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Abstract: In this paper, recent advances in the design of feedback laws for the 3D movement of
an Eel-like robot are presented. Such a robot is under construction in the context of a national
French robotic project. The proposed feedback enables the tracking of a desired 3D position of
the Eel head as well as the stabilization of the rolling angle without using pectoral fins. We build
on a previous work in which we proposed a complete control scheme for robot’s 3D movement
using its pectoral fins. The controller is tested on a recently developed complete 3D model in
order to assess its efficiency in tackling 3D manoeuvres.

1. INTRODUCTION

In this paper, current researches on the control of an
eel-like robot are presented. This is done in the context
of a multidisciplinary French national research project
called ROBEA-ANGUILLE ' . The aim of this project is to
design, construct and control the 3D motion of an eel-like
robot. The prototype under construction is obtained by
connecting many parallel platforms (see figure 1). The eel’s
body will then be covered by a deformable “skin” in order
to achieve high performance swimming. As it has been
underlined by many researchers in the robotic biomimetic
field, understanding the dynamics of such robots may be
of a great interest in improving the manoeuvrability of
under-water vehicles (see Triantafyllou et al. [1993], Ma-
son and Burdick [2000], Morgansen et al. [2002], Mclsaac
and Ostrowski [1999], Colgate and Lynch [2004], Sfakio-
takis et al. [1999], Triantafyllou and Triantafyllou [1995],
Bandyopadhyay [2005]).

A 3D continuous model of the target prototype has been
proposed by (Boyer et al. [2006]) using the geometrically
exact theory of beams under finite deformations (Simo
[1989]). This model is used here to validate the proposed
3D control feedback.

There exist many works in the literature that studied the
eel-like robots movements. In particular, (Mclsaac and
Ostrowski [1999] and the related works) have studied the
2D movement of an eel-like robot. The rolling cart analogy
is used in order to derive state feedback that track some
reference trajectories. Another interesting approach was
proposed by Morgansen et al. [2001, 2002], Vela et al.
[2002] where averaging formulas have been derived to
describe the mean behavior over a cycle.

* This work was supported by the French National Center for
Scientific Research (CNRS) in the context of the ROBEA-project
and the French National research agency project (ANR-RAAMO).
L http://www.irccyn.ec-nantes.fr/hebergement/ROBEA /

A design procedure for a biomimetic robot-fish based on
improved kinematic propulsive model has been described
by Yu et al. [2005] where the basic motion control laws
were presented. For a detailed review of existing works on
control of swimming, the reader can refer to Colgate and
Lynch [2004].

However, few researches have studied the control methods
for 3D motion of eel-like robots. Preliminary results on
the 3D control of an eel-like robot are presented by
Alamir et al. [2007] where a complete control scheme
for 3D movement of the continuous model (Boyer et al.
[2006]) was proposed. The motion and the velocity in
the transverse plane are controlled by monitoring the
oscillatory gait characteristics while the altitude changes
and the rolling stabilization task are handled by means of
two pectoral fins that are attached to the eel’s head.

Fig. 1. An actuated link

The current work tackles another challenging direction;
namely, the problem of 3D motion control without pec-
toral fins. In other words, the planar movement’s strategy
still the same while the altitude changes and the rolling
stabilization task are handled only by 3D robot’s body
movements without using pectorals fins. Our basic concern
while developing the control strategy was the simplicity
and the robustness against modeling errors. To achieve
this, very simple feedback laws have been derived that
are quite independent of the structure of the simulator



equations. The latter is only used to assess the perfor-
mance of the proposed feedback laws. In other words,
since the controller uses too few information about the
simulation model, it is likely to work on the real system
(probably after some tuning phase) even if it differs from
the simulation model used here to assess its performance.

This paper is organized as follows : First, the mathematical
model used in the simulator is briefly described in section
2. Since the latter is quite complex, only the related
guidelines are briefly mentioned. Feasibility analysis of
our control principle is briefly shown in section 3. Section
4 clearly states the 3D control problem. The different
“components’ of the feedback law are then presented in
section 5, namely, the control of the head position in the
transverse plane, the control of the robot altitude as well
as the rolling angle stabilization. Some 3D scenarios are
proposed in section 6. The paper ends by some concluding
remarks together with the road map for future works.

