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Summary

This paper deals with vibroacoustic under heavy fluid-loading conditions. The aim is to show how

the high-order perturbation expansion approach described yields a very simple approximation of the

spectrum of a heavy fluid-loaded structure. When the fluid-loading is “light” (e.g. metallic structures

in contact with air) perturbation methods have been classically used to compute the spectrum of

a fluid-loaded structure. Because of the computational efficiency of the expansions involved, it is

now necessary to extend this method to heavy loading problems, such as those involving a metallic

structure in contact with water. As we will see, although direct high order expansion methods

yields unrealistic results, a judicious re-ordering of the various terms leads to surprisingly simple and

efficient analytical results. Numerical examples are given in the simple case of a clamped rectangular

plate under various fluid-loading conditions.

PACS no. 43.20.Ks, 43.20.Tb, 43.40.Rj
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1 Introduction

Accurately describing the effects of fluid loading on a vibrating structure leads to an overwhelming

decrease in the computational efficiency of the various method available. This is due to the fact that

the operator describing the loading is not only frequency dependent but also non local. The numerical

methods used to compute the solution in vacuo generally leads to the resolution of linear systems

with either small but frequency dependent matrices (as in the case of Boundary Element Methods) or

large but sparse and frequency independent matrices (as in that of Finite Element Methods). When

the loading is taken into account, the size of the involved matrices increase considerably, becoming

full and frequency dependent. Any method reducing these drawbacks is therefore most welcome.

A great amount of effort has gone into developing suitable methods for this purpose. Generally,

in each method one tries to remove or to approximate the frequency dependence of the fluid-loading

operator. One of the most recent and popular of these is the space state method proposed by

J.A. Giordano and G.H. Koopman [6, 14]. This method is based on the coupling between the

Boundary Element Methods and Finite Element Methods, used to discretize the acoustic and struc-

tural domains respectively, in a canonical state space which takes in the form of a standard eigenvalue

problem, where the frequency dependence of the loading matrix is removed by using low frequency

approximations. While this method can be applied to heavy loading problems (such as those involv-

ing a metal structure in water), it is restricted to the low frequency range. An iterative method,

also based on the coupling between the Boundary and Finite Element Methods, had been proposed

by McCollum and Siders [11] to perform modal analysis on heavily fluid-loaded structures. It is

based on the eigen-analysis of the structure in vacuo. As we already noticed, the principal difficulty

induced by the fluid-loading is caused by the frequency dependence of the matrix elements describing

it. Then at each step, the frequency dependence of these elements is fixed. At the first step, for

each in vacuo mode, the fluid-loaded system is solved by using its eigenfrequency to compute the
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matrix elements describing the loading. This allows to solve a standard eigenvalues problem; which

gives a first estimate of the fluid-loaded resonance mode and frequency. The next step uses these

values and the procedure is repeated until convergence. But, as noted by [13], for a certain range

of parameters this iterative scheme can give incorrect results; it is also very time consuming since it

must be repeated for each mode under consideration.

Asymptotic analysis can be conduced when the loading is light, in the case of a metal structure

in air, for instance. It consists in introducing a parameter ǫ, which is the ratio between the surface

mass density and the fluid density, which is low. Using perturbation expansions [3, 4, 12], one can

then construct an approximate solution, based on the in vacuo eigenmodes, which is not only easier

to calculate than the solution of the exact problem but also leads to a better understanding of the

various phenomenons involved. The main limitation here is that this method has a rather small

validity range which it is difficult to estimate.

In this paper, we show how a simple modification of the usual high-order perturbation expansion

methods yields a very simple approximation of the eigenmodes and resonance modes of a heavy

fluid-loaded structure.

The resonance modes correspond to the free oscillations of the system and provide a natural tool

for studying the effects of damping on sound radiation. The concept of eigenmodes and resonance

modes for fluid-loading structure had been developed recently [3, 5]. In the literature, the resonance

modes have been referred to under numerous denominations. The terms most commonly used are

“generalized eigenmodes” and “complex modes”. The latter denominations reflect the mathematical

nature of these modes: they are a generalization of the eigenmodes of a mechanical system in which

the frequency dependence of the various operators (such as the stiffness and mass operators) gives

rise to complex mode values. The resonance modes and eigenmodes are different when frequency

dependent damping is taken into account. This occurs in the case of material damping (in viscoelas-

ticity), structural damping (in boundary dissipation problems) and in acoustic radiation problems.
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Because of the frequency dependence, estimating the resonance modes is a much more difficult task

than that involving eigenmodes.

