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This paper has been o�cially published in Comptes Rendus Mécanique, Vol. 335,pp. 455-460, 2007 (DOI : 10.1016/j.crme.2007.05.023).Fracture of rigid solids: a discrete approach based on a damaginginterface modelling.Claire SILVANI (silvani@lma.cnrs-mrs.fr), Université de Provence & LMA (UPR 7051-CNRS), 31chemin Joseph Aiguier, 13402 Marseille cedex 20, France.Thierry DÉSOYER (thierry.desoyer@ec-marseille.fr), EC-Marseille & LMA (UPR 7051-CNRS),Technopôle de Château-Gombert, 38 rue Joliot Curie, 13451 Marseille Cedex 20, France.Stéphane BONELLI (stephane.bonelli@aix.cemagref.fr), Cemagref, 3275 route de Cézanne, CS40061, 13182 Aix-en-Provence cedex 5, France.AbstractWe describe the progressive and delayed fracture of rigid solids by a discrete modelling.Each rigid solid is considered as an assembly of particles with initial cohesive bonds, the latterdecreasing progressively during the loading. A damaging interface model is proposed to describethis progressive phenomenon. The model has been implemented in a discrete element code. The�rst illustrative example, which is actually a parametric study, deals with the progressive damageand sudden fracture of a single interface submitted to an uniaxial tension. The second example isrelated to the crushing of an assembly of rigid solids � i. e. a granular medium � submitted to an÷dometric compression.Keywords: Granular medium; rigid solids; interfaces; damage; fracture.Résumé Nous décrivons la rupture progressive et di�érée de solides rigides par une approche discrète.Chaque solide rigide est représenté par une collection de particules, initialement liées par une cohésionqui peut progressivement diminuer au cours du chargement. Un modèle d'endommagement interfacial estproposé pour décrire cette décroissance progressive. Implémenté dans un code de calcul par éléments dis-crets, ce modèle permet de simuler la rupture di�érée de collections de solides rigides. Le premier exempleillustratif, qui est en fait une étude paramétrique, est relatif à l'endommagement progressif puis la ruptured'une unique interface soumise à une traction simple. Le second exemple porte sur la rupture et l'attritiond'une collection de solides rigides � i. e. d'un milieu granulaire � sous compression ÷dométrique.Mots-clés : Milieu granulaire ; solides rigides ; interfaces ; endommagement ; rupture1 IntroductionThe general frame of this study is that of the progressive (�nite cracking velocity) and delayed (withrespect to the loading) fracture of rigid solids interacting by contact and friction. An illustrative exampleof such a structural problem is this of a rock�ll dam, which can globally settle due to the local fracture ofrock blocks in the time, see e. g. Deluzarche and Cambou, [1]; Oldecop and Alonso, [2].Choice is here made to get numerically approximated solutions of the contact-friction part of the problemby using the discrete element method proposed by Jean and Moreau (see e. g. [3], [4] ). However, due tothe fact that the rigid solids (or grains) � which will be all assumed of the same characteristic size DS � canbreak, each of them is considered as an assembly of rigid particles � which will be also all assumed of thesame characteristic size Dp � DS . These particles are assumed to be initially 'glued'. From a numericalpoint of view, a grain, i. e. an assembly of rigid particles, must thus be seen as a mesh of the rigid solid,in which a crack can initiate (resp. propagate) only on (resp. through) the contact zones between rigidgrains. Consequently, from a physical point of view, these contact zones have to be considered as rigidbut breakable interfaces.Strong cohesive forces are supposed to exist initially on the interfaces (see e. g. Delenne et al, [5]), givingto them their initial tensile strength. It is then assumed that, when a given interface I � characteristic1



area S ≈ (Dp)2 � is submitted to a su�ciently strong tensile force, microcracks and/or microcavities, i.e. damage, initiate, grow and, eventually, coalesce, that leads to the fracture of the interface (and so, tothe irreversible vanishing of the cohesive forces).Section 2 of this paper is devoted to the presentation of a thermodynamically consistent damaging interfacemodel where, in agreement with the general frame of this study, the evolution of the damage is at thesame times progressive and delayed. Two illustrative examples are presented in Section 3. The �rst oneis that of a single interface between two particles submitted to an uniaxial tensile force: the analyticalsolution is given, from which a parametric study of the damaging interface model is done. The secondexample is related to the crushing of an assembly of two-dimensional rigid solids � i. e. a two-dimensionalgranular medium � due to an ÷dometric compression: the results here presented have been obtained usinga numerical code in which the damaging interface model has been implemented.2 A damaging interface modellingThe (thermo)dynamic system considered in this section is an interface I between two grains. Like thegrains, I is assumed to be rigid : the area of the surface S occupied by I is then constant, whatever theforces acting on are. Furthermore, the displacement jump [u] through S is assumed to be zero whenever
I is not destroyed (i. e. whenever S is clearly de�ned) ; consequently, [u] cannot be considered as a statevariable of I . Actually, only one 'mechanical' state variable will be considered there, denoted by d (scalar)and characterizing the damage by microcracking and/or microcavitation of the constitutive material of I .It will be assumed that d ∈

