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1. Introduction

Cation reduction in solution is an everyday process having a fundamental role in a

broad range of fields, from industrial to biological sciences. For this reason several

efforts were done to understand the elementary processes involved. In particular

the electron transfer, the crucial step thermodynamically and kinetically regulating

redox reactions, was largely investigated during the last decades 1. Pulse radiolysis

of a metal ion in solution offers a powerful method to reduce solvated metal ions

and then study by time-resolved spectroscopy the formation of metal atoms and

their coalescence 2. Within this technique a solvated electron is formed, able to

reduce the metal ions present in solution.

Different ways can be adopted to generate a solvated electron 3. Hart and Boag

pointed it out in water for the first time in 1962 4, the so-called hydrated electron, its

absorption spectrum being a non-structured band with a maximum value at 1.72 eV,

confirming previous hypothesis of its existence 5. Then the hydrated electron was

largely characterized experimentally, including studies of its stationary spectrum

in different conditions 6. More recently, its formation dynamics became the subject

of several studies 7. Furthermore, in last ten years it was the subject of several

theoretical and computational studies 8,9.

Since the solvated electron is a very strong reducing agent, when produced in a

solution it is able to reduce cations. Of course, the reduction process is determined

by the chemical nature of the cation. Considering, for simplicity, only monovalent
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cations (similar considerations can be made for a generally charged cation), when a

solvated electron is produced in a solution containing a soluble salt of this cation,

we have two possible processes

M+ + e−sol 
 M0 (1)

and

M+ + e−sol 
 (M+, e−sol) (2)

When the reaction 1 is favorized, then the atoms dimerize or associate with excess

ions

M0 + M+

 M2

+ (3)

and, by a multistep process, these species progressively coalesce into clusters. The

most studied reduction reaction assisted by a solvated electron is probably that

of the silver cation. It was in fact the first ion aqueous solution studied by pulse

radiolysis 10 and was recently revisited 11,12.

The product of reaction 1 is also interesting, since it is a neutral atom in a polar

solvent, water generally. Such a state, before reacting with other cations, can be

stabilized by an atomic induced dipole moment due to the hybridization of atomic

orbitals, achieving a large dipole moment. This large dipole moment can then po-

larize its neighbors. The resulting reaction field enhances the polarizability of the

atom. If there is a sufficient number of neighbors, the reaction field can overcome

the energy cost of hybridizing the atom entirely and an effective dipolar atom would

result. This stabilized state is called excitonic state. The transition to an excitonic

phase consisting of dipolar atoms was invoked to understand the metal-nonmetal

transition in expanded liquid mercury 13. Fluid lithium can also undergo a similar

transition 14. Another possibility of having a transition to an excitonic state can

occur in a variety of impurity-doped matrix systems, like for example low temper-

ature alkali-doped rare gas solids at low impurity concentration. Such a possibility

was described by Logan 15, considering an alkali atom that, when isolated, contains

a single ns electron outside a closed shell. He assumed a sufficiently low impurity

concentration, so that the impurity-impurity interactions may be neglected. Such

conditions are experimentally possible for these systems 16. Moreover alkali impu-

rity atoms can be stabilized at low temperature in solid ammonia or in glasses 17.

Liquid host matrices are also possible: Li atom in liquid ammonia presenting the

characteristics of an excitonic state has been observed from path integral quan-

tum Monte Carlo calculations of Sprik et al. 18,19. A similar situation was found by

quantum/classical and Car-Parrinello molecular dynamics in the case of the neutral

silver atom generated in aqueous solution as in reaction 1 20.

In this review we show our recent progresses addressed to study reaction 1 by

means of atomistic simulations and mean-field excitonic state theory, examining

in particular the case of the silver atom in water. The case of reaction 2 does not

lead to the formation of an excitonic state. It can be computationally studied with
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the same quantum/classical approach, as was done in the case of sodium 21, but it

cannot be interpreted by means of the same mean field theory. Hence, since we are

limiting this brief review to the formation of an excitonic state, here we will show

only the case of silver, reaction 1. At this end we employ a mixed quantum/classical

molecular dynamics approach based on an adiabatic simulation technique 9 where

the solvated electron is treated quantum-mechanically and the cation and bulk

water classically, as described in the next section. Within this approach one can

obtain the absorption spectrum of the system, that can be directly compared with

experiments and excitonic state theory. Finally, some insights into the formation

process are shown. They can be obtained putting together information coming from

quantum umbrella sampling of the electron-cation association with free simulation

aimed to see the spontaneous reactive process 21,22.