In section 2 we present the equations. Section 3 deals with a high-order perturbation expansion

of both eigenmodes and resonance modes. It is shown here how by re-arranging the various terms in

the eigenvalue expansion, a simple analytical expression for the eigenvalues is obtained. In section 4,

some numerical examples are given to show the efficiency of the method proposed. Some comments

have been made in the Conclusion

2 Statement of the problem

In this paper, we deal with harmonic time dependence exp(−ıωt), omitted to simplify the reading.

Let us consider an infinite domain Ω with a finite or infinite boundary ∂Ω that contains a fluid at

rest. A thin finite structure with thickness h and density ρp occupies a finite surface Σ of ∂Ω. M

is taken to denote a point on the structure and Q a point in the infinite domain. Let us take by

U(M,ω) to denote the normal displacement of the structure. O is the operator, independent of ω,

that describes the elastic behavior of the structure, such as the bi-Laplacian in the Kirchhoff plate

equation or the Donnell-Mushtari operator in the case of a thin shell. At the boundary ∂Σ of the

structure, one adds mechanical boundary conditions. f(M,ω) is the excitation force. A perfect fluid

at rest with density ρf and sound speed cf occupies Ω; the acoustic pressure, which is denoted by

P (Q,ω), is governed by the Helmholtz equation. A Neumann condition is imposed on Σ. U(M,ω)

and P (Q,ω) satisfy the following system of equations:

OU(M,ω) − ρphω2U(M,ω) = F (M,ω) − P (M,ω) in Σ (1)

∆P (Q,ω) + ω2/c2
fP (Q,ω) = 0 in ∂Ω (2)

Boundary condition for U(M,ω) on ∂Σ (3)
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∂nP (Q,ω) = 0 on ∂Ω − Σ (4)

lim
M∈Ω→Q∈Σ

∂nP (Q,ω) = −ρfω
2U(M,ω) on Σ. (5)

2.1 Integrodifferential equation for the displacement

This system of equations for U and P can be reduced to an integrodifferential equation for U by

using Green’s representation for the pressure. Let G(Q − Q′, ω) be the Green’s function for the

domain Ω with a Neumann boundary condition on ∂Ω. This function can be obtained analytically

for baffled plates or shells and numerically for other configurations. Using Green’s representation for

the pressure, it is easy to show that the pressure inside Ω is given by the integral equation

P (Q,ω) = ω2ρf

∫

Σ
U(M ′, ω)G(Q − M ′, ω)dM ′. (6)

Introducing this result into equation (1), one obtains the integrodifferential boundary value problem

for the structure

OU(M,ω) − ρphω2
(

U(M,ω) − ǫ
∫

Σ
U(M ′, ω)G(M − M ′, ω)dM ′

)

= F (M,ω) (7)

Boundary condition for U(M,ω) on ∂Σ (8)

where ǫ = ρf/ρph is a small parameter in the case of a metal structure in air.

2.2 Eigenmodes and resonance modes.

One now introduces [3] the weak form of the system given by equations (7, 8). It reads : find U(M,ω)

satisfying the boundary condition such that for each V (M,ω) satisfying the boundary condition, the

following equation holds

a(U, V ) − Λ (〈U, V 〉 − ǫβω(U, V )) = 〈F, V 〉 (9)

where Λ = ρphω2. a(U, V ) corresponds to the elastic (or potential) energy of the structure. 〈U, V 〉 is

the usual inner product 〈U, V 〉 =
∫

Σ U(M)V ∗(M)dM , ρphω2〈U, V 〉 is the kinetic energy. βω(U, V ) =
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∫

Σ

∫

Σ U(M)G(M−M ′, ω)V ∗(M ′)dMdM ′ is the radiation impedance. Since in the general case G(M−

M ′, ω) depends on the frequency βω(U, V ) is obviously frequency dependent. ρphω2ǫpβω(U, V ) is the

energy exchanged between the structure and the fluid. Because of the frequency dependence of

βω(U, V ), it is necessary to distinguish the eigenmodes from the resonance modes [3, 5]. It is just

recall here the corresponding definitions and basic properties of the two kind of modes.

The eigenmodes Ũm(M,ω) and the eigenpulsations ω̃m(ω) of this problem are the non zero solu-

tions of

a(Ũm, V ) − Λ̃m(ω)
(

〈Ũm, V 〉 − ǫβω(Ũm, V )
)

= 0, for each V (M). (10)

The eigenpulsations are given by ω̃2
m(ω) = Λ̃m(ω)/ρph.