[

0, 1

m

] where m > 0 is a material parameter whose physical meaning will bediscussed later on. It must be here emphasized that, as soon as d = 1/m, I is destroyed and the contact-friction interactions between the both grains have to be considered on the basis of the Signorini-Coulombequations (see e. g. [4]), which will not be detailed in the present paper.The damaging interface model is actually based on previous works on continuum damage mechanics byMarigo, [6], where the necessary and su�cient condition for the intrinsic dissipation to be non negativeis simply given by ḋ ≥ 0. Denoting by σ the stresses acting in S, assumption is then made that σ ishomogeneous. On the other hand, it is assumed that, due to the damage, the e�ective tough surface of
I is not S but its only undamaged part (1 − md)S. Consequently, the stresses are simply linked to theglobal force F (de�ned in such a way that FN = F. N > 0 when I is submitted to a tensile force) by:

F = (1 − md)S σ. N (1)A damage yield surface is next introduced. Once more, it is clearly inspired by the works by Marigo,[6]. However, for a sake of consistency between the present interfacial damage model and the Coulomb-Signorini one (see also Cangemi et al, [7]), which must 'merge' in the latter one as soon as d = 1/m, thedamage yield surface is here expressed as a function of FN and Ft = F − FNN , i. e.:
gd(FN , Ft , d) = FN +

1

µ
|Ft| − F d

0 (1 − md) = 0 (2)where µ is the friction coe�cient between the both grains when I is destroyed (d = 1/m), F d
0 > 0 thedamage yield when d = 0, and m > 0 a 'softening' parameter (the greater m, the stronger the softening).As previously indicated, Eqn. (2) reduces to the classical Coulomb's yield surface as soon as d = 1/m.As for the fracture of I , which can occur suddenly when I is su�ciently damaged, it is controlled by afracture yield surface, which reads:

gf (FN , Ft , d) = FN +
1

µ
|Ft| − F f

0
(1 − md) = 0 (3)where F f

0
≥ F d

0 is the maximal tensile force I can undergo. It must be here emphasized that mechanicalstates (FN , Ft , d) such that gf (FN , Ft , d) > 0 cannot be reached � i. e., as soon as gf (FN , Ft , d) = 0, I isdestroyed � and that, whatever the reachable mechanical state (FN , Ft , d) is, gd(FN , Ft , d) ≥ gf (FN , Ft, d)� i. e. damage takes place before fracture, apart from the limit case of a perfectly brittle interface(F f
0

= F d
0 ), where damage and fracture are concomitant.Eventually, the damage evolution law is given by (η is a characteristic time):

ḋ =
1

η

〈

gd(FN , Ft , d)

F d
0

〉

H−(−gf (FN , Ft , d)) +

[

1

m
− d

]

δ
(

gf (FN , Ft, d)
) (4)2



where 〈 . 〉 denotes the MacCauley brackets and H− is the modi�ed Heaviside function (H−(0) = 0). TheDirac distribution δ indicates that, as soon as gf (FN , Ft , d) = 0, ḋ is to be understood as a distributionderivative (i. e. d 'jumps' to its maximal value 1/m).3 Illustrative examples3.1 TensionApart from the friction coe�cient µ, four material parameters have to be identi�ed for the damaginginterface model (see Section 2) to be fully de�ned: the softening parameter m; the damage yield F d
0 ; thefracture yield F f

0
= (1/r)F d

0 (r ≤ 1); the characteristic time η. The in�uence of each of these parameterson the damage evolution is here studied, considering a single interface (surface S) submitted to a simpletension such that Ft = 0 and σ̇N = ḞN/S = cst > 0.For a sake of convenience � and due to the fact that t = (σNσ0)/(σ0σ̇N), where the damage yield stress
σ0 is given by σ0 = F d