This brief review is organized as follows. In section 2 we give an overview of

the computational techniques adopted to have microscopical information about the

processes. Then in section 3 we give a short description of the mean-field formulation

of the excitonic state transition and we apply it to the case of silver atom in water

comparing theoretical results with information taken from the atomistic simulation

and experiments. Finally, in section 4, the reactive process is investigated. The paper

ends with general conclusions of our studies at the present stage and perspectives

for future investigations.

2. Computational approaches

The systems under investigation are composed by a monovalent cation, an excess

electron and solvent water molecules. When the cation is reduced by the electron

a neutral atom is formed, otherwise a contact pair or, in a limit case, two non-

interacting particles are obtained. The formation and the stability of the neutral

atom in water can be studied by MD simulations. Different techniques can be

employed, generally following the Born-Oppenheimer approximation. A well estab-

lished way is to use Car-Parrinello molecular dynamics (CPMD) 23, where all the

interactions are obtained from first principles. Within this approach, one has the

advantage that the interactions between particles are not dependent on the system,

since no ad hoc parametrization of the potential is needed. Of course, there will

be limitations on the dimension of both the system and the time length of the

simulations. Another possibility is to divide the system in two parts, one described

by classical interactions and the other following the Schrödinger equation. Using

this quantum/classical molecular dynamics (QCMD) it is possible to avoid some

CPMD limitations, although a parametrization of the potential describing the in-

teractions is needed. In this section we describe the basics of QCMD that can be

used to study the reduction of a cation by an electron in solution, while CPMD

is a well known method largely presented in literature 24 and hence we refer the

reader to that. At this end we first describe the interactions between the particles

of the system – electron, cation and solvent – and then we show the basics of the
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dynamics and finally the quantum umbrella sampling that can be used to study the

reaction leading to the cation reduction by the solvated electron.

2.1. Definition of the interactions

Before directly addressing the dynamics, a reasonable description of the interactions

between the particles is needed. At this end we adopt an additive perspective for

the interactions, where the total potential of the system is given by:

V = Vel,cat + Vel,solv + Vcat,solv + Vsolv,solv (4)

where Vel,cat and Vel,solv represent the electron/cation and electron/solvent interac-

tions respectively, Vcat,solv is the cation/solvent interaction potential and Vsolv,solv

is the solvent/solvent interaction potential. The two former terms are considered as

pure classical two-body interactions, composed, as in usual classical force fields, 25

by a Coulombic and a Lennard-Jones (LJ) term

Vij =
1

4πε0

qiqj
rij

+ 4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

(5)

where i and j are two interacting atoms holding to different molecules. For water,

the solvent, we adopt the SPC model 26, while for Ag+/water interactions there

were no LJ parameters in the literature, and hence we obtained them 21,20 in order

to better reproduce structural and energetic properties of silver cation in water 27.

The electron/solvent and electron/cation interaction energies are evaluated

adding in the time-independent Schrödinger equation of the electron two pseudo-

potential terms, leading to
(

T̂e + V̂int(r,S)
)

ψn(r,S) = En(S)ψn(r,S) (6)

where T̂e denotes the electronic kinetic energy operator, r the electronic coordi-

nates, S the solvent/cation configurations, ψn the electronic wavefunction and V̂int

the effective electron-solvent/cation interaction potential. The latter is composed

by two contributions, the electron/water, Vel/wat, and the electron/cation, V̂el/cat,

pseudopotentials. For Vel/wat we use the pseudopotential developed by Turi and

Borgis 28, that is based on a quantum ab initio calculation for one water molecule

plus an additional electron confined in a box in the static exchange theory limit. It

has the following form

Vel/wat = VSE(r, rO, rH1, rH2) + Vpol(r, rO) (7)

where rO, rH1, rH2 are the coordinates of oxygen and hydrogen atoms of water

molecules. The first term, VSE, takes into account the interactions of the excess

electron with the frozen molecular orbitals of a given water, having the form:

VSE = VO(r, rO) + VH1(r, rH1) + VH2(r, rH2) (8)