The resonance modes Ûm(M) (or generalized eigenmodes or complex modes) and the resonance

pulsations ω̂m are defined as the nontrivial, frequency independent solutions of

a(Ũm, V ) − ρphω̂2
m

(

〈Ûm, V 〉 − ǫβω̂m
(Ûm, V )

)

= 0, for each V (M). (11)

While the resonance modes are harder to compute than the eigenmodes, they only need to be

calculated once. Moreover, there is a simple relation between the eigenmodes and the resonance

modes. From the definitions of these two kinds of modes, it is easy to see that one has:

Ûm(M) = Ũm(M, ω̂m), (12)

ω̂2
m = ω̃2

m(ω̂m). (13)

Equation (13) implies that the resonance pulsations are the fixed points of the eigenpulsations. The

only difficulty in computing the resonance modes is how to compute the resonance frequencies. In

the general case, discretizing of the problem leads to a system of simultaneous equations with a full

complex matrix. The complex zeros of the determinant of this matrix are the resonance frequencies,

and their estimation is generally a very difficult task because the coefficients of the matrix depend

on the frequency, which leads to estimating the zeros of a non-linear non-convex function in the
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complex plane. Problems of this kind have not yet been given rigorous numerical treatment. Once

the resonance frequencies are known, the resonance modes are estimated by performing a simple

matrix complex eigenmode search. Nevertheless, in the particular case of small damping problems

(internal of by radiation), perturbation expansions lead to a particularly simple expression for the

eigenmodes and eigenfrequencies [4]. In the following paragraph, we show how to use a perturbation

method in the case of heavy fluid-loading.

3 High-Order Perturbation expansions

Let us expand into a Rayleigh-Schrödinger perturbation series [12] both the eigenmodes Ũm and the

eigenvalues Λ̃m in ǫ :

Ũm(M) = Ũ (0)
m (M) + ǫŨ (1)

m (M) + · · · + ǫsŨ (s)
m (M) + · · · (14)

Λ̃m = Λ̃(0)
m + ǫΛ̃(1)

m + · · · + ǫsΛ̃(s)
m + · · · (15)

The Rayleigh-Schrödinger Method is one of the most powerful methods available to dealing with

vibroacoustics problems involving low frequency dependent damping such as those arising in viscos-

ity or sound radiation in light fluid. Substituting the two perturbation expansions into the weak

formulation given by equation (10), collecting and equating the coefficients of equal power ǫ to zero

yields:

ǫ0 : a(Ũ (0)
m , V ) − Λ̃(0)

m 〈Ũ (0)
m , V 〉 = 0, (16)

...

ǫs : a(Ũ (s)
m , V ) − Λ̃(0)

m 〈Ũ (s)
m , V 〉 =

l=s
∑

l=1

Λ̃(l)
m 〈Ũ (s−l)

m , V 〉 −
l=s−1
∑

l=0

Λ̃(l)
m βω(Ũ (s−l−1)

m , V ), (17)

Equation (16) is the usual relation giving the eigenmodes of the elastic structure in vacuo. If the

eigenmodes Ũ (0)
m (M) of the elastic plate in vacuo are normalized, it is easy to obtain the first order
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term of the eingenvalue, that is

Λ̃(1)
m

Λ̃
(0)
m

= βmm
ω , (18)

in the previous equation, it has been denoted βmn
ω = βω(Ũ (0)

m , Ũ (0)∗
n ). To simplify the reading this

notation will be used in the rest of the paper. Ũ (1)
m (M) is expanded into a series of zeroth-order

modes: Ũ (1)
m (M) =

∑

n α1n
m Ũ (0)

n (M) where the coefficients α1n
m are easy to calculate [12]. For all s > 1,

one has:

Λ̃(s)
m =

l=s−1
∑

l=0

Λ̃(l)
m βω(Ũ (s−l−1)

m , Ũ (0)
m ) −

l=s−1
∑

l=1

Λ̃(l)
m 〈Ũ (s−l)

m , Ũ (0)
m 〉. (19)

In a similar manner, each component of the eigenmode’s perturbation expansion is developed into a

series of zeroth-order modes:

Ũ (s)
m (M) =

∑

n

αsn
m Ũ (0)

n (M). (20)

One obtains, for the eigenvalues:

Λ̃(2)
m

Λ̃
(0)
m

= (βmm
ω )2 +

∑

p 6=m

α1p
mβmp

ω , (21)

Λ̃(3)
m

Λ̃
(0)
m

= (βmm
ω )3 + 2βmm

ω

∑

p 6=m

α1p
mβmp

ω +
∑

p 6=m

α2p
mβmp

ω , (22)

Λ̃(4)
m

Λ̃
(0)
m

= (βmm
ω )4 + 3(βmm

ω )2
∑

p 6=m

α1p
mβmp

ω + 2βmm
ω

∑

p 6=m

α2p
mβmp

ω +
∑

p 6=m

α3p
mβmp

ω

+





∑

p 6=m

α1p
mβmp

ω





2

− α2m
m

∑

p 6=m

α1p
mβmp

ω , (23)

