with nonhomogeneous boundary conditions in the half-space

(P) : ∆2u = f in RN
+ , u = g0 and ∂Nu = g1 on Γ.

Since this problem is posed in the half-space, it is important to specify the
behaviour at in�nity for the data and solutions. We have chosen to impose
such conditions by setting our problem in weighted Sobolev spaces, where the
growth or decay of functions at in�nity are expressed by means of weights.
These weighted Sobolev spaces provide a correct functional setting for un-
bounded domains, in particular because the functions in these spaces satisfy
an optimal weighted Poincaré-type inequality. Our analysis is based on the
isomorphism properties of the biharmonic operator in the whole space and
the resolution of the Dirichlet and Neumann problems for the Laplacian in
the half-space. This last one is itself based on the isomorphism properties of
the Laplace operator in the whole space and also on the re�ection principle
inherent in the half-space. Note here the double di�culty arising from the
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unboundedness of the domain in any direction and from the unboundedness
of the boundary itself.

We begin to establish the existence of generalized solutions to prob-
lem (P), i.e. solutions which belong to weighted Sobolev spaces of type
W 2, p

` (RN
+ ). Then we are interested both in the existence of strong solutions

which belong to spaces of type W 4, p
`+2(R

N
+ ), and singular solutions which be-

long to W 0, p
`−2(R

N
+ ) or W 1, p

`−1(R
N
+ ) in the case f = 0 with singular boundary

conditions. We also establish the existence of solutions which belong to the
intermediate spaces W 3, p

`+1(R
N
+ ).

It turns out that the use of classical Sobolev spaces is inadequate in this
case, contrary to the study of elliptic problems of type:

(Q) : u + ∆2u = f in RN
+ , u = g0 and ∂Nu = g1 on Γ,

where it is more reasonable to consider data and solutions in standard
Sobolev spaces. For example, if f ∈ L2(RN

+ ), g0 ∈ H7/2(RN−1) and g1 ∈
H5/2(RN−1), problem (Q) admits an unique solution u ∈ H4(RN

+ ). In the
case of problem (P), if we assume that f ∈ L2(RN

+ ), the solution u can

not be better than in W 4, 2
0 (RN

+ ) and its traces u|Γ and ∂Nu|Γ respectively

in W
7/2, 2
0 (RN−1) and W

5/2, 2
0 (RN−1). Moreover, we can observe that these

spaces are respective subspaces of the �rst.

On the one hand, we can �nd in the literature an approach via homo-
geneous spaces. For instance, when f ∈ L2(RN

+ ), that consists in �nding

solutions to (P) satisfying ∇4u ∈ L2(RN
+ )N4

, but that gives no information
on the other derivatives, nor specifes the behavior at in�nity for the data
and solutions.

On the other hand, Boulmezaoud has established (cf. [6]) in a Hilber-
tian framework, the existence of solutions u ∈ W 3, 2

`+1(R
N
+ ) for data f ∈

W−1, 2
`+1 (RN

+ ) and regularity results. However, owing to some critical cases,
this framework excludes in particular the dimensions 2 and 4.

To reduce the set of critical values, we have used a special class of
weighted Sobolev spaces with logarithmic factors (cf. [2]).

2. Notations and functional framework

For any integer N ≥ 2, writing a typical point x = (x1, . . . , xN ) ∈ RN as
x = (x′, xN ), we denote by RN

+ = {x ∈ RN ; xN > 0} the upper half-space
of RN and Γ = {(x′, 0); x′ ∈ RN−1} ≡ RN−1 its boundary.

We shall use the two basic weights % = (1+|x|2)1/2 and lg % = ln(2+|x|2),
where |x| = (x2

1 + · · ·+ x2
N )1/2 is the Euclidean norm of x.

Let λ = (λ1, . . . , λN ) ∈ NN be a multi-index and ∂i = ∂/∂xi, then
∂λ = ∂λ1

1 · · · ∂λN
N denotes a di�erential operator of order |λ| = λ1 + · · ·+ λN .
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For any integer q, Pq stands for the space of polynomials of degree

smaller than or equal to q; P∆
q (resp. P∆2

q ) is the subspace of harmonic

(resp. biharmonic) polynomials of Pq; A ∆
q (resp. N ∆

q ) is the subspace of

polynomials of P∆
q , odd (resp. even) with respect to xN , or equivalently,

which satisfy the condition ϕ(x′, 0) = 0 (resp. ∂Nϕ(x′, 0) = 0); with the
convention that these spaces are reduced to {0} if q < 0.