VX = QX
erf(AX|r − rX|)

|r − rX|
+BX

erf(CX|r − rX|) − erf(DX|r − rX|)

|r − rX|
(9)
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where the index X represents either O or H,QX is the partial charge of the molecular

sites and AX, BX, CX and DX are adjustable parameters. The second term, Vpol, is

a polarization contribution, accounting for electronic correlation effects, for which

we use the form proposed by Barnett et al. 29

Vpol =
αW

2(|r − rO|2 + r2p)2
(10)

where αW is the water molecular polarizability and rp a typical atomic lenght. For

the electron/cation pseudopotential we employed the form proposed by Durand and

Barthelat 30 with a set of refined parameters for silver 21. It has the form:

V̂el,cat = −
1

r
+ Ŵ ps (11)

where −(1/r) is the Coulombic interaction term and W ps is the nonlocal term of

the pseudopotential, given by

Ŵ ps =
∑

l

Wl(r)P̂l (12)

Wl = e−αlr
2

nl
∑

i=1

ci,lr
ni,l (13)

where P̂l is the projector on the spherical harmonics Ylm. The single electron wave-

functions ψn(r,S) are expanded into a basis of 7×7×7 spherical Gaussian functions

centered on the nodes of a cubic boxes. The form of integrals and the parameters

used to represent the electron wavefunctions within the above pseudopotentials

were presented previously in detail 9,21.

2.2. Quantum/classical molecular dynamics

Having in hand the interaction potentials described in the previous subsection, it is

possible to study the electron/cation/water systems using mixed quantum-classical

molecular dynamics (QCMD). We consider each system as composed by two subsys-

tems, a classical subsystem, the cation and the solvent (water), following classical

Newton’s equation of motion, and a quantum subsystem, the excess electron, fol-

lowing the Schrödinger equation. Note that the electron is not, strictly speaking,

treated quantum-dynamically, since we obtain the electron wavefunction solving the

time-independent Schrödinger equation 6; anyway for each classical configuration

of the solvent/cation subsystem, we have a new electron wavefunction, that con-

tributes to the forces acting on the classical subsystem via the Hellman-Feynman

theorem 31, such that:

F
q
S = −∇SE0(S) = −

∫ +∞

−∞

dr ψ0(r,S)2∇S V̂int(r,S) (14)
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atom
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Contact SeparatedExcitonic

pair

Fig. 1. Schematic representation of different states as a function of the electron/cation distance.

In the studies we are reviewing here, we always computed these forces for the

ground state of the excess electron (n = 0), although an extended usage to excited

states is also possible.

For the classical subsystem we immersed the cation in 300 or 800 SPC water

molecules, with the excess electron treated with the Born-Oppenheimer dynamics

described above. Standard periodic boundary conditions are employed to simulated

bulk behaviour with the Ewald summation technique to calculate electrostatic in-

teractions 32. The simulations are performed in the NVT ensemble using the Nosé-

Hoover thermostat to ensure isothermal conditions 33. The integration of translation

and rotation equation of motion is performed using the Gear predictor-corrector al-

gorithm 34, fixing the time-step at 0.5 fs, and the simulations runs have a typical

time length of a few tens of picoseconds after a stabilization time.

2.3. Reaction free energy profile

The cation reduction reaction path can be studied obtaining, from QCMD sim-

ulations, free energy curves as a function of the electron/cation distance, rn(S),

defined as

rn(S) = |〈Ψn|r|Ψn〉 − Rcat| = ξ (15)

The distance ξ is the easiest microscopic property given by simulations we can

relate to the formation of an excitonic state, coupled with a wavefunction analy-

sis. The limiting situation ξ = 0 corresponds to the electron located on the atom.

Increasing ξ, we have first a distortion of the atom leading to a dipolar atom (the

excitonic state, largely described in the next section), then an electron/cation con-

tact pair is formed, while for larger values of ξ we have two distinct solvated species,

the hydrated electron and the cation (see fig 1).

Along this coordinate, the free energy function will be given by

Fn(ξ) = −kBT lnPn(ξ) (16)

where Pn(ξ) is the probability to find the electron in its electronic state n for the

electron/cation distance ξ,

Pn(ξ) = 〈δ(rn(S) − ξ)〉n (17)
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The solvent average 〈· · · 〉n and the data points rn(S) for the reaction coordinate

are calculated by QCMD with the total Hamiltonian

Hn(S) = En(S) + H(S) (18)

where H(S) is the classical kinetic and potential energy due to the solvent and the

cation. To sample the needed electron/cation distances we use the Umbrella Sam-

pling (US) approach, adding the following quadratic potential to the Hamiltonian

of equation 18:

Uξ0
=

1

2
k(rn(S) − ξ0)

2 (19)

The US technique was adapted for the case of a system including a quantum particle

by Borgis and Staib 35 and this methodology was succesfully used in the case of

cations reduction process 21,22.