Λ̃(5)
m

Λ̃
(0)
m

= (βmm
ω )5 + 4(βmm

ω )3
∑

p 6=m

α1p
mβmp

ω + 3(βmm
ω )2

∑

p 6=m

α2p
mβmp

ω + 2βmm
ω

∑

p 6=m

α3p
mβmp

ω

+3βmm
ω





∑

p 6=m

α1p
mβmp

ω





2

− 2βmm
ω α2m

m

∑

p 6=m

α1p
mβmp

ω

+
∑

p 6=m

α4p
mβmp

ω + 2
∑

p 6=m

α1p
mβmp

ω

∑

p 6=m

α2p
mβmp

ω −
∑

p 6=m

α1p
mα3p

mβmp
ω − α2m

m

∑

p 6=m

α2p
mβmp

ω . (24)

Now let us calculate the eigenvalue expansion up to order 5:

Λ̃m

Λ̃
(0)
m

= 1 +
s=5
∑

s=1

ǫs Λ̃(s)
m

Λ̃
(0)
m

+ · · · + · · · . (25)
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Upon re-ordering the terms, one obtains:

Λ̃m

Λ̃
(0)
m

=
[

1 + ǫβmm
ω + ǫ2(βmm

ω )2 + ǫ3(βmm
ω )3 + ǫ4(βmm

ω )4 + ǫ5(βmm
ω )5 + · · ·

]

+ǫ2
∑

p 6=m

α1p
mβmp

ω

[

1 + 2ǫβmm
ω + 3ǫ2(βmm

ω )2 + 4ǫ3(βmm
ω )3 + · · ·

]

+ǫ3
∑

p 6=m

α2p
mβmp

ω

[

1 + 2ǫβmm
ω + 3ǫ2(βmm

ω )2 + · · ·
]

+ǫ4











∑

p 6=m

α3p
mβmp

ω [1 + 2ǫβmm
ω + · · ·] +





∑

p 6=m

α1p
mβmp

ω





2

[1 + 3ǫβmm
ω + · · ·]

−α2m
m

∑

p 6=m

α1p
mβmp

ω [1 + 2ǫβmm
ω + · · ·]







+ǫ5 · · · (26)

For ǫβmm
ω < 1, one can recognize in each square bracket the expansion of 1/(1 − ǫβmm

ω ) and its

successive powers. By identifying the expansion with the original functions, one obtains the modified

high order perturbation expansion:

Λ̃m

Λ̃
(0)
m

=
1

(1 − ǫβmm
ω )

+ ǫ2

∑

p 6=m α1p
mβmp

ω

(1 − ǫβmm
ω )2

+ ǫ3

∑

p 6=m α2p
mβmp

ω

(1 − ǫβmm
ω )2

+ǫ4











∑

p 6=m α3p
mβmp

ω

(1 − ǫβmm
ω )2

+

(

∑

p 6=m α1p
mβmp

ω

)2

(1 − ǫβmm
ω )3

− α2m
m

∑

p 6=m α1p
mβmp

ω

(1 − ǫβmm
ω )2











+ǫ5 · · · (27)

In some particular cases (see Appendix), this method gives exact results and can be viewed as

an analytic continuation process. If all the terms βmp
ω are zero for m 6= p, the first order of the

modified perturbation expansion leads to exact results, even if ǫβmm
ω is greater than 1. This result

also shows that the true convergence condition of the various perturbation series is not simply ǫ < 1

but ǫβmm
ω < 1. It is worth noting that this makes the numerical analysis almost impossible because

the convergence condition is different for every mode and depends on the frequency.
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4 Numerical Results

In this section, numerical examples are given for baffled fluid-loaded clamped rectangular plates

under heavy loading conditions. This plate occupies a domain of the z = 0 plane in IR3 defined by

x ∈]0, a[×y ∈]0, b[. The same fluid occupies the two half-space x > 0 and x < 0. Let us recall that

in this case, the Green’s function for the Neumann problem of the Helmholtz equation is given by:

G(M − M ′, ω) =
−1

4π





e
ı ω
cf

d(M,M ′)

d(M,M ′)
+

e
ı ω

cf
d(M,M ′′)

d(M,M ′′)





where d(M,M ′) is the Euclidian distance between M and M ′, M ′′ is the symmetric of M ′ with

respect to the z = 0 plane. Then, the only numerical difficulty arising with this method lies in the

computation of the various modal acoustic impedance βmnpq
ω given by the integral, with X = ax and

Y = by :

βmnpq
ω = a2b2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
U (0)

mn(x, y)G(x − x′, y − y′, ω)U (0)
pq (x′, y′)dxdx′dydy′ (28)

The evaluation of this kind of integral is considerably simplified when the eigenmodes are given

in separate form U (0)
mn(x, x) = Xm(x)Yn(y) by a linear transformation in the integral domain given by

X = x − x′ and Y = y − y′ [9]. One thus obtains :

βmnpq
ω = 4a2b2

∫ 1

0

∫ 1

0
Amp(X)Bnq(Y )G(X,Y, ω)dXdY, (29)

Amp(X) =
∫ 1−X

0
Xm(X + x′)Xp(x

′)dx′, Bnq(Y ) =
∫ 1−Y

0
Ym(Y + y′)Yp(y

′)dy′. (30)

In many cases, such as the one studied here, simple analytic expressions are available for the functions

Amp(X) and Bnq(Y ), which make it possible to compute the modal impedances by simply using

double integrals.