0 /S � d will be here considered as a function of σN/σ0 instead of the time t. Thus,noticing that gd(σN , d) > 0 as soon as σN/σ0 > 1 − md0, Eqn. (4) can be rewritten (denoting by d,N0the �rst derivative of d with respect to σN/σ0):
ησ̇N

σ0

d,N0 −mH(
σN

σ0

− 1 + md0) d = (
σN

σ0

− 1)H(
σN

σ0

− 1 + md0) (5)with the initial condition d(σN/σ0 = 0) = d0. The exact solution of this equation reads (whenever
gf (σN , d) = σN − σf (1 − md) < 0, where the fracture yield stress σf is given by σf = F f

0
/S):

d(
σN

σ0

) = d0 − H(
σN

σ0

− 1 + md0)

(

(
η σ̇N

σ0 m2
) exp

(

mσ0

η σ̇N

(
σN

σ0

− 1 + md0)

)

+
1

m
(1 −

σN

σ0

) −
η σ̇N

σ0 m2
− d0

)(6)Depending on di�erent values of the material parameters, the di�erent shapes of this solution are presentedon Fig.1. Notice that, due to the fact that, in Eqn.(6), the material parameter η and the loading parameter
σ̇N are systematically linked by their product, choice has been actually made to consider σ̇N as a parameterand η as a constant.As shown on Fig.1, the main features of the damage evolution are:

• the loading rate σ̇N (or, in an equivalent way, the inverse of the characteristic time η) acts on boththe present damage d � for an arbitrary given loading σN/σ0, the greater σ̇N , the smaller d � andthe critical value of the damage (dc, such that gf (σN , dc) = 0) � the greater σ̇N , the smaller dc,
• the initial damage d0 has in�uence on both the damage yield (σN0, such that gd(σN0, d0) = 0) � thegreater d0, the smaller σN0 � and dc � the greater d0, the greater dc,
• the softening parameter m immediatly gives the upper-bound of the damage range (since d ∈

[

0, 1

m

],see Section 2) and constrains the present damage d � for an arbitrary given loading σN/σ0, thegreater m, the greater d,
• the ratio r = F d

0 /F f
0

= σ0/σf ≤ 1 acts only on the critical value of the damage � the greater r, thesmaller dc.Another interesting result concerns the ultimate phase of the damage evolution, i. e. the fracture of theinterface: the latter is not triggered by a critical value of the damage, a priori de�ned, but depends at hesame times on the material parameters and on the loading parameter. From a modelling point of view,this is due to the fact that the damaging interface model is actually based on two yield surfaces, one forthe damage, the other for the fracture; from a physical point of view, this result simply means that thefracture of the interface can be either 'brittle' (small values of dc) � e. g. when submitted to high loadingrates � or 'ductile' (great values of dc) � e. g. for small values of the softening parameter.3.2 CompressionWe now consider an assembly of two-dimensionnal rigid solids (grains) � i.e. a two-dimensional granularmedium � submitted to a compressive force |T | in ÷dometric conditions (no lateral displacements). In theinitial state, see Fig.2-a, the sample (initial heigth: H = 42cm ; initial width: W = 48cm) is composed by75 grains (diameters between 5 and 6 cm), each of them being constituted by 60 to 70 particles (diameters
Dp between 5 and 6 mm). More precisely, the numerical simulations involve 4980 particles. The loading T3



is de�ned by a ramp (time rate Ṫ = cst 6= 0) followed by a constant value (Ṫ = 0), in order to highlight thecreep like response of the granular medium. The axial strain is de�ned by ε = |U | /H where U is the globaldisplacement induced by T ; the axial stress is denoted by σ = |T | /eW where e is the (unit) thicknessof the sample. An other important parameter, denoted by ν, is the ratio between the present number ofbroken interfaces and the initial number of cohesive contacts. Notice also that all the simulations wereperformed with the discrete element code LMGC90 (see e. g. [8]) and with µ = 1, m = 1, η = 1s and atime step ∆t = 5.10−4s.As we have a time dependent damage model, the loading rate strongly in�uences the mechanical responseof the sample. This is clearly shown on Fig.2-b, where t is scaled by the loading characteristic time
tF = F f