3. Dipolar excitonic state

In this section we briefly review the basic concepts of the mean field dipolar excitonic

state theory based on works of Logan and coworkers 15,36 with a particular focus

on the application to a neutral atom in a liquid host matrix. Notably the case of

silver in water is analyzed looking for its properties. In particular from excitonic

state theory it is possible to obtain the hybridized atomic orbitals and hence the

atomic wavefunctions of the states considered. In this way the induced silver dipole

and electronic transitions between s and p states can be evaluated and directly

compared with QCMD results and experimental data.

3.1. General theory

Considering an atom containing a single ns electron outside a closed shell, like

elements of groups 1 (alkali atoms) and 11 (for example silver), it is possible to

write the isolated atom Hamiltonian considering simply a single ns orbital with

energy ε0 = −~ω0 and three np orbitals, with energy ε1 = ~ω0. Neglecting higher

excited states, the atomic Hamiltonian is therefore reduced to a simple four level

system (FLS) that can be represented by

Ĥ0 = ~ω0

(

−|s〉〈s| +
∑

α

|pα〉〈pα|

)

(20)

where α = x, y or z. An external electric field will introduce the perturbation

ĤE = −µ̂ · E0, where µ̂ is the dipole moment operator. In the above basis the

perturbation Hamiltonian is given by

ĤE = ~

∑

α

(|s〉〈pα| + |pα〉〈s|) ξα (21)

where ~ξα = ME0
α represents the energy contribution due to the external field and

M = 〈s|µ̂α|pα〉 is the transition dipole moment. The new Hamiltonian, Ĥ0 + ĤE ,
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can be diagonalised leading to four eigenvalues, ~ω0
−, ~ω0 (doubly degenerate) and

~ω0
+, where

ω0
± = ±

√

ω2
0 + ξ2 (22)

and the corresponding normalized, orthogonal eigenfunctions are given by

|Ψ0
−〉 = |s+ λp0〉[1 + λ2]−1/2 (23)

|ψ0
0〉 = |p1〉 and |p−1〉 (24)

|ψ0
+〉 = |p0 − λs〉[1 + λ2]−1/2 (25)

where

λ =

[

(

ω2
0 + ξ2

)1/2
− ω0

]

|ξ|
(26)

Since the new (perturbed) wavefunctions are obtained, one can express the new

(perturbed) transition dipole moments in this basis, giving

〈Ψ0
−|µ̂|ψ

0
+〉 =

1 − λ2

1 + λ2
M (27)

〈Ψ0
−|µ̂|ψ0

0〉 =
1

(1 + λ2)1/2
M (28)

We can now consider that the atom (the impurity) is immersed in an inert

(non reactive) condensed phase matrix, solid or liquid. Assuming a sufficiently low

concentration of the impurity, we can neglect impurity-impurity interactions, thus

considering a single matrix-bound impurity. The mean field theory we are going to

shortly review here is based on the following assumptions: (i) the impurity atom

valence electron remains strongly localized; (ii) the ns → np excitations in the

matrix-bound impurity are of Frenkel type; (iii) there is no overlap with the host

matrix absorption bands.

Following the continuum dielectric theory 37, we can express the local field acting

on the matrix-bound impurity, f(E), as given by two contributions:

f(E) = G(E) + R(E; 〈µ〉) (29)

where G(E) is the electric field inside the cavity due to external sources and

R(E; 〈µ〉) is the reaction field due to the total impurity dipole moment, µ, that

polarizes its sourronding. Hence, the mean field interaction Hamiltonian, Ĥint, can

be expressed as

Ĥint = −µ̂ · f(E) (30)

= −µ̂ ·

[

3εm
2εm + 1

E + g(ρm)〈µ〉

]

(31)



9

where g(ρm) is the reaction field factor

g(ρm) =
8πρm

3

[εm − 1]

[εm + 1]
(32)

with ρm and εm being the matrix density and dielectric constant respectively. Hence,

the effective Hamiltonian, Ĥi, will be given by

Ĥi = Ĥ0 + Ĥint (33)

To obtain Ĥint from equation 31 we should know 〈µ〉, the impurity dipole mo-

ment, that, as the expectation value of any quantum operator, is given by

〈µ〉 = Q−1
i Tr

{

µ̂ exp
[

−βĤi(〈µ〉)
]}

(34)

where Tr is over the eigenstates of Ĥi = Ĥ0 + Ĥint.

