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Abstract: In this paper, it is pointed-out that inverse problems arising in nonlinear control sys-
tems design such as state reconstruction and/or parameter estimation are naturally redundant.
It is also shown that this redundancy can be used to enhance avoiding singularity heuristics.
Some related algorithms are discussed and illustrated on a simple example of chemical reactors.
These algorithms can be added to any optimization algorithm in order to enforce the singularity
avoidance capabilities.
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1. INTRODUCTION

Chemical and biological processes are generally charac-
terized by highly nonlinear dynamics that involve badly
known parameters. They also suffer from the lack of sen-
sors making the use of state observers mandatory.

While many analytic observer design methods are con-
ceptually available for nonlinear systems (Gauthier et al.
[1992], Slotine et al. [1987]), the need for structural proper-
ties that have to be satisfied by the system model tremen-
dously reduces the class of systems to which analytic
observers can be applied.

On the contrary, optimization-based observers (Michalska
and Mayne [1995]) that reconstruct the state by mini-
mizing output prediction error related cost are particu-
larly suitable as they enable complex modeling as well as
state constraint handling. More precisely, given a nonlinear
model of the general form:

x(t) = X(t, t0, x0) ∈ Rn ; y = h(x) ∈ Rm (1)

these observers more or less look for the global minimum,
say zopt(t), of the cost function defined at instant t by:

J0(z, t, yt
t−T ) =

∫ t

t−T

‖Y (τ, t− T, z)− y(τ)‖2Qdτ

(2)

in order to produce an estimation zopt(t) of the past
state x(t− T ). This estimation is then used to obtain the
estimation of the state at instant t according to:

x̂(t) := X(t, t− T, zopt(t))
? This work has been partially supported by the French National
Research Agency (ANR-CLPP)

Note that by the very definition of observability, zopt(t)
is the unique global minimum of J0(·, t, yt

t−T ). Moreover,
one clearly has in the absence of modeling errors and
measurement noise:

J0(zopt(t), t, yt
t−T ) = 0

One of the major issues is therefore to ensure the global
convergence of the iterates when solving the underlined
optimization problem:

min
z∈Z

J0(z, t, yt
t−T )

where Z denotes the admissible set of states. This pa-
per suggests a heuristic that may be useful in avoiding
incidental singularities that an optimizer may encounter.
More precisely, the starting point of the present work is to
recognize that

The global optimum one is looking for is very
particular since it is shared by an infinite
number of cost functions !

Indeed, zopt(t) is the unique global minimum for any cost
function of the following form:

Ji(z, t, yt
t−T ) :=

∫ t

t−T

Φi(τ) ·Ψi(εy(τ, z, t))dτ (3)

where εy(τ, z, t) := Y (τ, t − T, z) − y(τ) is the output
prediction error at instant τ , Ψi is any continuous positive
definite function defined on Rm while Φi is any scalar pos-
itive function. The classical cost function (2) is obtained
by the obvious choices: Φ0(·) ≡ 1 and Ψ0(·) ≡ ‖ · ‖2Q.

Based on the above discussion, it comes out clearly that
one must be able to do something more than just using
standard optimization schemes as if the optimization prob-
lem was uniquely given once for all. This is the aim of the



present paper.

It is worth mentioning that a preliminary and quite par-
ticular version of the ideas proposed in this paper has
been successfully applied to the robust state estimation
of monomers concentrations in terpolymerization reactors
Alamir et al. [2006]. This paper gives a general conceptual
framework that is motivated by that success.

The remainder of the paper is organized as follows: first,
in section 2, the general framework of redundant optimiza-
tion problems is set-up and sufficient conditions for useful
redundancy are given together with a dedicated algo-
rithm. The application of the general framework to safely-
redundant state-observers related problems is also dis-
cussed. In section 3, the framework is illustrated through
a bio-reactor while a parallel version of the algorithm is
proposed in section 4.

2. GENERAL FRAMEWORK FOR REDUNDANT
OPTIMIZATION PROBLEMS

Consider a constrained optimization problem defined on
Rn by:

P0 : min
z∈Z

J0(z) ; Z ⊂ Rn

where J0 is a positive cost function admitting the global
minimum zopt and probably other local minima.