In order to check the validity of the method, the spectrum of the structure is calculated using

the original and modified perturbation expansions up to order 3 and compared with exact computa-

tions. The exact computations are based on a Chebychev-collocation approximation of the boundary
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integral equations associated with the problem [10]. Roughly, the two unknowns in the problem,

namely the displacement and the acoustic sound pressure jump across the plate, are the solutions of

two coupled integral equations. These functions are approximated by series of Chebychev orthogonal

polynomials of the first kind. Using a collocation method, the new unknowns (the coefficients of

the two series) are the solutions of a linear system of simultaneous equations. The complex zeros of

the determinant of the matrix of this system are the resonance frequencies. These frequencies are

computed using a Newton-Raphson method.

For each mode, denoted by its index mn, the resonance spectrum is calculated by solving the

relation 13: ω̂2
mn = ω̃2

mn(ω̂mn) = Λ̃mn(ω̂mn)/ρph. For each mode, there are two frequencies that

satisfy this relation, namely ω̂mn and −ω̂∗
mn. These frequencies are estimated using the approximate

expressions for the eigenvalues Λ̃mn(ω) given by the direct perturbation expansion (26) or by the

modified perturbation expansion (27) truncated at orders ranging from 1 to 3. The roots ω̂mn of the

equation ω2 = ω̃2
mn(ω) were obtained using the Mathematica [16] root finding routine without any

particular difficulty.

With this method, analytical or numerical knowledge about the in vacuo eigenmodes is necessary.

In the case of a clamped rectangular plate, there are no exact analytical results available, such as

those on a simply supported plate, but the analytical approximation by Warburton [8] gives a quite

perfect shape for the eigenmodes and only slightly overestimates the eigenfrequencies by about 3%.

The first results are given in table 1. Four different configurations were tested in water (in air

the differences between the exact and approximate solutions are negligible). The plate is rectangular

having length a = 1m, width b = 0.7m and varying thickness h. It is made of steel with Young’s

modulus E = 200GPa, Poisson coefficient ν = 0.3 and density ρp = 7800Kg/m3. The fluid is water

with density ρf = 1000Kg/m3 and sound celerity cf = 1500m/s. Table 1 gives the data obtained on

steel plates in water, which is the usual heavy loading situation, with thickness of 5mm, 1cm, 3cm

and 10cm.
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In this table, the first resonance frequencies of the plate under various fluid-loading conditions

calculated up to the third order of the perturbation expansion are compared with the exact com-

putations. In the exact values column, the fluid-loaded spectrum is given along with the in vacuo

one. In order to clearly show the added mass corresponding to a decrease in the real part and the

damping that give rise to a negative imaginary part. The seven remaining columns give the results

obtained using the original and modified perturbation expansions. The zeroth order is the in vacuo

spectrum (which is about 3% larger than the exact one because of the Warburton approximation).

The order 1 of the perturbation expansion are the data obtained by solving equation (26) limited to

the first order, while the order 1 modified data are those obtained by solving equation (27) to the

first order, and so on up to the higher orders. All clearly divergent results (with a positive imaginary

part) are given in italics.

The most important finding made in this study is that all the results show that the first order

modified approximation gives very accurate results under heavy loading conditions with a small

numerical cost. Some resonances are obviously less exactly described, such as mode (m = 1, n = 3)

in the case of the thinner plates. But even in these cases, the estimate given by the first order

modified approximation is fairly accurate, or at least sufficient for the acoustician.

The next results, presented figures 1 and 2, show the evolution of the resonance frequency for the

mode (m = 1, n = 1) in figure 1 and for the mode (m = 1, n = 3) in figure 2 when the thickness of the

plate is varying. In both figures, the top curve shows the real part of the resonance and the bottom

the imaginary part of it. The smooth curves are the results given by the modified approximation

while the curves with the diamonds are the exact results. From these curves, it is obvious that again

the modified approximations gives particularly good results.