For any real number s, we denote by [s] the integer part of s.
Given a Banach space B, with dual space B′ and a closed subspace X of

B, we denote by B′ ⊥ X the subspace of B′ orthogonal to X, i.e.

B′ ⊥ X = {f ∈ B′; ∀v ∈ X, 〈f, v〉 = 0} = (B/X)′.

For any k ∈ Z, we shall denote by {1, . . . , k} the set of the �rst k positive
integers, with the convention that this set is empty if k is nonpositive.

For any real number p > 1, we always take p′ to be the Hölder conjugate
of p, i.e. 1/p + 1/p′ = 1.

Let Ω be an open set of RN . For any m ∈ N, p ∈ ]1, ∞[, (α, β) ∈ R2,
we de�ne the following space:

Wm, p
α, β (Ω) =

{
u ∈ D ′(Ω); 0 ≤ |λ| ≤ k, %α−m+|λ| (lg %)β−1 ∂λu ∈ Lp(Ω);

k + 1 ≤ |λ| ≤ m, %α−m+|λ| (lg %)β ∂λu ∈ Lp(Ω)
}

,
(1)

where k = m− N

p
− α if N/p + α ∈ {1, . . . ,m}, and k = −1 otherwise.

In the case β = 0, we simply denote the space by Wm, p
α (Ω). Note that

Wm, p
α, β (Ω) is a re�exive Banach space equipped with its natural norm:

‖u‖W m, p
α, β (Ω) =

( ∑
0≤|λ|≤k

‖%α−m+|λ| (lg %)β−1 ∂λu‖p

Lp(Ω)

+
∑

k+1≤|λ|≤m

‖%α−m+|λ| (lg %)β ∂λu‖p

Lp(Ω)

)1/p
.

We also de�ne the semi-norm:

|u|W m, p
α, β (Ω) =

( ∑
|λ|=m

‖%α (lg %)β ∂λu‖p

Lp(Ω)

)1/p
.

The weights in the de�nition (1) are chosen so that the corresponding space

satis�es two properties. On the one hand, D
(
RN

+

)
is dense in Wm, p

α, β (RN
+ ). On

the other hand, the following Poincaré-type inequality holds in Wm, p
α, β (RN

+ )
(cf. [4]):

if
N

p
+ α /∈ {1, . . . ,m} or (β − 1)p 6= −1, (2)
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then the semi-norm | · |W m, p
α, β (RN

+ ) de�nes on Wm, p
α, β (RN

+ )/Pq′ a norm which

is equivalent to the quotient norm,

∀u ∈ Wm, p
α, β (RN

+ ), ‖u‖W m, p
α, β (RN

+ )/Pq′
≤ C |u|W m, p

α, β (RN
+ ), (3)

with q′ = inf(q, m − 1), where q is the highest degree of the polynomials
contained in Wm, p

α, β (RN
+ ).

Now, we de�ne the space
◦

W
m, p
α, β (RN

+ ) = D(RN
+ )

‖·‖
W

m, p
α, β

(RN
+ )
, and the dual

space of
◦

W
m, p
α, β (RN

+ ) is denoted by W−m, p′

−α,−β(RN
+ ). Under the assumption (2),

the semi-norm | · |W m, p
α, β (RN

+ ) is a norm on
◦

W
m, p
α, β (RN

+ ) which is equivalent to

the full norm ‖ · ‖W m, p
α, β (RN

+ ).

We shall now recall some properties of the weighted Sobolev spaces
Wm, p

α, β (RN
+ ). We have the algebraic and topological imbeddings:

Wm, p
α, β (RN

+ ) ↪→ Wm−1, p
α−1, β (RN

+ ) ↪→ · · · ↪→ W 0, p
α−m, β(RN

+ ) if
N

p
+α /∈ {1, . . . ,m}.

When
N

p
+ α = j ∈ {1, . . . ,m}, then we have:

Wm, p
α, β ↪→ · · · ↪→ Wm−j+1, p

α−j+1, β ↪→ Wm−j, p
α−j, β−1 ↪→ · · · ↪→ W 0, p

α−m, β−1.