Consider also an optimizer that uses some iteration S:

z(i+1) = S(z(i), J0(·))

in order to find the solution zopt of P0. r successive
iterations of S lead to the multi-steps updating map that
is denoted hereafter by S(r), namely:

z(i+r) = S(r)(z(i), J0)

The sequence of values that is induced by the successive
iterations starting from some initial guess z(0), namely{

S(r)(z(0), J0)
}

r∈N

is called hereafter, the (z(0), J0)-solver path as it depends
on both the initial guess and the cost function J0 being
used. Note that under convexity condition one may expect
the following asymptotic property to hold

(under convexity) lim
r→∞

S(r)(z(0), J0) = zopt

while in the general case, the solver path may be trapped
by some local minima of J0. The redundancy invoked in
the introduction is to be used to avoid such situations. For
this, consider the following definition:
Definition 1. The optimization problem P0 is called N -
safely redundant if and only if the following conditions hold

(1) There exists a finite sequence of N cost functions Ji

defined on Rn that admits zopt as a global minimum.
(2) There exists a solver S and a finite integer r∗ ∈ N

such that the following inequality

Fig. 1. Typical scheme for a 2-safely redundant optimiza-
tion problem defined by the cost function J0. J0 (in
black-solid line) admits one global minimum zopt and
3 local minima z1, z2 and z3. However, the singular-
ities z1 and z3 can be crossed following the (z1, J1)
and the (z3, J2)-solver pathes respectively while the
singularity z2 can be crossed following the (z2, J3)-
solver path.

∆(z) :=

min
i∈{1,...,N}

[
J0(S(r∗)(z, Ji))− γJ0(z)

]
≤ 0

(4)
holds for some γ ∈ [0, 1[ and all z ∈ Z. Moreover:

S(r∗)(z, Jı∗) ∈ Z (5)
where ı∗ is the optimal argument of the minimization
invoked in (4) ♥

Note that conditions (4) and (5) simply state that regard-
less the current iterate z, there exists at least one of the
(z, Ji)-path solvers that leads to a decrease in the value of
the original cost J0 and this after at most r∗ iterations.
Figure 1 shows a schematic view of a 2-safely redundant
optimization problem in which J0 admits 4 local minima
(including the global minimum).

Definition 1 suggests the algorithm depicted on figure
2 that can be better understood through the following
comments:

Step 0
The initial guess is set to z and the iteration index σ is set
to 0.
Step 1
This loop is the main loop that ends as soon as the current
iterate z(σ) corresponds to a sufficiently small value of J0.
Step 1.1
When the logical variable again is true, a new solver path
has to be tried based on the next element in the sequence
of cost functions {Ji}Ni=1 as the preceding one failed to
decrease J0. This is checked in Step 1.2.2 where again is
updated.
Step 1.2
As long as again is true and there is remaining solver
pathes to be explored (i ≤ N), the next solver path is
explored by performing r∗ steps of the optimizer iterations



Algorithm A1

0. Initialization z(0) initial guess, σ ← 0
1. while (J0(z(σ)) > ε) do

1.1 i← 1; again← true
1.2 while (again & i ≤ N) do

1.2.1 ξ(σ,i) ← Sr∗(z(σ), Ji)
1.2.2 again←

(
J0(ξ(σ,i)) > γJ0(z(σ))

)
1.2.3 If again then i← i + 1
1.2.4 Else σ ← σ + 1, z(σ) ← ξ(σ,i)

End while
End while

Fig. 2. The algorithm that enables redundancy to be ex-
ploited for N -safe redundant optimization problems.

(Step 1.2.1) and again is updated accordingly (Step
1.2.2). If significant decrease is achieved then again be-
comes false and Step 1.2.4 is fired leading to the update
of z(σ+1) and the iteration index σ and a new iteration is
started. Otherwise, the next cost function corresponding
solver path is visited by incrementing i (Step 1.2.3).

It goes without saying that by the very definition of N -
safe redundancy, the above algorithm leads to a globally
convergent iterations despite possible local minima of J0.
This is formally stated in the following proposition:
Proposition 1. If the optimization problem is safely redun-
dant then the algorithm A1 stops with the iterate z(σ) that
satisfies the following property:

J0(z(σ)) ≤ ε

Consequently, if ε = 0 is used, the sequence z(σ) globally
asymptotically converges to the unique global minimum
zopt.