More interesting is the phenomenon presented for the for the mode (m = 1, n = 3). In figure 2

one observes two disjointed curves. The first one, starting from the origin (when the thickness of the

plate tends to zero all resonance frequencies are nil) is called the lower branch and the other the upper
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Table 1: Comparison of exact and approximate spectra for a steel plate in water (values given in Hz)

Exact Order of the perturbation expansion

in vacuo fluid-loaded 0 1 1 (modified) 2 2 (modified) 3 3 (modified)

h=5mm Mode 1 1 68.86 17.2 −ı 0.11 69.06 0 +ı 234 17.3 −ı 0.11 651.5 +ı 281 0 +ı 21.7 0 +ı 1133.5 119.6 +ı 14.3

ǫ = 25.6 Mode 1 2 166.05 61.87 −ı 0.0017 166.57 0. −ı 365.8 62.06 −ı 0.0017 898 +ı 458.1 172.5 +ı 30.7 0 +ı 1634 0 +ı 400.9

Mode 1 3 313.32 135.01 −ı 0.82 314.1 0 +ı 576.2 125.9 −ı 2.78 1199 +ı 629.1 278.9 +ı 28.5 0 +ı 2041.77 0 +ı 565.5

h=1cm Mode 1 1 137.7 47.1 −ı 0.78 138.12 0 +ı 307.3 47.6 −ı 0.77 630.7 +ı 270.3 0 +ı 22.3 0 +ı 882.2 158.1 +ı 24.4

ǫ = 13.8 Mode 1 2 332.1 163.5 −ı 0.08 333.1 0 +ı 465.1 164.0 −ı 0.07 867 +ı 453.9 298 +ı 75.3 0 +ı 1324 0 +ı 437.4

Mode 1 3 626.6 347.6 −ı 4.9 628.2 0 +ı 669.2 332.9 −ı 16.3 1168 +ı 605.1 513.3 +ı 89.6 0 +ı 1626.4 0 +ı 595.9

h=3cm Mode 1 1 413.1 220.2 −ı 13.9 414.3 0 +ı 388 222. −ı 13.6 594.7 +ı 220.9 180.4 +ı 25.6 0 +ı 483.3 276. +ı 29.6

ǫ = 4.3 Mode 1 2 996.3 677.0 −ı 12.87 999.4 0 +ı 159.2 679.9 −ı 11.9 911.3 +ı 389.4 701.9 +ı 148.2 0 +ı 780.5 1181 −ı 23.9

Mode 1 3 1879.9 1648.1 −ı 8.52 1884.7 1202.6 −ı 284 1453.7 −ı 60.8 1480.3 +ı 411.6 1404.7 +ı 140.6 2150.3 +ı 356.2 1883.1 −ı 66.5

h=10cm Mode 1 1 1377.1 1089.2 −ı 199.1 1381.2 1296.9 −ı 589.5 1093.6 −ı 195.4 1074.6 −ı 75.6 1122.6 −ı 230.2 1280.6 −ı 289.7 1075.5 −ı 239.9

ǫ = 1.3 Mode 1 2 3321 3122.4 −ı 559.1 3331.5 3396.4 −ı 534.1 3137.5 −ı 570.6 2960.3 −ı 514.2 3143.5 −ı 465.3 3139.1 −ı 393.4 3157 −ı 451.1

Mode 1 3 6266.4 6273.4 −ı 368.7 6282.2 6320.1 −ı 361.4 6279.5 −ı 368.7 6279.3 −ı 375.5 6277.5 −ı 370.3 6276.9 −ı 370.6 6277.5 −ı 370.2
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branch. In the particular case considered here, except for modes (m = 1, n = 1), (m = 2, n = 1) and

(m = 1, n = 2), all the modes showed this phenomenon, which is a typical behavior of the non-linear

systems. A priori this must not occurs in the present case since the system that one considers here do

not present any non-linear classical feature such as structural non-linearity, non-linear propagation

in the fluid or non linear moving boundary condition at the interface between the structure and the

fluid [15]. The phenomena observed here has a strong link with the concept of frequency non-linear

modes [2] which exhibit a non-linearity that depends on the temporal parameters rather than on the

geometrical parameters such as propagation of sound in poroelastic media. The frequency non-linear

modes are related to problems expressed in the following form M(ω)u = f where u is the unknown,

f the forcing term and M(ω) is a non linear frequency dependent operator such as those that occur

in poroelastic media or in fluid-structure interaction for which the loading operator described by

equation 6 has a non-linear frequency dependence. In this latter case, when the fluid-loading is light,

this non-linear dependence is not significant but when the fluid-loading is strong, this non-linearity

can be observed as shown by the results presented here.