Note that in the �rst case, for any γ ∈ R such that
N

p
+ α− γ /∈ {1, . . . ,m}

and m ∈ N, the mapping u ∈ Wm, p
α, β (RN

+ ) 7−→ %γu ∈ Wm, p
α−γ, β(RN

+ ) is an

isomorphism. In both cases and for any multi-index λ ∈ NN , the mapping

u ∈ Wm, p
α, β (RN

+ ) 7−→ ∂λu ∈ W
m−|λ|, p
α, β (RN

+ ) is continuous. Finally, it can be
readily checked that the highest degree q of the polynomials contained in
Wm, p

α, β (RN
+ ) is given by

q =


m−

(
N
p + α

)
− 1 if

{
N
p + α ∈ {1, . . . ,m} and (β − 1)p ≥ −1

or N
p + α ∈ {j ∈ Z; j ≤ 0} and βp ≥ −1,[

m−
(

N
p + α

)]
otherwise.

In order to de�ne the traces of functions of Wm, p
α (RN

+ ) (here we don't
consider the case β 6= 0), for any σ ∈ ]0, 1[, we introduce the space:

W σ, p
0 (RN ) =

{
u ∈ D ′(RN ); w−σu ∈ Lp(RN ) and ∀i = 1, . . . , N,∫ +∞

0
t−1−σp dt

∫
RN

|u(x + tei)− u(x)|p dx < ∞
}

,

(4)
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where w = % if N/p 6= σ and w = % (lg %)1/σ if N/p = σ, and e1, . . . , eN is
the canonical basis of RN . It is a re�exive Banach space equipped with its
natural norm. Similarly, for any real number α ∈ R, we de�ne the space:

W σ, p
α (RN ) =

{
u ∈ D ′(RN ); wα−σu ∈ Lp(RN ),∫

RN×RN

|%α(x) u(x)− %α(y) u(y)|p

|x− y|N+σp
dx dy < ∞

}
,

where w = % if N/p + α 6= σ and w = % (lg %)1/(σ−α) if N/p + α = σ. For
any s ∈ R+, we set

W s, p
α (RN ) =

{
u ∈ D ′(RN ); 0 ≤ |λ| ≤ k, %α−s+|λ| (lg %)−1 ∂λu ∈ Lp(RN );

k + 1 ≤ |λ| ≤ [s]− 1, %α−s+|λ| ∂λu ∈ Lp(RN ); ∂[s]u ∈ W σ, p
α (RN )

}
,

where k = s −N/p − α if N/p + α ∈ {σ, . . . , σ + [s]}, with σ = s − [s] and
k = −1 otherwise. We also de�ne, for any real number β, the space:

W s, p
α, β(RN ) =

{
v ∈ D ′(RN ); (lg %)β v ∈ W s, p

α (RN )
}

.

If u is a function on RN
+ , we denote its trace of order j on the hyperplane Γ

by:

∀j ∈ N, γju : x′ ∈ RN−1 7−→ ∂j
Nu(x′, 0).

Let's recall the following trace lemma due to Hanouzet (cf. [8]) and extended
by Amrouche-Ne£asová (cf. [4]) to this class of weighted Sobolev spaces:

Lemma 2.1. For any integer m ≥ 1 and real number α, the mapping

γ = (γ0, γ1, . . . , γm−1) : D
(
RN

+

)
−→

m−1∏
j=0

D(RN−1),

can be extended to a linear continuous mapping, still denoted by γ,

γ : Wm, p
α (RN

+ ) −→
m−1∏
j=0

Wm−j−1/p, p
α (RN−1).