Proof By definition of N -safe redundancy expressed in
condition (4), each time the loop of step 1.2 is visited,
there is an index ı that makes the logical variable again
false since

J0(ξ(σ,ı)) ≤ γJ0(z(σ)) (6)

leading to the updating step 1.2.4:

z(σ+1) = ξ(σ,ı) (7)

Based on (6)-(7), one obtains the following discrete dy-
namic

J0(z(σ+1)) ≤ γJ0(z(σ)) (8)

which clearly ends the proof. 2

2.1 Application to the state estimation related problem

As mentioned in the introduction of this paper, the se-
quence of cost functions {Ji}Ni=1 may be obtained in the
case of the state estimation related problem using the
definition (3) by choosing sequences of functions {Φi}Ni=1

and {Ψi}Ni=1. To be specific, let us make the following
choice
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Fig. 3. Plots of the time non uniform weighting functions
Φi given by (9)-(11) for the first 5 values of i when
the observation horizon is taken equal to T = 5.

Fig. 4. Escherichia coli under 15000 magnification factor

Ψi(y) = yT y ; Φi(τ) =
1
2

[
Ti(

2τ

T
− 1) + 1

]
(9)

where for i ∈ {1, . . . , N}, Ti stands for the ith Tchebychev
polynomials of the first kind, namely:

T0(x) = 1 ; T1(x) = x (10)

Ti+1(x) = 2xTi(x)− Ti−1(x) (11)

Note that Φi(·) are simply shifted versions of the Tcheby-
chev polynomials Ti(·) that takes arguments in [0, T ] and
values in [0, 1] so that they can be used as time non uniform
weighting of the output prediction error. Figure 3 shows
the plots of the function Φi for i ∈ {1, . . . 5}.

3. ILLUSTRATIVE EXAMPLES

In order to illustrate the above ideas on a concrete ex-
ample, let us consider the dynamical model of recombi-
nant Escherichia Coli strain (Nardi et al. [2006], Lee and
Ramirez [1992], Cha et al. [2000]). This model is a mass
balance model describing the pure recombinant microbial
batch culture of E. Coli strain X growing on the limiting
substrate glycerol S while yielding a final intracellular
product β-galactosidase protein P :



parameter Values Units

µm 0.49 h−1

ks 0.06 g/l
kp 0.047 g/l
kd 0.005 g/l
km 0.21 h−1

kl 0.03 g/h
ys 0.75 g cell/ g glycerol
yp 0.32 g protein/ β-galactosidase
yl 17.6 U/β-galactosidase

Table 1. Identified parameters for the dynamic
model (12)-(15) according to (Nardi et al.

[2006])

Ẋ = µ(S)X − kd exp(−kp

P
)X (12)

Ṡ =−ysµX − kmX (13)

Ṗ = ypµ(S)
I

I + kI
X − kd exp(−kp

P
)P (14)

where µ is the growth rate that is modeled using classical
Monod-type relation:

µ(S) =
µmS

ks + S

in which µm is the maximum specific growth rate for the
cell growth in (h−1). ks is the half saturation constant.
kp and kd are constants involved in the Arrhenius-type
death kinetic that depends on P . km is a maintenance
rate that describes the energy required for normal upkeep
and repair. ys, yl [used in the measurement equation (15)
below] and yp are identified yield coefficients. I stands for
the arabinose inducer that is assumed to be constant (no
degradation).

The output measurement is the light produced by the
bioluminescence that is linked to the state variables by
the following expression:

L = yl · µ(S)
I

I + kl
XP (15)

In the recent work (Nardi et al. [2006]), the parameters of
the above model have been identified and the resulting
model has been experimentally validated using Micro-
Fermentor testbed. The resulting set of values are given
on table 1.

Now consider the optimization problem that arises when
the real state of the system at instant t−T , namely x(t−T )
is given by:

x(t− T ) = (0.08, 2, 0.1) ; T = 10
and let us examine the evolution of the corresponding
cost functions Ji(·, t, yt

t−T ) given by (3) in which the
Tchebychev polynomials are used according to (9). These
cost functions depend on the three dimensional unknown
vector z which makes cumbersome a visual exploration.
Nevertheless, such exhaustive exploration is not necessary
to illustrate the redundancy issue. For this, let us fix
z2 and z3 to their true values, namely z2 = x2(t − T )
and z3 = x3(t − T ) and see how the cost functions Ji

evolve when the first coordinate z1 spans the admissible set
[0, 0.1]. Figure 5 shows the evolutions of the cost functions
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Fig. 5. Evolution of the cost function Ji(·, t, yt
t−T ) when z