0
/

∣

∣

∣
Ṫ

∣

∣

∣
. For a given value of σ0, Fig.2-c shows that r in�uences the kinetics of the creep phase,while for a given value of σf , see Fig.2-d, this is the amplitude of the axial strain which is modi�ed by

r. Notice eventually that ν and ε evolves in the same way during the creep phase: the kinetics is mainlygoverned by the fracture of the interfaces.4 ConclusionMost of the structural failures are due to the pre-existence of various kinds of micro-defects (microcracksand/or microvoids) in the materials, which propagate and eventually coalesce in a macro-crack. Themodelling of these propagation and coalescence is an important issue. The discrete approach presentedhere is intended as a step toward this issue. The proposed damaging interface model is based on a reducedset of �ve parameters. The illustrative examples seem to indicate that the numerical code in which thedamaging model has been implemented is an e�cient tool for simulating the initiation and the propagationof macro-cracks in rigid solids, including the time e�ect. Examples of applications clearly include damengineering: rock�ll material is characterized by delayed grain breakage under constant load. This is themain cause of the majority of post-constructive displacements observed in high rock�ll dams, which canproduce piping or cracking of the impervious element.AcknowledgementsThis project was sponsored by the Région Provence Alpes Côte d'AzurReferences[1] R. Deluzarche and B. Cambou, Discrete numerical modelling of rock�ll dams, Int. J. Numer. Anal.Geomech., 30 (2006) 1075-1096.[2] L.A. Oldecop and E.E. Alonso, Fundamentals of rock�ll time-dependent behaviour, in: Juca, deCampos & Marinho (Eds), Unsaturated Soils, 2002, pp. 793-798.[3] M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanic andEngineering, 177 (1999) 235-257.[4] J.-J. Moreau, Unilateral contact and dry friction in �nite freedom analysis, in: J.J Moreau et P.DPanagiotopoulos (Eds), Non SmoothMechanics and Application, chapter CISM Courses and Lectures,Vol.302, Springer-Verlag, 1988, pp. 1-82.[5] J.-Y. Delenne, M.S. El Youssou�, F. Cherblanc, J.-C. Benet, Mechanical behaviour and failure ofcohesive granular materials, Int. J. Numer. Anal. Geomech., 28 (2004) 1577-1594.[6] J.-J. Marigo, Formulation d'une loi d'endommagement d'un matériau élastique, C. R. Acad. Sci.Paris, Ser. II 292 (1981) 1309-1312.[7] L. Cangemi, M. Cocou and M. Raous, Adhesion and friction model for the �bre/matrix interface ofa composite, in: A.B. Sabir, C. Bohatier, M.G. Fertis, G.T. Tsatsaronis, R.J. Krane, K.M. Abbott(Eds), Proc. Third Biennal Joint Conference on Engineering Systems, Design and Analysis (ESDA96), Montpellier, Vol.1, 1996, pp. 157-163.[8] B. Cambou and M. Jean, Micromécanique des matériaux granulaires, Hermès Science Publications,Paris, 2001.
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Figure 1: Simple tension of a single interface: in�uence of the loading and material parameterson the damage evolution. Notice that only the exponential part of each graph (ending in d = dc)corresponds to a regular damage evolution: the linear part (ending on the d-axis to the maximumvalue of d, 1/m) is only an arbitrary representation of the damage jump [d] = 1/m−dc, which leadsto the fracture of the interface. Beyond σ0 = 0.9 MPa and η = 0.1 s, the reference parameters are:
˙σN = 2.3 MPa.s−1, d0 = 0, m = 1, r = 0.25 - 1a (up-left): in�uence of the loading rate, σ̇N =
˙σN , 2 ˙σN , 4 ˙σN ; the greater σ̇N , the smaller dc - 1b (up-right): in�uence of the initial damage,

d0 = 0, 0.2, 0.4 - 1c (down-left): in�uence of the softening parameter, m = m, 2 m, 4 m; thegreater m, the smaller dc - 1d (down-right): in�uence of the ratio r = σ0/σf , r = r, 0.1 r, 0.001 r;the greater r, the smaller dc.

Figure 2: 2a (up-left): Sample composed by an assembly of 75 non 'glued' grains (initial heigth:
H = 42cm ; width: W = 48cm) and submitted to an ÷dometric loading ; each of the grains iscomposed of ≈ 65 particles, initially 'glued' - 2b (up-right): Axial strain ε = |U | /H versus di-mensionless time t/tF for 2 loading rates ; σ0 = 900kPa, r = 0.25 - 2c (bottom-left): Axial strain
ε = |U | /H and ratio between the present number of broken interfaces and the initial number of co-hesive contacts, ν, versus dimensionless time t/η; σ0 = 900kPa; σ̇ = 2300kPa.s−1; r = 0.25 or0.5- 2d (bottom-right): Idem 2c apart from σf = 5500kPa; σ̇ = 180kPa.s−1; r = 0.17 or0.55