We have hence a self-consistent equation for the matrix-bound impurity dipole

moment. The solution for 〈µ〉 will be a function of both the atomic properties of

the free impurity and the thermodynamic properties of the host matrix, i.e. the

environment. In the absence of an applied external electric field, (E = 0), the

self-consistent equation for 〈µ〉 is

〈µ〉0y(〈µ〉0) = 〈µ〉0
tanh [βs(ρm)y(〈µ〉0)]

1 + exp [−β~ω0] sech [βs(ρm)y(〈µ〉0)]
(35)

with

y(〈µ〉0) = [α0g(ρm)]
−1

√

1 +
α0

~ω0
[g(ρm)〈µ〉0]

2
(36)

where α0 is the polarizability of the FLS and

s(ρm) = ~ω0α0g(ρm) > 0 (37)

Note that to solve equation 35 one has only to know properties that characterize

the isolated impurity atom, α0 and ω0, and the host matrix, ρm and εm. It is evident

that one possible solution of equation 35 is the trivial one, 〈µ〉0 = 0, corresponding

to the absence of an atomic dipole. Moreover, given the atomic properties α0 and

ω0, at a fixed temperature, exists a critical density, ρm,c such that for ρm < ρm,c

only the trivial solution 〈µ〉0 = 0 can fulfil the self-consistent equation 35. On the

other hand, for ρm > ρm,c two solutions are possible, 〈µ〉0 = 0 and 〈µ〉0 > 0, where

the latter is favoured thermodynamically. Hence, for ρm = ρm,c the system has a

transition to a dipolar excitonic state, 〈µ〉0 > 0.

A simplified expression of the self-consitent equation 35 can be obtained for the

limit situation y(〈µ〉0) → 1, leading to

〈µ〉20
M2

=
[α0g(ρm)]2 − 1

[α0g(ρm)]2
(38)

that preserves all the features of a transition to a dipolar excitonic state, and that

was conveniently used to analyze the presence of a dipolar excitonic state in liquid

systems 19,20.
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3.2. Dipolar atom properties

Once the excitonic state is obtained, the original atomic properties will of course be

changed. This changes can be thought in terms of hybridization of original s and p

orbitals, leading to the wave-function

|Ψ(λ̃)〉 = |S + λ̃Pz〉
[

1 + λ̃2
]−1/2

(39)

and the sp-hybrid state will have the following dipole moment

〈µα〉0 = 〈Ψ(λ̃)|µ̂α|Ψ(λ̃)〉 (40)

=
2λ̃M

[1 + λ̃2]
δαz (41)

where λ̃ is a mixing coefficient that here can be regarded as a parameter. It will

be useful to express the total free energy change of the system associated to the

formation of the dipolar atomic state as a function of λ̃, taking as reference the

normal state, 〈µ〉0 = 0, where λ̃ = 0. This total free energy change, ∆A(λ̃), is

composed by two contributions: (i) the hybridization free energy cost, Ah(λ̃), and

(ii) the free energy arising from the interaction with the environment, As(λ̃). Then

the total free energy change, ∆A(λ̃) = Ah(λ̃) +As(λ̃), will be given by

∆A(λ̃) = 2~ω0
λ̃2

[1 + λ̃2]

{

1 −
α0g(ρm)

[1 + λ̃2]

}

(42)

Note that for ρm < ρm,c ∆A(λ̃) has a minimum at λ̃ = 0, i.e. the normal state

is the stable state; on the other hand for ρm > ρm,c, ∆A(λ̃) has a minimum for

λ2 =
[α0g(ρm) − 1]

[α0g(ρm) + 1]
(43)

Once the dipolar excitonic state is formed (ρm > ρm,c) the energies of the

perturbed state described by |Ψ−〉 and |ψ0
+〉 in equations 23 and 25 will be splitted

by

∆EI = ω0

(

{

1 +
α0

~ω0
[g(ρm)〈µ〉0]

2

}1/2

− 1

)

(44)

such that

ω± = ± (ω0 + ∆EI) (45)

Atomistic simulations can be seen in the spirit of this theory looking, e.g., for

properties related to the impurity atom that can be directly addressed by them.