Moreover γ is surjective and Kerγ =
◦

W
m, p
α (RN

+ ).
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3. Biharmonic operator in RN

Let ` ∈ Z. Combining isomorphism results for ∆ in RN (cf. [2] and [3]),
we can show that the following operators are isomorphisms

∆2 : W 2, p
` (RN )/P∆2

[2−`−N/p] −→ W−2, p
` (RN ) ⊥ P∆2

[2+`−N/p′], (5)

∆2 : W 3, p
`+1(R

N )/P∆2

[2−`−N/p] −→ W−1, p
`+1 (RN ) ⊥ P∆2

[2+`−N/p′], (6)

∆2 : W 4, p
`+2(R

N )/P∆2

[2−`−N/p] −→ W 0, p
`+2(R

N ) ⊥ P∆2

[2+`−N/p′], (7)

respectively under the following hypotheses

N

p′
/∈ {1, . . . , `} and

N

p
/∈ {1, . . . ,−`}, (8)

N

p′
/∈ {1, . . . , ` + 1} and

N

p
/∈ {1, . . . ,−`− 1}, (9)

N

p′
/∈ {1, . . . , ` + 2} and

N

p
/∈ {1, . . . ,−`− 2}. (10)

4. Generalized solutions of ∆2 in RN
+

For any q ∈ Z, we introduce the space Bq as a subspace of P∆2

q :

Bq =
{

u ∈ P∆2

q ; u = ∂Nu = 0 on Γ
}

.

Theorem 4.1 (Generalized solutions). Let ` ∈ Z. Under hypothesis (8),

for any f ∈ W−2, p
` (RN

+ ), g0 ∈ W
2−1/p, p
` (Γ) and g1 ∈ W

1−1/p, p
` (Γ) satisfying

the compatibility condition

∀ϕ ∈ B[2+`−N/p′],

〈f, ϕ〉
W−2, p

` (RN
+ )×

◦
W

2, p′
−` (RN

+ )
+ 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0,

(11)

problem (P) admits a solution u ∈ W 2, p
` (RN

+ ), unique up to an element of

B[2−`−N/p], and there exists a constant C such that

inf
q∈B[2−`−N/p]

‖u + q‖
W 2, p

` (RN
+ )

≤

C
(
‖f‖

W−2, p
` (RN

+ )
+ ‖g0‖W

2−1/p, p
` (Γ)

+ ‖g1‖W
1−1/p, p
` (Γ)

)
.

Proof. 1) We characterize the kernel K of the operator (∆2, γ0, γ1) in
W 2, p

` (RN
+ ). Thanks to the re�ection principle for the biharmonic equation

(cf. Farwig [7]), we show that if ` ∈ Z, assuming that N/p /∈ {1, . . . ,−`},
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then K = B[2−`−N/p]. Moreover, we de�ne the two operators ΠD and ΠN

respectively for any r ∈ A ∆
k and s ∈ N ∆

k , by:

ΠDr(x) =
1
2

∫ xN

0
t r(x′, t) dt and ΠNs(x) =

1
2

xN

∫ xN

0
s(x′, t) dt,

satisfying the following properties:

∀r ∈ A ∆
k , ∆ΠDr = r in RN

+ , ΠDr = ∂NΠDr = 0 on Γ,

∀s ∈ N ∆
k , ∆ΠNs = s in RN

+ , ΠNs = ∂NΠNs = 0 on Γ.

Then we otain a second characterization of the kernel K which links it
to the kernels of the Dirichlet problem and the Neumann problem for the
Laplacian in the half-space (cf. [4] and [5]): let ` ∈ Z and assume that
N/p /∈ {1, . . . ,−`}, then

K = B[2−`−N/p] = ΠDA ∆
[−`−N/p] ⊕ΠNN ∆

[−`−N/p]. (12)

Note that B[2−`−N/p] = {0} if −`−N/p < 0.
Using a Green formula and the density of D

(
RN

+

)
in W 2, p

` (RN
+ ), we can

easily prove the necessity of the compatibility condition (11).
2) We establish the result in the case f = 0, i.e. for the homogeneous

problem:

(P0) : ∆2u = 0 in RN
+ , u = g0 and ∂Nu = g1 on Γ.

Thanks to the relation (12), the compatibility condition (11) is equivalent
to both conditions:

∀r ∈ A ∆
[`−N/p′], 〈g0, ∂Nr〉Γ = 0 and ∀s ∈ N ∆

[`−N/p′], 〈g1, s〉Γ = 0.

These conditions assure the existence (cf. [4] and [5]) of ϑ ∈ W 2, p
` (RN

+ ) and
ζ ∈ W 2, p

` (RN
+ ), respectively solutions to the problems

∆ϑ = 0 in RN
+ , ϑ = g0 on Γ,

∆ζ = 0 in RN
+ , ∂Nζ = g1 on Γ.

