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Abstract

Self-heating measurements under cyclic loadings allow for fast estimations of fatigue properties. These tests are

performed under tension-torsion loadings on a medium-carbon steel and a model accounting for heterogeneities

is proposed to analyse heat transfer results. Both proportional and non-proportional loading paths are predicted.

To cite this article: .....................

Résumé

Prévision d’essais d’auto-échauffement sous chargements multiaxiaux hétérogènes. Les essais d’auto-

échauffement permettant une estimation rapide des caractéristiques de fatigue. Ils sont réalisés ici sur un acier C45

sous chargements de traction-torsion. Un modèle prenant en compte l’hétérogénéité de la dissipation est proposé.

Il permet de rendre compte des mesures thermiques sous trajets proportionnel et non-proportionnel. Pour citer

cet article : ...................
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1. Introduction

For several years, different methods of rapid estimation of mean fatigue limits based on temperature
measurements have been developed. These tests consist in measuring the change of the specimen tem-
perature under (usually) uniaxial cyclic loadings with thermocouples [1,2] or thermography [3,4]. The
amplitude of loading is step-wise constant and risen once the temperature is stabilised. The steady-state
temperature is plotted as a function of the loading amplitude as shown in Figure 2. For some materials
(e.g., steel or cast iron), a first part of the curve shows virtually no change in temperature, whereas in
the second part the temperature rises significantly with the stress amplitude. A correlation between the
mean fatigue limit and the stress level leading to the temperature increase has been empirically proposed
[3,4,2]. Currently, models [5,6] based on microplasticity are developed to describe this result. To take into
account the progressive appearance of microplasticity two approaches are proposed. In the first one [5],
the authors consider that the volume fraction of microplastic inclusion depends on the stress amplitude.
In the second one [2], a probabilistic approach is used. The last model enables one to relate the fatigue
behaviour with temperature measurements.

The investigation of multiaxial fatigue needs time-consuming experimental databases (e.g., stair case
tests for each loading direction). Applying temperature measurements to multiaxial fatigue is thus very
interesting as shown with biaxial loadings [7]. However, it is seldom performed. It is proposed to carry
out and analyse a more common type of loading such as tension-torsion. First, a probabilistic two-scale
model is extended to multiaxial heterogeneous loadings. Then it is applied and finally validated with
proportional and non-proportional loading results.

2. Modeling

2.1. Model basis

Gradual rise of heat (and thus temperature) is supposed to be a consequence of a random onset of
microplasticity, which has been observed on low carbon steel [8]. The distribution of active grains (later
called “sites”) in relation to their surrounding explain the “probabilistic” feature, which is modeled by a
Poisson Point Process. The probability of finding k sites in a domain Ω of volume V reads

Pk(V ) =

(

λV
)k

k!
exp(−λV ), (1)

where λV is the mean number of sites under a given load amplitude and λ the “intensity” of the Poisson
Point Process, depending on an equivalent stress Σa (later called “Equivalent Activation Stress”) of the
load amplitude and two material parameters m and V0S

m
0

λ =
1

V0

(

Σa

S0

)m

(2)

where Σa is supposed to be equal to Von Mises equivalent stress amplitude Σeq
0 . Experimental validation

was performed for a Dual Phase steel [7]. The stress tensor in the plastic inclusion σ is related to the
macroscopic stress tensor Σ and the corresponding strain tensor ǫ

p by [9]

σ = Σ− 2µ(1 − β)ǫp, (3)

where µ denotes the shear modulus and β a constant related to the Poisson’s ratio of the material.
The magnitude of the intrinsic dissipated energy Dinc(Σ

eq
0 , σy) in a site over a loading cycle is calculated

for a given value of the yield stress σy and a Von Mises equivalent stress amplitude Σeq
0 . A Von Mises
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equivalent stress for the plasticity criterion associated with a linear kinematic hardening is assumed. For
a uniform proportional loading, Dinc(Σ

eq
0 , σy) is given by

Dprop
inc (Σeq

0 , σy) =
4σu

y

h
〈Σeq

0 − σu
y 〉 (4)

where h is the hardening modulus. The total dissipated energy is then obtained by integration over the
whole population of sites [6]