To be sure that this effect is not a numerical artifact, we have plotted in the figures (3) and (4)

the amplitude of the displacement of the plate, given by the resolution of the Boundary Integral

Equations associated with the exact solution, for frequencies close to the two resonances observed for

the thickness corresponding to the inflexion point for the real parts and a crossing of the imaginary

parts that is, for the (m = 1, n = 3) mode close to h = 0.074cm. The plate is excited by a unit

Dirac delta located close to the middle of the plate at x = 0.6m, y = 0.45m. The excitation

frequency f , given in the figure caption, has been chosen close to (less than 0.1%) the resonance

one; obviously at the resonance, the exact solution has no solution. In the figure (3), the excitation

frequency f = 4827 − ı1025 Hz is close to the resonance frequency of the upper branch (that is

f̂u
13 = 4829.64 − ı1024.4 Hz). In the figure (4), the excitation frequency f = 3717 − ı1053Hz is

close to the resonance frequency to the lower branch (that is f̂u
13 = 3716.9 − ı1052.4 Hz). As shown
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by these figures, the displacement is very close to that of a m = 1, n = 3 mode. Similar results

had been observed for many modes; more precisely, only the (m = 1, n = 1), (m = 1, n = 2) and

(m = 2, n = 1) modes vary continuously with the thickness, all the other modes presents such a

comportment.

5 Conclusion

The main finding to emerge from this study was that the efficiency of the first order modified

approximation does not depend on the loading, at least in the particular case consider here. The

second important point is that the modified approximation can be obtained without any difficulty.

Unlike the usual first order approximations, its estimation does not require any computational effort.

With this method, it seems to be possible to describe all the features of the spectrum of a fluid-loaded

structure, such as the high added mass and small damping, observed in water in the case of a the

thinnest plate or conversely, the small added mass and high damping observed with the thickest

plate. As long as one is able to estimate the eigenmodes of the in vacuo structure, using a finite

element model, for example, and the loading given by Green’s function for the Neumann problem

in the Helmholtz equation, it is easy to compute the spectrum of a heavily fluid-loaded structure at

a negligible numerical cost. This method obviously requires the a priori knowledge of this Green’s

function, that of an infinite plane screen or cylindrical surface for example. In most cases, however

this function is impossible to compute analytically. It is therefore necessary to use either a numerical

calculation of the Green function or an approximate description of the loading, for example based on

the Rayleigh integral but the validity of an approximation of this kind still remains to be confirmed.

Some aspects of this method need to be studied in greater depth. The most obvious one is the

the nature of this approximation, especially the effects of neglecting the modal coupling given by the

terms
∑

p 6=m α1p
mβmp

ω . It is well known in damping theory studies that neglecting the modal coupling
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in non-proportional damped systems yields poor results, even when the structure is only slightly

damped [1]. The author has no clear explanation of why the first order modified expansion works so

well. More precisely, an expansion which neglects the intermodal impedance ought to work badly.

All previous authors that have worked in this subject have suggested that the intermodal impedance

plays a significant role in the loading, and that a method which neglects it must fail. But the results

found here seem to invalidate this hypothesis, and it would be interesting to know if the hypothesis

is also invalid in other geometries. The next point that needs to be studied is the apparition of a

frequency non-linear mode caused by the fluid-loading. It must be deeply studied to understand its

emergence in the case considered here and if this occurs for other geometries, boundary conditions

or other type of structure (like shells or beams).
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A High order perturbation expansion of a viscous plate

In this Appendix, some classical results [7, 17] on the eigenmodes and resonance modes of a viscously

damped plate are used to show that the high perturbation expansion is able to give the exact solution

in some particular cases.

Let U(x, ω) be the normal displacement of a simply supported viscous plate in the harmonic

regime with time dependence exp(−ıωt). Let us recall that in the time domain, the simplest form

of the viscous operator is given by ηp∂/∂t, where ηp is the damping constant. If we introduce the

parameter ǫp = ηp/ρph, then U(x, ω) satisfies the modified Kirchhoff equation as well as the boundary

conditions:

D∆2U(x, ω) − ρphω2
(

1 − ǫp

−ı

ω

)

U(x, ω) = F (x, ω) (31)

U(0, ω) = 0, U ′′(0, ω) = 0, U(lx, ω) = 0, U ′′(Lx, ω) = 0 (32)

where D = Eh3/(12(1 − ν2)) is the bending rigidity of the plate.