2. THE MATHEMATICAL MODEL OF THE
CONTINUOUS EEL-LIKE ROBOT
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Fig. 2. Frames and parametrization of the continuous eel
robot model

For a complete description of the underlying mathematical
model, the reader is referred to the basic paper (Boyer
et al. [2006]). Only the main features of the model in the
non stretchable case are mentioned here in order to give an
idea about the model complexity and how the 3D features
are handled.

Figure 2 illustrates the basic notations used in the de-
scription of the mathematical model. Let X designates the
material abscissa along the eel’s mean line and G(X) the
center of mass of the X section. Under the assumption
of non-stretchable body, the configuration of the robot at
instant ¢ (after deformation) is completely defined by the
value at each X € [0, L] (L is the robot’s length) of the
rotation matrix R(¢, X)) mapping the head basis before
deformation to the basis at instant ¢ of the section situated
at the abscissa X (see figure 2).

Once given the rotation matrix and the position of the
head , namely Ro(t) = R(t,0) and ro(t) = r(¢,0), the

deformatlon of the body is completely defined by 3 8R that
can be written as follows :

OR

X

where K (t, X) is a skew symmetric tensor associated to an
axial vector K (¢, X). Note that (1) is nothing but a change

=RK ; R(t,0) = Ry, (1)

in the description variables since K = RTS—)]? becomes
the new d.o.f that defines the deformation of the eel’s
body. Note that the last two components of K, namely
K5 and K3 stand for the curvatures of the beam in the
two planes (G, t1,t3)(¢, X) and (G,ty,t2)(¢t, X) while the
first component K stands for the torsion strain field.

It is important to note immediately that in the present
paper, the vector field K(-,-) is the control input. This
assumes that the distributed actuators are conveniently
used to produce the corresponding body deformation in
within the allowable powers and excursions.

Using the above notations, the non stretching assumption
can be expressed as follows :

’ 87’

P =g =X 5 ) =n®. (@)

Let us now introduce the field of angular velocities
w(t,X):

&= RRT (thatis R = &R). (3)
The field @ can also be represented by its axial vector w.
It can be proved (see Cardona and Géradine [1988]) that :

Ow
This means that, given the control K(-,-) and the config-
uration R(-,-), the integration of (4) in space enables the
computation of w, hence & and therefore R thanks to (3).

= RK ;

On the other hand, by differentiating (2) in time, it comes
that :

or

X 7(t,0) = 7o(),
that can be integrated in order to reconstruct 7(t, X) for
all X € [0,1]. Similarly, further derivations enables to
write the second derivatives #* and w as functions of the
head accelerations 7y and wq, the velocities 7y, wg and the
time derivatives of the strains field K. This can be shortly
written as follows :

=w X1t ;

(:J) (t, X) :F(thvK('v')a7;0awoa7.".0,wo). (5)

Note that the map I' uses the control profile K (-, ) in time
and space through time derivations and integration over
space as it has been done above for the computation of the
velocities 7 and w. Note that (5) expresses only kinematic
constraints. In order to built the dynamic model, the
external forces due to the contact with the fluid have
to be computed. Assuming that the gravity forces are
compensated by internal “air tanks’, the only external
forces are those due to the interaction of the body with
the fluid. To express these forces and torques, the contact
model of Morison [1950], Burgess [1993] is used. This
amounts to integrate the following quantities along the
eel’s body :

dfext > .
et —— Z Cui[[Vi|Vilt: — ;[sz] i (6)
dc i :
d;t ==Y Cal|ulQult; = Y [CuiZilts, (7
i=1 i=1



where V;, v, ; and Z; are the components on t; of 7, 7,
w; and w; respectively, namely :

3 3 3 3
i=1 i=1 i=1 i=1

while {C};} are coefficients depending on the mass per
unit volume of the fluid, the shape and the size of the
section (elliptic in our case) and the Reynolds number of
the moving section in the fluid. Note that the first term of
(6) accounts for the drag/lift forces applied on the section
while the second term accounts for the added mass forces
as given by Techet and Triantafyllou [2004]. The same
angular related significations hold for the terms in (7).

3. PROBLEM FEASIBILITY

First of all, in accordance with the true eels behavior,
only the component K3 of the deformation field was used
in (Alamir et al. [2007])(K; = K; = 0). Namely, at
any time t, the body mean line entirely lies in the plane
(0,t10(t), t20(t)) (see figure 5). The direction of this plane
in space was controlled by robot’s pectoral fins.