D(Σeq
0 ) =

∫ Σeq

0

0

Dinc(Σ
eq
0 , σ)

dλ

dσ
dσ. (5)

For a heterogeneous stress field over a domain Ω of volume V , the global (mean) dissipated energy ∆ is
expressed as

∆ =
1

V

∫

Ω

D(Σeq
0 )dV. (6)

In the following, it is assumed that the temperature is uniform. This hypothesis will be discussed for the
experimental application. The mean dissipation ∆ is then introduced in the following heat conduction
equation

Θ̇ +
Θ

τeq
=

fr∆

ρC
, (7)

where τeq is a characteristic time depending on the heat transfer boundary condition [11], ρ the mass
density, C the specific heat, fr the load frequency and Θ the mean temperature. There is no need to add
a thermoelastic term, which is vanishing over one cycle because only mean steady-state temperatures are
sought. The mean (uniform) steady-state temperature Θ can then be calculated.

For proportional loadings, ∆ is simplified as

∆ =
4mV0

h(m + 1)(m + 2)

Hm+2(Σ
eq
0M )m+2

V0Sm
0

=
4mV0

h(m + 1)(m + 2)

(Σeff diss)
m+2

V0Sm
0

, (8)

where Σeq
0M = maxΩ (Σeq

0 ), Σeff diss the effective dissipative stress and Hm+2 the heterogeneity stress
factor [10] given by

Hm+2 =
1

V

∫

Ω

(

Σeq
0

Σeq
0M

)m+2

dV (9)

For non-proportional loadings, it is no longer possible to simplify ∆ because of the expression of D(Σeq
0 ).

∆ is then calculated with the same hypotheses, but using a numerical integration software. However, it
is possible to define a non-proportional loading factor

Gm+2 = ∆/∆0M , (10)

where ∆0M is the mean dissipated energy for a proportional and uniform loading and a Von Mises stress
amplitude Σeq

0M defined by

∆0M =
4mV0

h(m + 1)(m + 2)

(Σeq
0M )m+2

V0Sm
0

. (11)

It is thus possible to extend the concept of effective stress for non-proportional loading as follows

Σeff diss = G
1/(m+2)
m+2 Σeq

0M , (12)

where Gm+2 = Hm+2 for proportional loadings. The steady-state temperature Θ reads in any case

Θ = η
m

(m + 1)(m + 2)

(Σeff diss)
m+2

V0Sm
0

(13)
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with η = 4frτeq/hρC. Equation (13) shows that the thermal behaviour depends only on three parameters
and the effective dissipative stress. In the following section, the previous analysis is applied to and validated
on a medium carbon steel C45 (SAE45).

3. Validation of tension-torsion results

3.1. Experimental configuration

A tubular specimen with 2 flat sections per head [12] is used for tension-torsion loadings. The ratio
thickness/mean radius of the gauge section is equal to 0.24 (external and internal radius are respectively
Re = 7 mm and Ri = 5.5 mm). All samples are machined from the same bar of medium carbon steel C45
(SAE45), which is, as far as elastic and thermal parameters are concerned, homogeneous and isotropic.
Experiments are performed using a tension-torsion servohydraulic-testing machine. Differential tempera-
ture measurements are obtained by using 2 thermocouples, one in contact with the centre of the external
surface of the gauge zone and the other on the grips of the actuator. At a loading frequency of 5Hz,
3,000 cycles are needed for each step to reach steady state conditions. The macroscopic stress tensor that
depends on the radius r, is expressed as

Σ(r) =











Σ11 Σ12 0

Σ12 0 0

0 0 0











, with

Σ11 = Σmax cos(2πfrt)

and

Σ12 = τmax
r

Re
cos(2πfrt + δ)

(14)

where fr is the loading frequency, Σmax and τmax the tensile and shear stress amplitudes and δ the phase
difference between shear and normal stresses.