We can readily verify that the function de�ned by

u = xN ∂N (ζ − ϑ) + ϑ ∈ W 1, p
`−1(R

N
+ )

veri�es problem (P). Furthermore, we remark that u also satis�es

∆u = 2 ∂2
N (ζ − ϑ) in RN

+ , u = g0 on Γ.

Then, again thanks to [4] and an unicity argument, we can deduce that
u ∈ W 2, p

` (RN
+ ).
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3) In the general case, thanks to Lemma 2.1, we consider a lifting function
ug ∈ W 2, p

` (RN
+ ) of (g0, g1), so that to solve (P) is equivalent solving

(P?) : ∆2u = f in RN
+ , u = ∂Nu = 0 on Γ,

where f ∈ W−2, p
` (RN

+ ) with the orthogonality condition f ⊥ B[2+`−N/p′].

Now, thanks to (3), we can write f = div div F, where F ∈ W 0, p
` (RN

+ )
N2

.

step 1. Assume that 2 + `−N/p′ < 0. Let F̃ be the extension of F to
RN by 0 and f̃ = div div F̃ ∈ W−2, p

` (RN ). By isomorphism (5), since here

we have P∆2

[2+`−N/p′] = {0}, there exists z̃ ∈ W 2, p
` (RN ) such that f̃ = ∆2z̃

in RN . Writing z = z̃|RN
+
, we have f = ∆2z in RN

+ , with z ∈ W 2, p
` (RN

+ ),

z|Γ ∈ W
2−1/p, p
` (Γ) and ∂Nz|Γ ∈ W

1−1/p, p
` (Γ). Since B[2+`−N/p′] = {0},

the compatibility condition vanishes and point 2) yields the existence of a
solution v ∈ W 2, p

` (RN
+ ) to the homogeneous problem

(P]) : ∆2v = 0 in RN
+ , v = z and ∂Nv = ∂Nz on Γ.

The function u = z − v answers to problem (P?) in this case.
step 2. Assume that 2 − ` − N/p < 0. We have shown in the case

2 + `−N/p′ < 0, that the operator

∆2 :
◦

W
2, p
` (RN

+ )/B[2−`−N/p] −→ W−2, p
` (RN

+ )

is an isomorphism. Thus, by duality we can deduce if 2− `−N/p < 0, the
isomorphism

∆2 :
◦

W
2, p
` (RN

+ ) −→ W−2, p
` (RN

+ ) ⊥ B[2+`−N/p′].

step 3. Assume that 2+`−N/p′ ≥ 0 and 2−`−N/p ≥ 0, which implies
` ∈ {−1, 0, 1}. If ` ∈ {−1, 0}, we use again the extension F̃ of F to RN by
0. By isomorphism (7), since here we have P∆2

[`−N/p′] = {0}, there exists

G̃ ∈ W 4, p
` (RN )

N2

such that ∆2G̃ = F̃ in RN . Writing G = G̃|RN
+
, we have

∆2G = F in RN
+ . Then setting z = div div G, we obtain z ∈ W 2, p

` (RN
+ )

such that ∆2z = f in RN
+ ; moreover we have z|Γ ∈ W

2−1/p, p
` (Γ) and

∂Nz|Γ ∈ W
1−1/p, p
` (Γ). Since B[2+`−N/p′] = {0}, point 2) yields a solution

v ∈ W 2, p
` (RN

+ ) to problem (P]). Then the function u = z − v answers to
problem (P?) for ` ∈ {−1, 0}. Now we can deduce the case ` = 1 by duality
from ` = −1.

It remains to combine the three steps to obtain the isomorphism

∆2 :
◦

W
2, p
` (RN

+ )/B[2−`−N/p] −→ W−2, p
` (RN

+ ) ⊥ B[2+`−N/p′],

for any ` ∈ Z verifying (8). This answers globally to problem (P?) and thus
to general problem (P).
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5. Weak solutions of ∆2 in RN
+

Theorem 5.1 (Weak solutions). Let ` ∈ Z. Under hypothesis (9), for

any f ∈ W−1, p
`+1 (RN

+ ), g0 ∈ W
3−1/p, p
`+1 (Γ) and g1 ∈ W

2−1/p, p
`+1 (Γ) satisfying the

compatibility condition (11), problem (P) admits a solution u ∈ W 3, p
`+1(R

N
+ ),

unique up to an element of B[2−`−N/p], and which continuously depends on

the data with respect to the quotient norm.