In this way one can interpret microscopic observations taken from simulations in

terms of a mean-field theory based on experimental observables (i.e. an essentially

macroscopic theory). In particular the average dipole moment of the impurity can

be obtained from MD simulations. This study was done originally by Logan 19
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analyzing a simulation study of Li in ammonia of Sprik et al. 18, where he pointed

out that the simple equation 38 can predict the formation of an atomic dipole

of Li obtaining a good quantitative agreement with results found in the atomistic

simulation. More recently, the behaviour of neutral silver atom in water was studied

by two indipendent and different atomistic simulations, CPMD and QCMD 20. Also

in this case a neutral dipolar atom is formed, i.e. an excitonic state, providing a

good agreement between theory and simulations (notably 1.96 D from the theory

versus 1.9 D and 2.4 D obtained from CPMD and QCMD respectively). This state

is particulary interesting also from the point of view of the solvent structures. In

fact it mainly presents the typical features of an hydrophobic species, like similar

oxygen and hydrogen peaks in the electron/water radial distribution function, but it

is in part organized to stabilize the atomic induced dipole, that adiabatically follows

the electric field applied by the solvent 20. As already pointed the silver cation is

reduced by the electron in water solution leading to a dipolar atom, that can be

well interpreted as an excitonic state . From the same kind of atomistic simulations

we also noticed that replacing silver cation with sodium cation a different situation

is obtained 21. Changing the chemical nature of the cation, sodium now, it is no

more reduced, as expected, and only a metastable cation/electron contact pair is

formed with an average distance of ∼2Å. This metastable contact pair was also

found by Laria in micelles 38 and its presence was suspected by experiments 39 - of

course being a metastable state, it is experimentally difficult to be detected. In this

case the basic assumptions of the excitonic theory are no more valid, for example

simply because the s electron is no more localized on the atom.

3.3. Electronic transitions

Systems where an excess electron is formed in solution in presence of cations are

generally investigated experimentally via electronic spectroscopy 40,12 . It is evident,

from equations 23-25 and 44- 45, that excitonic theory is in principle able to provide

transition energies between ns and np states of the impurity. To fully investigate

the spectroscopic consequences of a transition to an excitonic state, at least two

effects must be incorporated in the theory: the spin orbit coupling interaction and

the spatially local, primarly repulsive, interactions (corresponding to the usual van

der Waals classical repulsive short range interactions). Hence, the Hamiltonian Ĥi

of equation 33 is replaced by

Ĥ ′
int = Ĥi + Ĥso + V̂0 (46)

where Ĥso is the spin-orbit coupling Hamiltonian and V̂0 is a spherically simmetric

interaction term taking into account the local interactions that do not mix the ns

and np orbitals.

Then, it is possible to write simple expressions for the total resulting transition

energies
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Fig. 2. Absorption spectrum of silver atom in bulk water: experimental (dashed line), calculated
from QCMD simulations (solid line) and obtained from excitonic state theory (vertical black lines).
The three components obtained from QCMD simulations are separately shown (dotted, dashed-
dotted and dashed-dotted-dotted) corresponding to s→p transitions. The in vacuum transition is
also shown (vertical open line).

∆E1 = E0 + δ +
3

2
∆EI −

1

4
ζ −

1

2

[

∆2
EI + ζ∆EI +

9

4
ζ2

]1/2

(47)

∆E2 = E0 + δ + ∆EI +
1

2
ζ (48)

∆E3 = E0 + δ +
3

2
∆EI −

1

4
ζ +

1

2

[

∆2
EI + ζ∆EI +

9

4
ζ2

]1/2

(49)

where E0 = 2~ω0, ζ is an effective np spin-orbit coupling constant and δ is the

energy shift between ns and np orbitals due to V̂0 (i.e. δ = 〈p|V̂0|p〉 − 〈s|V̂0|s〉).

Note that equations 47-49 contain the normal state (∆EI = 0, ∆E2 = ∆E3) and

the excitonic state (∆EI 6= 0).