A.1 Exact solution for the eigenmodes and resonance modes

Let us denote ρ
′

p = ρp

(

1 − ǫp
−ı
ω

)

. The eigenmodes Ũm(x, ω) and eigenpulsations ω̃m(ω) are the

non-trivial solution of:

D∆2Ũm(x, ω) − ρ
′

p(ω)hω̃2
m(ω)Ũm(x, ω) = 0 (33)
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Ũm(0, ω) = 0, Ũ
′′

m(0, ω) = 0, Ũm(lx, ω) = 0, Ũ
′′

m(Lx, ω) = 0 (34)

Then, it is easy to show that one has:

Ũm(x, ω) =

√

2

Lx

sin
mπ

Lx

x (35)

ω̃m(ω) =
(

mπ

Lx

)2
√

D

ρph

1
√

1 + ǫp
ı
ω

(36)

The resonance modes Ûm(x) and resonance pulsations ω̂m are the non-trivial solution of:

D∆2Ûm(x) − ρphω̂2
m

(

1 − ǫp

−ı

ω̂m

)

Ûm(x) = 0 (37)

Ûm(0) = 0, Û
′′

m(0) = 0, Ûm(lx) = 0, Û
′′

m(Lx) = 0 (38)

The resonance modss are linked to the eigenmodes by the relations (12): Ûm(x) = Ũm(x, ω̂m) and

(13): ω̂2
m = ω̃2

m(ω̂m). Since the eigenmodes do not depend on the frequency, the eigenmodes and

resonance modes are identical. The resonances frequencies are the solutions of

ω̂2
m = ω̃2

m(ω̂m) =
(

mπ

Lx

)4 D

ρph

1

1 + ǫp
ı

ω̂m

(39)

One then has to solve ρph

D
ω̂2

m + ıǫpρph

D
ω̂m −

(

mπ
Lx

)4
= 0. This quadratic equation ca be easily solved,

one obtains the two roots:

ω̂m = −
ıǫp

2
±

√

√

√

√

D

ρph

(

mπ

Lx

)4

−
(

ǫp

2

)2

(40)

This root symmetry with respect to the imaginary axis is the condition [5] for the resonance modes to

ensure causality and provide real solutions with a time dependency of the form exp(−ıωt). Obviously

with a time dependency of the form exp(ıωt), the imaginary parts of the roots have to be positive.

A.2 Perturbation expansion for the eigenmodes

The weak form of the equation giving the eigenmodes reads : find Ũm(x, ω) and Λ̃m(ω) satisfying

the boundary condition such that for each V (x, ω) satisfying the boundary condition, the following

equation holds

a(Ũm, V ) − Λ̃m

(

〈Ũm, V 〉 − ǫpβω(Ũm, V )
)

= 0 (41)



P-O. Mattei 21

where βω(Ũm, V ) = −ı/ω〈Ũm, V 〉 and Λ̃m = ρphω̃2
m(ω). It can be easily seen that one has βmp

ω =

−ı/ωδp
m, with δp

m the Kronecker delta.

Then, since the weak form of this equation is similar to that of the fluid-loaded plate 10, all the

results previously obtained can be used without making any changes. It is easy to show that the

zeroth order terms are, with Λ̃(0)
m = ρph(ω̃(0)

m )2, given by:

Ũ (0)
m (x) =

√

2

Lx

sin
mπ

Lx

x, 〈Ũ (0)
m , Ũ (0)∗

m 〉 = 1 (42)

ω̃(0)
m =

(

mπ

Lx

)2
√

D

ρph
(43)

Then, because βmp
ω = −ı/ωδp

m, the high order perturbation expansion of the eigenmodes and

eigenvalues is given by

Ũm(x, ω) = Ũ (0)
m (x), (44)

Λ̃m(ω) = Λ̃(0)
m

1

1 + ıǫp

ω

, ω̃m(ω) = ω̃(0)
m

1
√

1 + ıǫp

ω

, (45)

which shows that the high order perturbation expansion of the eigenmodes leads in this simple case

to the exact solution (see equation 39).
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Figure 1: 1m×0.7m steel plate in water: evolution of the real and imaginary parts with the thickness

of the plate of the (m = 1, n = 1) resonance frequency. Comparison of the exact computations (f̂ e
11)

with the modified approximation (f̂ 1
11). Top: real part, bottom: imaginary part
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Figure 2: 1m×0.7m steel plate in water: evolution of the real and imaginary parts with the thickness

of the plate of the (m = 1, n = 3) resonance frequency. Comparison of the exact computations (f̂ e
13)

with the modified approximation (f̂ 1
13). Top: real part, bottom: imaginary part
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h = 0.074 m, f = 4827 - ä 1025 Hz, MaxHÈuÈL = 5.1 10-9 m
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Figure 3: 1m × 0.7m × 0.074m steel plate in water: displacement of the plate (exact solution) close

to the upper branch resonance frequency (excitation frequency f = 4827 − ı1025 Hz)

h = 0.074 m, f = 3717 - ä 1053 Hz, MaxHÈuÈL= 2.7 10-8 m
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Figure 4: 1m × 0.7m × 0.074m steel plate in water: displacement of the plate (exact solution) close

to the lower branch resonance frequency (excitation frequency f = 3717 − ı1053 Hz)