Proof. Since N/p′ 6= ` + 1, let's remark that we have the imbedding
W−1, p

`+1 (RN
+ ) ↪→ W−2, p

` (RN
+ ), then we can easily check that the kernel and

the compatibility condition are identical to the ones of Theorem 4.1.
1) We consider a lifting function ug ∈ W 3, p

` (RN
+ ) of (g0, g1), so that

to solve (P) is equivalent solving (P?), where f ∈ W−1, p
` (RN

+ ) with the
orthogonality condition f ⊥ B[2+`−N/p′].

2) Assume that l ≤ −2. Thanks to (3), we can write f = div F , where

F ∈ W 0, p
`+1(R

N
+ )

N
. Let's denote by F̃ ∈ W 0, p

`+1(R
N )

N
the extension by 0 of

F to RN and f̃ = div F̃ ∈ W−1, p
`+1 (RN ). By isomorphism (6), since here

we have P∆2

[2+`−N/p′] = {0}, there exists z̃ ∈ W 3, p
`+1(R

N ) such that f̃ = ∆2z̃

in RN . Writing z = z̃|RN
+
, we have f = ∆2z in RN

+ , with z ∈ W 3, p
`+1(R

N
+ ),

z|Γ ∈ W
3−1/p, p
`+1 (Γ) and ∂Nz|Γ ∈ W

2−1/p, p
`+1 (Γ). Thanks to [4] and [5], we also

can generalize the result about the homogeneous problem (P0) in point 2)
of the proof of Theorem 4.1. Thus there exists v ∈ W 3, p

`+1(R
N
+ ) solution to

(P]) and the function u = z − v answers to (P?).
3) Assume that ` ≥ −1. There exists an unique µ ∈ A ∆

[`+2−N/p′] such

that for any A ∆
[`+2−N/p′],

〈f, r〉
W−1, p

`+1 (RN
+ )×

◦
W

1, p′
−`−1(RN

+ )
=

∫
Γ

%′−2`−1−N/p+N/p′ ∂Nµ∂Nr dx′,

which we can write

〈f, r〉
W−1, p

`+1 (RN
+ )×

◦
W

1, p′
−`−1(RN

+ )
= 〈ξ0, ∂Nr〉

W
1−1/p, p
`+1 (Γ)×W

−1/p′, p′
−`−1 (Γ)

,

setting ξ0 = %′−2`−1−N/p+N/p′ ∂Nµ ∈ W
1−1/p, p
`+1 (Γ). That is precisely the

compatibility condition of the Dirichlet problem (cf. [4])

∆ξ = f in RN
+ , ξ = ξ0 on Γ,

which admits then a solution ξ ∈ W 1, p
`+1(R

N
+ ). Now we use the characteriza-

tion (12). Since f ⊥ B[2+`−N/p′], we have

∀r ∈ A ∆
[`−N/p′], 〈∆ξ,ΠDr〉

W−1, p
`+1 (RN

+ )×
◦

W
1, p′
−`−1(RN

+ )
= 〈f,ΠDr〉 = 0.
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By a Green formula and the imbedding W 1, p
`+1(R

N
+ ) ↪→ W−1, p

`−1 (RN
+ ), we can

deduce that

∀r ∈ A ∆
[`−N/p′], 〈ξ, ∆ΠDr〉

W−1, p
`−1 (RN

+ )×
◦

W
1, p′
−`+1(RN

+ )
= 0.

Thus, we have

∀r ∈ A ∆
[`−N/p′], 〈ξ, r〉

W−1, p
`−1 (RN

+ )×
◦

W
1, p′
−`+1(RN

+ )
= 0,

which is again the compatibility condition for the Dirichlet problem

∆ϑ = ξ in RN
+ , ϑ = 0 on Γ,

which admits then a solution ϑ ∈ W 3, p
`+1(R

N
+ ). Similarly we have

∀s ∈ N ∆
[`−N/p′], 〈∆ξ, ΠNs〉

W−1, p
`+1 (RN

+ )×
◦

W
1, p′
−`−1(RN

+ )
= 〈f,ΠNs〉 = 0,

therefore we have

∀s ∈ N ∆
[`−N/p′], 〈ξ, s〉

W−1, p
`−1 (RN

+ )×
◦

W
1, p′
−`+1(RN

+ )
= 0,

which is the compatibility condition for Neumann problem (cf. [5])