To directly address the transition energies from equations 47-49, δ is probably

the most problematic term to estimate. It is also a crucial value, since, disregarding

it, the theory can provide only blue-shifted spectra. If a red-shifted spectrum is

observed, it can be justified by a negative δ that bilances a positive ∆EI . Unfortu-

nately, δ cannot be obtained analitically but only via semiempirical considerations.

In the case of silver, the explicit case under our interest, we can make a first dras-

tic, but reasonable, assumption considering δp << δs and then δ = −δs. This term,

δs, can be further estimated from the energy of |S〉 state in vacuo, E
|S〉
vac, and in

solution, E
|S〉
sol , as obtained from simulations reported in ref. 21, and using ∆EI via

equation 44 as the electrostatic contribution of the solvent. Thus,

δs = E
|S〉
sol − E|S〉

vac + ~∆EI (50)

The spin orbit contribution can be taken from recent experimental data 41.

Using the values listed in tab 1 for Ag0 in water, we can obtain the three transition

energies: ∆E1 = 3.33 eV (≡ 372 nm), ∆E2 = 3.51 eV (≡ 353 nm) and ∆E3 =
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Table 1. Parameters adopted and values obtained to study the excitonic state of silver atom in
water at ambient conditions. (a) experimental value from ref. 41; (b) calculated from equation 44;
(c) calculated from equation 50.

Property Value

αAg 7.9 Å
3

MAg 4.8 D

ω0 15082.9 cm−1(a)

ζ 613.8 cm−1(a)

εm 78.3

ρm 1.000 g/cm3

∆EI 1380.3 cm−1(b)

δs 3548.9 cm−1(c)

3.75 eV (≡ 331 nm). All these values are in good agreement with experimental

observations 12. Moreover from QCMD simulations we can obtain as well the overall

spectrum of Ag0 in water that is in good agreement with experiments and also with

the previous theoretical considerations (see figure 2).

4. Formation reactions

In this section we show how it is possible to obtain via atomistic simulations some

information on the reactive process between the solvated electron and a cation in

water solution. Generally speaking, one can be interested in equilibrium thermody-

namics or kinetics properties. In the former case the quantum Umbrella Sampling

described in section 2.3 can be used in order to have the free energy profile of the

reaction. This is useful mainly to locate the stable state along an electron/cation

distance coordinate, as defined in equation 15. As expected, this free energy curve

presents a clear minimum for electron/silver distance ∼ 0.5 Å, as shown in figure 3

(for comparison, the free energy curve for a sodium cation is also plotted). This

corresponds to the average distance obtained from unconstrained simulations of

the excitonic state described previously. It is also possible to show, from a sim-

ple thermodynamic cycle, that the free enthalpy of reduction, ∆G∗, is +0.96 eV

and −0.74 eV for sodium and silver respectively 22. In addition, another impor-

tant thermodynamic information comes out from umbrella sampling calculations,

namely the free energy barrier to escape from the stable state. In the case of silver

it was interesting to note that the atomic excitonic state presents a high barrier

(over 40 kBT ), confirming that this state is both thermodynamically and kinetically

stable.

Unfortunately, a full quantitative kinetic information cannot be directly ad-

dressed from these curves, since they correspond to an equilibrium solvation

regime 42 that assumes the solvent instantaneously relaxing into an equilibrium

state. As a consequence, they lack a solvent coordinate that, consistently with Mar-
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Fig. 3. Free energy profiles as a function of electron-cation distance obtained for silver (solid) and
sodium (dashed) cations.

cus theory for electron transfer 1, should be employed to fully describe the reaction

process. Moreover, as we noted recently, the barrier high changes as a function of

the number of water molecules considered 22, preventing us from extracting quan-

titative kinetic information.

Despite of the previously mentioned limitations, the choise of the electron/cation

distance to describe the free energy profile of the reactive process has some advan-

tages. As already noticed, we can determine which is the thermodynamically stable

state from the same intuitive definition done in terms of electron/cation distance

used in the previous sections. It is also useful since an excitonic stable state can

come out directly and it can be related to equilibrium properties of other interme-

diate states. Moreover, it can be related to experiments done with different cation

concentrations leading to different stationary absorption spectra. 39,43,12

As already remarked, from these curves a full kinetic information cannot be

directly addressed. Whereas a large barrier can tell us, qualitatively, that the ther-

mal reaction leading to a separated cation/electron state is kinetically unfavoured,

a quantitative calculation of kinetic constants needs more effort. Anyway, in the

present case we can be sufficiently convinced that this state is kinetically stable