Xback = [Xp, L]

Fig. 3. Frames and parametrization.

The idea in the present work is to realize the altitude
control without using the pectoral fins, by combining tor-
sion (around ¢ (X)) and pitch (around ¢2(X)) movements
with robot’s undulatory movement (around ¢3(X)). The
principle consist of applying torsion and pitch movements
to every back part section of the body in phase with its
undulatory movement. This is motivated by the fact that
the prototype under construction allows torsion, pitch and
yaw movements for robot’s vertebra. The robot’s back part
can be defined by :(See figure 3)

VX € Xback = [Xba L] (8)

where X, is a given material abscissa and L is the robot’s
length.

By doing so, the robot is divided into two parts. The front
part’s mean line entirely lies in the plane (0,%10(t), t20 (%)),
while the mean line of the back part is used for control
and can leave this plane (0,t10(t), t20(t)).

Note that most fish swim forward by bending their bodies
into a backward-moving propulsive wave that extends to
its codal fin (tail). As the propulsive wave passes backward
along the fish, each small body segment (called propulsion
element) generate a force that increases the momentum of
water passing backward (Webb [1984]). An equal opposing
force F (see figure 4) is subsequently exerted by the water
on the propulsive element. F' is normal to this later and is
analyzed into a lateral F and thrust Fr component.

In anguilliform swimming, since at least one complete
wavelength of the propulsive wave is present along the
body, lateral forces are adequately cancelled out, minimiz-
ing any tendencies for the body to recoil (Sfakiotakis et al.
[1999]).

overall
speed
swimming

-—
propulsive wave
speed

propulsive element

Fig. 4. Propulsive element force generation

Since at least one complete wavelength of the propulsive
wave is present along the body, the analysis of different
forces exerted on the robot’s two parts permit to see the
following effects :

e The application of a sine twist movement to the
robot’s back part :
2T
VX € Xvack, KI(X7 t) =Q- COS(?t

)

where T is the undulation period, allows to obtain
upward and downward movements of the robot. Note
that if the sine period isn’t equal to the undulation
period, this is will also induces a roll movement (K
is defined in section 2).
e A sine pitch movement applied to the robot’s back
part :
27
T 2
produces a roll movement of the robot (K is defined
in section 2). Indeed, if the the sine and the undu-
lation periods are not equal, the behavior is not the
same.

VX € Xback, K2(X,t) = - cos(

4. STATEMENT OF THE CONTROL PROBLEM

The control problem is schematically depicted on figure
5. A target position P; is given that is not necessarily in
the transverse plane (0, ¢10, t20) of the eel’s mean line. The
controller has to appropriately modify the control input :
u:=K(,)

in order to steer the head O towards the desired position
P,;. Note however that we are not interested in point-wise
stabilization at Py since the effectively used Py will be later
generated by tele-operation mode and will be continuously
moving. This is because the eel robot falls in the class of
systems (including the rolling cart, the snakeboard, etc.)
that cannot be controlled at zero-velocity. In addition to
the control objective consisting in steering the eel’s head
to the desired position Py, the rolling angle of the body
has to be controlled. When the eel is in arbitrary 3D
configuration, expressing the desired rolling angle is not an
easy task. Many choices can be done. Here, the controller
is oriented towards the regulation of the scalar product :

Drol = t20 - I3 9)
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Fig. 5. Schematic 3D view of the control problem. The Eel
that lies at instant ¢ in the plane (0, t10(t), t20(¢)) has
to join the target position P; while trying to keep the
vector tog horizontal, namely tog - 3 =~ 0. This has to
be done using the infinite dimensional control input
K(,-).

around 0. Indeed, this guarantees that when the eel mean

line lies in a horizontal plane, its transverse plane is

also horizontal. Moreover, we look for a feedback law
enabling the mean velocity of the head, namely Vj =

T j;sth l7o(7)|ldT to be controlled by appropriately con-
trolling the characteristic of the body deformation through
the control input K(-,-).

5. THE PROPOSED FEEDBACK

As explained later, our aim is to realize the 3D control of
the eel-like robot without using its pectoral fins. The idea
is to control the head altitude by applying a sine twist
movement to the robot’s back part and to apply a sine
pitch movement for rolling angle control.