∆ζ = ξ in RN
+ , ∂Nζ = 0 on Γ,

which admits then a solution ζ ∈ W 3, p
`+1(R

N
+ ). The function de�ned by

u = xN ∂N (ζ − ϑ) + ϑ ∈ W 2, p
` (RN

+ )

veri�es problem (P?). Furthermore, we remark that u also satis�es

∆u = 2 ∂2
N (ζ − ϑ) + ξ in RN

+ , u = 0 on Γ.

By [4] and an unicity argument, we can deduce that u ∈ W 3, p
`+1(R

N
+ ).

6. Strong solutions of ∆2 in RN
+

Theorem 6.1 (Strong solutions). Let ` ∈ Z. Under hypothesis (10), for

any f ∈ W 0, p
`+2(R

N
+ ), g0 ∈ W

4−1/p, p
`+2 (Γ) and g1 ∈ W

3−1/p, p
`+2 (Γ) satisfying the

compatibility condition (11), problem (P) admits a solution u ∈ W 4, p
`+2(R

N
+ ),

unique up to an element of B[2−`−N/p], and which continuously depends on

the data with respect to the quotient norm.

Proof. In the case l ≤ −2, the arguments are similar to the ones of
Theorem 5.1. If ` ≥ −1, since N/p′ 6= ` + 2, we have the imbedding
W 0, p

`+2(R
N
+ ) ↪→ W−1, p

`+1 (RN
+ ). Then, thanks to Theorem 5.1, there exists a

solution u ∈ W 3, p
`+1(R

N
+ ) to problem (P?) and classical regularity arguments

allow us to show that u ∈ W 4, p
`+2(R

N
+ ).
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7. Singular boundary conditions

Theorem 7.1. Let l ∈ Z and assume that

N

p′
/∈ {1, . . . , `− 2} and

N

p
/∈ {1, . . . ,−` + 2}. (13)

For any g0 ∈ W
−1/p, p
`−2 (Γ) and g1 ∈ W

−1−1/p, p
`−2 (Γ) satisfying the compatibility

condition

∀ϕ ∈ B[2+`−N/p′] , 〈g1,∆ϕ〉Γ − 〈g0, ∂N∆ϕ〉Γ = 0, (14)

problem (P0) has a solution u ∈ W 0, p
`−2(R

N
+ ), unique up to an element of

B[2−`−N/p], and which continuously depends on the data with respect to the

quotient norm.

Proof. 1) Let l ∈ Z and m ≥ 2 be two integers. We introduce the
spaces

?
W

m, p
` (RN

+ ) =
{
u ∈ Wm, p

` (RN
+ ); u = ∂Nu = 0 on Γ

}
,

Y p
`, 1(R

N
+ ) =

{
v ∈ W 0, p

`−2(R
N
+ ); ∆2v ∈ W 0, p

`+2, 1(R
N
+ )

}
.

Note that Y p
`, 1(R

N
+ ) is a re�exive Banach space equipped with its natural

norm:
‖v‖Y p

`, 1(RN
+ ) = ‖v‖

W 0, p
`−2(RN

+ )
+ ‖∆2v‖

W 0, p
`+2, 1(RN

+ )
.

Then we can show that under hypothesis (13), the space D
(
RN

+

)
is dense

in Y p
`, 1(R

N
+ ). We deduce that the mapping (γ0, γ1) : D

(
RN

+

)
−→ D(RN−1)2

can be extended to a linear continuous mapping

(γ0, γ1) : Y p
`, 1(R

N
+ ) −→ W

−1/p, p
`−2 (Γ)×W

−1−1/p, p
`−2 (Γ);

and moreover we have for any v ∈ Y p
`, 1(R

N
+ ) and ϕ ∈

?
W

4, p′

−`+2(R
N
+ ),〈

∆2v, ϕ
〉
W 0, p

`+2, 1(RN
+ )×W 0, p′

−`−2,−1(RN
+ )
−

〈
v,∆2ϕ

〉
W 0, p

`−2(RN
+ )×W 0, p′

−`+2(RN
+ )