spans the admissible region [0, 0.1] × {x2(t − T )} ×
{x3(t − T )} where x(t − T ) = (0.08, 2, 0.1) and
T = 10. Note how the local minimum situated
around z1 = 0.025 for the classically used cost J0

is not shared by the cost function J4 suggesting
that the underlying optimization problem shows 4-
safe-redundancy property w.r.t the sequence of cost
functions {Ji}4i=1.
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Fig. 6. Evolution of the cost function Ji(·, t, yt
t−T ) when

z spans the admissible region [0, 0.1]× {x2(t− T )} ×
{x3(t−T )} where x(t−T ) = (0.05, 3, 0.1) and T = 15.
Note how the local minimum situated around z1 =
0.01 for the classically used cost J0 is not shared by
the cost function J4 or J3. Note also that J4 shows
local minimum near z1 = 0.025 that is not shared
by J3. Again, algorithm A1 would clearly be of great
interest in crossing the singularities.

Ji(

(
z1

x2(t− T )
x3(t− T )

)
, t, yt

t−T ) ; i ∈ {0, . . . , 4}

as functions of z1. From this figure, it can be easily inferred
that for i = 0 (nominal classically used cost function), the
cost function shows a local minimum around z1 = 0.025.
Local minima also exist for i = 2, 3. However, for i = 4,
there is no such singularity in the same region and the
cost function is such that the application of algorithm A1

enables the singularity to be safely crossed.



Figure 6 shows the same features when the past state
x(t− T ) and the observation horizon T are given by:

x(t− T ) = (0.05, 3, 0.1) ; T = 15
In this situation, note that J4 has now 2 local minima
(near z1 = 0.018 and 0.024 respectively) that are not
shared by J3. On the other hand J3 presents an almost
stationary curve between when z1 ∈ [0.03, 0.038] that can
be efficiently crossed following the J2-solver path. This
clearly shows the cooperative character of the sequence
{Ji}Ni=0 in exploring the admissible domain towards the
unique shared global minimum. This is especially true
when using receding horizon observers are used where
the position of the local minima is continuously moving
together with the index of the good solver path to be
temporarily followed as suggested in algorithm A1.

4. PARALLEL VERSION OF ALGORITHM A1

An interesting feature of Algorithm A1 described above
is the possibility to use parallel computation architecture.
Indeed, Step 1.2.1 that amounts to explore the (z(σ), Ji)-
path solver for successive values of i (until a decrease in J0

occurs) and starting from the same initial state z(σ) can
be executed using parallel computations, each dedicated
to one value of the index i. As soon as one of the path
solvers {

(z(σ), Ji)
}N

i=0

realizes a significant decrease in the original cost function
J0 as guaranteed by assumption (4), the corresponding
processor sends an interruption signal to all of the other
processors in order to update z(σ) and to start a new cycle
of parallel computing.

Figure 7 shows a Petri nets representation of the parallel
version of algorithm A1 in the case N = 3. Recall
that a Patri net is a collection of places (denoted by
P ) and transitions (denoted by T ). A place represents a
configuration that is active when a mark is inside it. The
mark exists the place as soon as the condition associated
to an output transition is true (we then say that the
transition is fired). A mark enters a place as soon as an
input transition is fired. Using these definitions, the Petri
Net representing the evolution of the parallel version of
algorithm A1 and depicted on figure 7 can be interpreted
as follows:

• Place P0 At the initial time, the only mark of the
Petri net is placed in P0. This means that the algo-
rithm initializes the variable z(σ). In the future, this
place corresponds also to the updating mode after one
of the transitions Ti2 is fired as explained below.

• Transition T0: This transition is fired as soon as the
initialization/updating step is completed.

• Places Pi: As soon as transition T0 is fired, each
place Pi, i = 1, . . . , N has one mark meaning that all
the N processors are working in parallel to perform
one iteration in the exploration of the (z(σ), Ji)-solver

Fig. 7. Petri net representation of the parallel implementa-
tion of the singularity avoidance algorithm A1 in the
case where N = 3. P0 is the initialization/updating
place, places Pi’s represent several processors work-
ing in parallel to explore the different path solvers
associates to Ji’s, i = 1, . . . , N . Transitions Ti0’s
correspond to the end of one step in the path solvers
exploration. A mark reaches the place Pi2 as soon as
the corresponding path solver encounter a decrease in
the original cost function J0. This enhance a global
interruption of all the processors task and update the
value of the current best solution z(σ).
pathes. This amounts to compute one step of the
iteration:

ξji,(σ,i) = S
(
ξji−1,(σ,i), Ji

)
ξ0,(σ,i) = z(σ) (16)

where the assignment ji = 0 is applied as soon as the
places Pi is reached.