other than thermodynamically. Doing independent free QCMD simulations at dif-

ferent starting distances d0 > 4Å, we can obtain some insights into the reduction

process (see figure 4). In fact, it is possible to decompose the silver reduction pro-

cess in the following steps: (i) a diffusive (brownian) step where the electron/cation

distance reaches a value of ∼4 Å, (ii) a solvent/solute organization step that allows

the decrease of distance down to ∼1 Å, occurring in ∼0.15 ps and (iii) a relatively

slow decrease of this distance until the formation of the excitonic state, occurring

in ∼0.8 ps. Note that the time scale of the non diffusive processes we identified

above (i.e. the last two steps) are in agreement with the experimental hypothesis

that the reaction should occurs in less than 1 ps 12.

To identify the nature of the system between steps (ii) and (iii), that we will
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Fig. 4. Electron/cation distance as a function of time during unconstrained simulations of the
reduction process. On the right panel, trajectories have been shifted in time; the bold curve is the
mean of all trajectories.

1 2 3 4 5

E (eV)

0

0.2

0.4

0.6

0.8

1

I /
 I

0

Fig. 5. Absorption spectrum of the excess electron in the reduction intermediate state (dashed
line), compared to the Ag excitonic state (solid line) and the free hydrated electron (dotted line).

call the reduction intermediate state, we obtained its absorption spectrum (figure 5)

and the radial density distributions around silver (figure 6) by an average over the

first 200 fs of step (iii). Comparing the spectrum with those of a free hydrated

electron and of the silver excitonic state, we see that its maximum is close to

the silver excitonic state, while its width is closer to the free hydrated electron.

Moreover, the study of radial density distributions reveals that this intermediate

state has a weak solvation structure, with oxygen atoms still ordered around the

silver but hydrogen atoms with less defined position. We interpret these results

as a rotational reorganization of the solvation structure, with water molecules still

presenting a configuration reminiscent of the cation solvation structure. Thus, we

can think that the electron rapid jump on the silver cation (step (ii)) is initiated by

a favorable configuration of the fluctuating orientation of water molecules around

the cation.
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Fig. 6. Radial density functions for oxygen (upper panel) and hydrogen (lower panel) around the
silver atom in the reduction intermediate state (thick line), compared to the silver excitonic state
(thin line) and the Ag+ cation (dashed line).

5. Conclusions and perspectives

Here, we have reviewed our recent progresses in understanding the formation and

stability of neutral atoms in water. In particular, we have shown as from atom-

istic simulations and theoretical analysis it is possible to better understand the

physico-chemical basis of such phenomena. At this end we have studied the sim-

plest reduction process, i.e. the direct interaction between a cation, the reducible

species, and the electron, the reducent, in solution. We have found, in the case of

silver, that the stationary state we obtained from simulations, the excitonic state,

was in good agreement with experimental studies, done in the same thermodynamic

conditions, and theoretical analysis. In particular, atomistic simulations are able to

well reproduce experimental UV-Vis spectra of such systems. This is particulary

encouraging in order to extend the research to other similar systems, like other

cations in solution and in confined systems. At this end, the study of cations re-

duction by pulse radiolysis in zeolites is an intriguing perspective, that could help

to better understand recent advanced experiments (REF). Moreover, the identifica-

tion of this excitonic state is particularly interesting since it allows us to analyze it

also via theoretical formulation. This analysis is particulary important because we

can have another confirm of the good quality of the data obtained from simulations

and we can be able to rationalize them in terms of physical macroscopic conditions.

Furthermore, we have shown that studying this kind of systems by means of

mean field excitonic theory it is also useful to understand some spectroscopic data,

obtaining a nice agreement between experiments, theory and simulations. This re-

sult can give us the basis to investigate with a sufficient degree of confidence the

formation of such neutral atoms in different thermodynamic states (of particular

interest can be the supercritical conditions) and in perspective it can be also used

to predict the spectroscopic behaviour of other atoms.
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Finally, we have shown as we can have a general picture of the overall reactive

processes, from both constrained - the umbrella sampling studies - and uncon-

strained simulations. This gives us a first picture of the elementary reduction reac-

tion. To better understand this point, we are going to complete the studies we have

done with other techniques aimed to simulate complex reactions (REF) and also,

from the theoretical point of view, with a more detailed study of non-equilibrium

solvation effects.
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