=

〈v, ∂N∆ϕ〉
W

−1/p, p
`−2 (Γ)×W

1/p, p′
−`+2 (Γ)

− 〈∂Nv,∆ϕ〉
W

−1−1/p, p
`−2 (Γ)×W

1+1/p, p′
−`+2 (Γ)

.
(15)

2) Let K [ =
{

z ∈ W 0, p
`−2(R

N
+ ); ∆2z = 0 in RN

+ , z = ∂Nz = 0 on Γ
}

be

the kernel of this operator. Thanks to the formula (15), we can observe that
Problem (P0) is equivalent to the formulation:

(Q)

 Find u ∈ Y p
`, 1(R

N
+ )/K [ such that for any v ∈

?
W

4, p′

−`+2(R
N
+ ),〈

u, ∆2v
〉
W 0, p

`−2(RN
+ )×W 0, p′

−`+2(RN
+ )

= 〈g1,∆v〉Γ − 〈g0, ∂N∆v〉Γ .
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3) We shall solve problem (Q) by duality. According to Theorem 6.1,

problem (P?) admits an unique solution v ∈ W 4, p′

−`+2(R
N
+ )/B[2+`−N/p′], under

hypothesis (13). Moreover, v satis�es the estimate

‖v‖
W 4, p′

−`+2(RN
+ )/B[2+`−N/p′]

≤ C ‖f‖
W 0, p′

−`+2(RN
+ )

.

Consider the linear form T : f 7−→ 〈g1,∆v〉Γ − 〈g0, ∂N∆v〉Γ. We can show

that it is continuous on W 0, p′

−`+2(R
N
+ ) ⊥ B[2−`−N/p]. Then, according to Riesz

representation theorem, there exists an unique u ∈ W 0, p
`−2(R

N
+ )/B[2−`−N/p]

such that Tf = 〈u, f〉
W 0, p

`−2(RN
+ )×W 0, p′

−`+2(RN
+ )
. This means that u is a solution

to problem (Q) and K [ = B[2−`−N/p].

We can complete these results by an intermediate case, with a proof
similar to the previous one:

Theorem 7.2. Let l ∈ Z and assume that

N

p′
/∈ {1, . . . , `− 1} and

N

p
/∈ {1, . . . ,−` + 1}. (16)

For any g0 ∈ W
1−1/p, p
`−1 (Γ) and g1 ∈ W

−1/p, p
`−1 (Γ) satisfying the compatibility

condition (14), problem (P0) has a solution u ∈ W 1, p
`−1(R

N
+ ), unique up to

an element of B[2−`−N/p], and which continuously depends on the data with

respect to the quotient norm.

References

[1] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] C. Amrouche, V. Girault, J. Giroire. Weighted Sobolev spaces for Laplace's
equation in RN . J. Math. Pures Appl. 73, 6 (1994), 579�606.

[3] C. Amrouche, V. Girault, J. Giroire. Equation de Poisson et espaces de Sobolev
avec poids critiques. Publications du Laboratoire de Mathématiques Appliquées de
l'Université de Pau.

[4] C. Amrouche, S. Ne£asová. Laplace equation in half space with a nonhomoge-
neous Dirichlet boundary condition. Mathematica Bohemica 126, 2 (2001), 265�274.

[5] C. Amrouche. The Neumann problem in the half space. C. R. Acad. Sci. Paris,
Série I 335 (2002), 151�156.

[6] T. Z. Boulmezaoud. On the Stokes system and the biharmonic equation in the
half-space: an approach via weighted Sobolev spaces. Mathematical Methods in the
Applied Sciences 25 (2002), 373�398.

12



[7] R. Farwig. A Note on the Re�ection Principle for the Biharmonic Equation and
the Stockes system. Acta applicandae Mathematicae 25 (1994), 41�51.

[8] B. Hanouzet. Espaces de Sobolev avec poids. Application au problème de Dirichlet
dans un demi-espace. Rend. Sem. Univ. Padova 46 (1971), 227�272.

Laboratoire de Mathématiques Appliquées
Université de Pau et des Pays de l'Adour
IPRA, Avenue de l'Université
64000 Pau
France
e-mail: cherif.amrouche@univ-pau.fr

13