• Transition Ti0: This transition is fired when the
following two conditions are satisfied:
(1) The computation of the step (16) is achieved
(2) The following inequality holds:

J0(ξji,(σ,i)) > γJ0(z(σ)) (17)
that is, no significant decrease in J0 is obtained
after the last step taken on the (z(σ), Ji)-solver
path.

Once the transition Ti0 is fired, the mark returns to
Pi and the processor i computes another step in the
iteration (16)

• Transitions Ti: This transition is fired as soon as
the processor i finds an iterate ξji,(σ,i) that achieves
a decrease in J0, namely:

J0(ξji,(σ,i)) ≤ γJ0(z(σ)) (18)
Note that according to the very definition of N -safe
redundancy, one of the transitions Ti is necessarily
fired after at most r∗ iterations. This means that one
of the places Pi2 necessarily receives a mark.



• Place Pi2: Note that according to the above discus-
sion, it is easy to understand that the places Pi2 are
mutually exclusive since if ı∗ is the first processor that
encounters condition (18), the mark transits from
place Pı∗ to place Pı∗2 and since the transition Tı∗2

is unconditional (Ti2 = 1 means that the transition
Ti2 is fired as soon as a mark is available in the place
Pi2), the mark moves from all the places{

Pj

}
j 6=ı∗

to the updating place P0 bypassing the places
{Pj2}j 6=ı∗ . This clearly corresponds to an interrup-
tion fired by the processor ı∗. At P0, the following
updating rule is applied:

z(σ) ← ξjı∗ ,(σ,ı∗)

which clearly leads to the following convergence con-
dition:

J0(z(σ+)) ≤ γJ0(z(σ)) (19)

In addition to the fact that computation of the solver
pathes are done in parallel, the main difference between
the sequential and the parallelized version of algorithm
A1 is that all the explorations are stopped as soon as an
improvement is found which means which means that the
unfruitful pathes are never completely explored.

5. DISCUSSION

• It is worth underlying that the two versions of al-
gorithm A1 proposed in this paper provide tools for
singularities avoidance that can be used regardless
the optimization technique that underlines the solver
S. No matter whether the solver implements a gra-
dient approach, an SQP method or even non smooth
technique such as the simplex iteration. In particular,
the above layer can be added to the gradient-based
differential version of moving horizon observer pro-
posed in Alamir [1999] where the the integration of
the observer differential equation (written for a given
cost function Ji) can be used to explore the path
solver (z(σ), Ji).

• It is important to strengthen that the singularities
avoidance technique proposed here is not a multiple
initial guess technique. Indeed, the later amounts to
modify the starting point of a given solver from one
trial to another. In algorithm A1, z(σ) is kept con-
stant as index i changes. More precisely, the current
guess is maintained and it is the problem that
changes !. This is made possible only because of
the very particular feature (N -safe redundancy) of
the optimization problem that is related to nonlinear
state estimation issue.

• The presentation in this paper focusses on the state
estimation problem. However, it is straightforward
that under appropriate identifiability conditions, the
concept of N -safe redundancy can be extended to the
problem of parameter identification and/or simulta-
neous state and parameters estimation.

• The last remark clearly applies also to the problem
of robust state estimation where some uncertainty

profile w(·) needs to be estimated together with the
state vector. This clearly assume that some finite
dimensional temporal parametrization of w(·) is used
that faithfully contains the actual unknown behavior
as a possible instantiation. In this case, even non
regular temporal parametrization of the form

w(·) =W(·, pw) ; pw ∈ P ⊂ Rnp

can be used in the context of hybrid systems. In
this case, the overall framework would apply on the
extended unknown state:

x̄ :=
(

x
pw

)
∈ Rn × P ; ṗw = 0 (20)

6. CONCLUSION & FUTURE WORK

In this paper, the concept of N -safe redundant optimiza-
tion problem is introduced and its potential efficiency
in the context of dynamic nonlinear inverse problems is
illustrated through a realistic state estimation example.
Corresponding algorithms are also proposed that can be
incorporated to any existing iterative scheme that may
be used to solve the corresponding optimization problem.
Concrete implementation and wide numerical investiga-
tions are now under study in order to clearly quantify the
benefit from such scheme in crossing singularities.
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