The undulation laws K; and K5 takes then the following
form :

2
—t

VX € Xback s Kl(Xa t) = Q- COS( T ) (10)

) (11)

where @ € [—mazs Omaz] and 8 € [—Bmaz, Bmaz) are used
as control variables. T is the undulation period.

2
Ky(X,t)=0- cos(%t

The undulation law K3 takes the following form in accor-
dance with biological observations (Carling et al. [1998]) :

Kolt, X) = us - A, ua) sin(5 — 1) + i,
where ug - A(X, uz) gives the amplitude of the undulation
as a function of the material abscissa X. The control
input ug € [0,u§"**] scales the amplitude in order to
control the velocity. On the other hand, the control input
ug € {—1, 1} defines whether the amplitude of undulations
is bigger at the eel’s tail or the eel’s head. This is used
to enhance acceleration or deceleration according to the

velocity related control requirements.

(12)

The remaining control input u; € [—u]**®, u***] is used

to control the eel’s movement in the transverse plane as it
is explained in the following section.

Note that the velocity control and the control in the
transverse plane are treated in our previous work (Alamir

et al. [2007]). The control in the transverse plan will be rep-
resented here. For more information about velocity control,
the reader may refer to (Alamir et al. [2007]). Note that
(10)-(11)-(12) define a finite dimensioned parametriza-
tion of the control input leading to the control vector
(o, B, u1,uz,u3).

5.1 Controlling the movement in the transverse plane
(0,t10,t20)

The way this is done is based on the following observation :
When the undulation law (12) is used with u; = 0, a
strait movement in the plane (0, ¢19, t20) is asymptotically
obtained while constant non vanishing values of u; asymp-
totically lead to circular trajectories.

Therefore, the control law uses u; to correct the direction
of the movement in the plane (0, t19, t20) in order to “move
strait towards” the target position Pj. Note that P} is the
projection parallel to tsg of Py on the plane (0, t19, tag) (see
figure 5). The feedback uses the following key quantities :

S ,
Peat := —73(OP) At10) 3 pse =—OPj -t1o

where 73(+) designates the third component of the argu-
ment. With the above notations, the following feedback is
defined on uy :

ui(t) = F1(OP (), tio(t))
:_ { B Dear(t) if Pac(t) > 0

max

Uy otherwise (13)

where Pt (t) and Ps.(t) are the mean values of pe,: and
Pse over the past period of undulation, namely :

1

pext(t) = %/ pewt(T)dT 5 psc(t) = ?/ psc(T)dT (14)
t—T t—T

This amounts to stabilize pe,: to 0 with ps. > 0 which

means by definition of p.,: and ps. that —t19 and O—Pj are
parallel (in average) and in the same direction. Once this is
reached, u; vanishes and the eel adopts no mean curvature
and moves towards the projected target P; with a strait
mean line. The conditional use of u; = u7*** enables a
maximal curvature to be used when the eel moves in the
opposite direction to the one that would be necessary to
move towards P; and since this corresponds to a circular
trajectory, the sign of ps. necessarily becomes > 0 after a
finite time after which the above argumentation holds.

Note that during three dimensional manoeuvres, the trans-
verse plane (0, t19,t20) moves. This makes the projected
position P; moving even for fixed target state P;. Note
that (13) is a proportional law, PID version can also be
adopted.

5.2 Controlling the altitude

The solution proposed by Alamir et al. [2007] uses the
robot’s pectoral fins to control the following variable :

z:=r1o(t) - Es3

around the desired value zg := w3 (Pd). A robust sliding
mode controller is used.



Another approach that is more simple, completely inde-
pendent of the robot’s model and that can be used to
control the altitude with or without using the robot’s
pectoral fins is presented here. This is done by controlling
the following variable (see figure 5):

e

dz = OPd . t30 = P;Pd (15)
around 0. This amounts to move the transversal plane to
contain Py.

The design approximation is that the evolution of d,
follows basically the following law :

d. ~ k.-« (16)
where « (defined in (11)) is supposed to belong to
[—mazs FQmaz]. This suggests the following feedback
law :

Q1= Qmaz tanh(—madz - Hzadz) (17)

that is

N —_
& = Qmaz tanh(fnladz — k2q((wo X t30) - OPy — Vo - tSO))

where the use of the tanh function enables the saturation

on « to be satisfied. Therefore, the control low uses « to
correct the direction of the plane (0,t19,t20) in order to
cancel the distance P} Fy.