A pure tension and a pure torsion loading path are first performed on two different samples. On a third
one, a non-proportional path, later called “out-of-phase” is carried out, corresponding to a Von Mises
circle in the tension-torsion stress space for a point of the gauge section at mean radius. One must note
that for other points, the loading path is still an ellipse, but with the major to minor axis ratio different
from τmax/Σmax =

√
3.

3.2. Validation of the uniformity assumption of steady-state temperature

The heat transfer boundary conditions are a constant and uniform temperature on the interface sam-
ple/grip (θgrips = 0) and a convection condition

(

∂θ
∂r

)

±h1θ = 0 on respectively internal and external faces
of the tube, where the value of the heat transfer coefficient h1 is taken from the literature [11]. Grips are
considered to be “far” from the gauge section, so that the steady-state temperature of the gauge section
θ is considered as a simple function of the radius r. The heat equation to solve reads

θ̇ − k

ρC

∂

r∂r

(

r
∂θ

∂r

)

=
fr∆(r)

ρC
, (15)

where k is the thermal conductivity. Figure 1 shows in pure torsion that θ is nearly uniform (i.e., variation
less than 0.02%) despite a high heterogeneity of dissipation, which is experimentally checked by measuring
temperatures on both external and internal surfaces. The steady-state temperature is thus uniform and
Eq. (13) applies.
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Figure 1. Change of shear stress (a), total dissipated energy (b) and temperature (c) as functions of radius
(k = 50 Wm−1K−1, ρ = 7, 900 kgm−3, C = 500 Jkg−1K−1, τeq = 70 s).

3.3. Evaluation of the effective dissipative stress

In proportional tension-torsion, Gm+2 reads

Gm+2 =
2

R2
e − R2

i

∫ Re

Ri

(

σ2
max + 3( rτmax

Re
)2

σ2
max + 3τ2

max

)

m+2

2

rdr (16)

and for the non-proportional loading, Gm+2 is numerically calculated. As shown in Table 1 for the present
geometry and material parameters, values of Gm+2 for heterogeneous out-of-phase loading path (hypoth-
esis of tension-torsion on thick-walled specimen) and uniform out-of-phase loading path (hypothesis of
thin-walled specimen) influence the result. In the case of out-of-phase loading path, values of Gm+2 greater
than one are due to higher intrinsic dissipated energy than for proportional loading.

Table 1
Values of Hm+2 and Gm+2 for different loading path when Re = 7 mm, Re = 5.5 mm, m = 12.

Tension Torsion Heterogeneous out-of-phase Uniform out-of-phase

Hm+2 1 0.32 0.36 1

Gm+2 1 0.32 7.29 7.24

The experimental analysis consists in identifying the parameter m (e.g., using the steady-state tem-
perature measurements in tension [2], see Figure 2(a)) and then calculating the different heterogeneity
factors to plot the other paths as shown in Figure 2(b). To show the influence of the factor Gm+2, exper-
imental results are directly plotted in Figure 2(a) as functions of Von Mises equivalent stress amplitude.
Figure 2(b) shows that the effective stress allows one to collapse all the experimental data onto a single
curve.

4. Summary

Self-heating measurements under different proportional and non-proportional cyclic loadings have been
performed in tension-torsion. Plotting results as functions of Von Mises equivalent stress amplitude is not
the adequate method (Figure 2(a)). The stress heterogeneity effect induced by the probabilistic treatment
of the experiments needs to be accounted for. Last, by using only one loading path results (e.g., tension)
to identify the parameters, it is possible to calculate a heterogeneity factor that allows for the prediction
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Figure 2. Steady-state temperature for different loading paths: tension (+), torsion (×) and non-proportional (◦) as functions
of Von Mises equivalent stress amplitude (a) and effective stress amplitude (b).

of all other tested loading paths as shown in Figure 2(b). The next step is the fatigue prediction under
multiaxial loadings and its validation.
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