5.8 Controlling the rolling angle

As indicated earlier, the control of the rolling angle
amounts to control p,.,; := too - F3 around 0. The same
principle used in the altitude control is applied here.

The evolution of p,, follows basically the following law :

ﬁrol ~ krol ﬁ (18)
where [ (defined in (11)) is supposed to belong to
[—Bmaz, +Omaz]- In the same way, this suggests the fol-
lowing feedback law :

B = ﬂmaz tanh(*ﬁlrprol - H?Tprol)
= ﬁmuw tanh<_/§1rprol — R2r73 (WO X t20)> (19)

6. NUMERICAL SIMULATIONS USING THE 3D
CONTINUOUS MODEL OF BOYER ET AL. [2006]

In this section, some numerical simulations (without ve-
locity control) are proposed to assess the efficiency and
underline some interesting features of the 3D movement
control design.

6.1 3D manoeuvres without velocity control

The following simulations are proposed with constant
values for the control inputs us and uz. Keeping these
control inputs constant means that no feedback is done
to control the mean velocity of the robot. This means
that the robot cannot stop at the desired position. Once
a neighborhood of the desired position is reached, the
controlled robot can only “turn around’ it waiting for the
next set-point change. In what follows, some parameters
used in the simulation are given.

6.2 The robot parameters

The exhaustive definition of the model parameters is given
in (Boyer et al. [2006]). Let us mention here that the length
of the robot is L = 2.08 m and all the cross sections
are ellipsoidal with evolutive dimension that reproduces
a quite realistic and faithful form (the tail is thinner that
the central body).

6.3 Control related parameters

The undulation period T'= 1.2 s [see (12)]

The wavelength A = 1.3 m

The feedback gain . = 1 [see (13)]

The saturation level u**® = 0.5 [see (13)]

Sampling period 7, = 0.1 s

The saturation on the twist angle qnq. = 15 deg [see

(11)]

e The saturation on the pitch angle §,,4, = 20 deg [see
(11)]

e The z control parameters (K14, k24) = (4, 3) [see (17)]

e The rolling angle feedback gains (kir,k2-) = (5,3)
[see (19)]

® Xbvack = [1.352, L] (35 % of the robot’s length are used

as the robot’s back part)[see (8)].

6.4 Manoeuvre description

Three set-point changes are successively applied, each
represents simultaneous changes in the three coordinates
of the desired position P;. The robot is initially at rest
with the head at the origin “oriented’ towards the negative
values of x. The desired state is then defined by the
following expression :

Evolution of the (x,y) head coordinates (m)

A AT JAWN AN N
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Evolution of the (z) head coordinates (m)
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o I \
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Evolution of the rolling angle arcsin(p,o;) (deg)

Time (seconds)
Fig. 6. Behavior of the controlled robot with the rolling
angle control under the three successive set-point
changes given by (20)

(6,—4,1)"  for t <200 s
(=6,5,—2)" for 100 < ¢ < 500 s
0,1,00"  for t > 700 s

Py(t) = (20)

Figure 6 shows the behavior of the head’s coordinates
as well as the evolution of the rolling angle arcsin(p;o;).
The evolution of the control variable («a, 8, u1) during this
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Fig. 7. Evolutions of the roll and pitch angles (a, 3) as well
as the additional curvature u; during the scenario of
figure 6.

scenario is depicted on figure 7. Note that except for
the transient phases that follows set-point changes, the
control input u; makes the robot “turn around’ the desired
position Py, since no velocity control is applied here.

Two videos could be seen at the bottom link 2, they show
the behavior of the simulator in tele-operation mode. Some
keyboard keys are used by an operator in order to make
the eel robot’s model going through some virtual obstacles.
A real time evolution is presented.

7. CONCLUSION

In this paper, preliminary results on the 3D control of
an eel-like robot without pectoral fins are presented. We
build on a previous work in which we proposed a complete
control scheme for robot’s 3D movement using its pectoral
fins (Alamir et al. [2007]).The proposed feedback is quite
simple and independent of the detailed structure of the
robot’s model. The controller is validated using the com-
plete continuous model of Boyer et al. [2006]. Future work
concerns the implementation on the prototype (under con-
struction). For this, a systematic identification and tuning
strategy need to be developed.
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