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Abstract

This paper is devoted to study the class of re�ected backward doubly stochastic di�er-

ential equation (RBDSDE, for short). We �rst prove existence and uniqueness result under

Lipschitz condition on the coe�cient (drift) via the penalization method. As application

we derive the obstacle problem of stochastic PDE.
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1 Introduction

The �rst approach of linear backward stochastic di�erential equations (BSDE, for short) is
been initiated by Bismut (see [3, 4]). But since the fundamental paper on this theory was
published by Pardoux and Peng [16] in 1990, BSDEs have been taken with great interest in
more and more researches. For instance, the theory of BSDE has been found to be powerful tool
for mathematical economics and particular, for mathematical �nance ([12] and it reference).
Another main reason is due to their connection with the probabilistic interpretation of partial
di�erential equation (PDE for short)(see [17, 18]), variational inequalities and obstacle problems
([13]) stochastic games [11], and so one.
On the other hand in order to give a probabilistic interpretation to the stochastic PDE and
generalized a well-know Feynman-Kac formula, Pardoux and Peng [19] introduced a new kind of
equation. They called it backward doubly stochastic di�erential equations (BDSDE for short).
It has two di�erent direction of stochastic integral involve with two independents standard
Brownian motion: the standard (forward) dWt and a backward stochastic integral dBt. Since
BDSDE have studied by many authors. Indeed, Buckdahn and Ma [5, 6, 7] introduced the
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notion of stochastic viscosity solution to stochastic PDE under the Lipschitz coe�cient of the
BDSDE that coincides with the well- know viscosity solution of PDE if the coe�cient in the
integral which respect dBt is null in the SPDE. But the BDSDE introduced by buckdahn and
Ma is in fact a time reversal of that considered by Pardoux and Peng. However they have similar
nature and called by the same name. Moreover in view of the work of Buckdahn and Ma [5, 6]
Aman [1, 2] derive respectively a representation and path regularity result that generalized the
one give by Ma and Zhang [14, 15] to the BSDE. We note also note that a comparison theorem
of BDSDE has been given by Gu and al [20]. This result will play a important role in the proof
of our main result.
In fact, the goal of this paper is to study the related obstacle problem for SPDE and extend
the notion of stochastic viscosity solution to the re�ected SPDE via the re�ected BDSDE. The
prove used penalization method (see El Karoui et al for the case of BSDE). The rest of the
paper is organized as follows. Next section is devoted to claim and prove our main result. In
the last section we apply the main result to study the related obstacle problem for SPDE.

2 Re�ected Backward doubly stochastic di�erential equa-

tion

2.1 Preliminaries

Notation. The scalar product of the space IRd, (d ≥ 2) will be denote by < . > and the
Euclidian norm associated by ‖.‖.

For the remaining of the paper, let us �x a positive real number T > 0. First of all
{Wt, 0 ≤ t ≤ T} and {Bt, 0 ≤ t ≤ T} are two mutually independent standard Brownian
motion with values respectively in IRd and IR`, de�ned respectively on the two probability
space (Ω1,F1, IP1) and (Ω2,F2, IP2). Let FB = {FB}t≥0 denote the natural �ltration generated
by B, augmented by IP1− null set of F1; and let FB = FB

∞. On the other hand we consider
the following family of σ− �elds:

FW
t,T = σ{Ws −WT , t ≤ s ≤ T} ∨ N2,

where N2 denotes all the IP2− null set in F2. Denote F
W
T = {FW

t,T}0≤t≤T .
Next we consider the product space (Ω,F , IP) where

Ω = Ω1 × Ω2, F = F1 ⊗F2 and IP = IP1 × IP2;

For each t ∈ [0, T ], we de�ne

Ft = FB
t ⊗FW

t,T .

Let us remark that the collection F = {Ft, t ∈ [0, T ]} is neither increasing nor decreasing and
it does not constitute a �ltration.
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Further, we assume that random variables ξ(ω1), ω1 ∈ Ω1 and ζ(ω2), ω2 ∈ Ω2 are considered
as random variables on Ω via the following identi�cation:

ξ(ω1, ω2) = ξ(ω1); ζ(ω1, ω2) = ζ(ω2).

In this paper we will always use this collection.
For any d ≥ 2, let M2(0, T, IRd or IR`) of (classes of dP⊗dt a.e. equal) d-dimensional jointly
measurable stochastic processes ϕt; t ∈ [0, T ], which, satisfy :

(i) ‖ϕ‖2
M2 = IE

∫ T

0

|ϕt|2dt <∞;

(ii) ϕ is Ft− measurable , for any t ∈ [0, T ].

Similarly, we denote by S2([0, T ], IR) the set of one dimensional continuous stochastic processes,
which verify:

(iii) ‖ϕ‖2
S2 = IE( sup

0≤t≤T
|ϕt|2) <∞;

(iv) ϕ is Ft− measurable , for any t ∈ [0, T ].

As mentioned in introduction this paper studies a re�ected BDSDE that is an equation of the
following type:

Yt = ξ +

∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

g(s, Ys, Zs) dBs −
∫ t

0

Zs ↓ dWs +Kt, 0 ≤ t ≤ T. (2.1)

f and g are called generators and ξ the terminal condition.

De�nition 2.1 By solution of the re�ected BDSDE we mean a triplet
(Y, Z,K) = {Yt, Z,Kt}t∈[0,T ] ∈ S2([0, T ]; IR)×M2(0, T ; IRd)× S2([0, T ]; IR) such that for a given
barrier process S = {St}t≥0, the following holds IP− a.s

(i) Yt ≥ St, 0 ≤ t ≤ T ,

(ii) K is an increasing process such that K0 = 0 and
∫ T

0
(Yt − St) dKt = 0;

(iii) processes (Y, Z,K) verify equation (2.1).

In the sequel we will use the notation re�ected BDSDE (ξ, f, g, S) to say that we consider the
re�ected BDSDE whose generator is f and g, with terminal condition ξ and S = {St}t≥0 a
barrier process.
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2.2 Existence and Uniqueness result

In this subsection, we consider re�ected BDSDE (ξ, f, g, S) when generators, terminal condition
and barrier process satisfy those assumptions:

(A1) f : Ω× [0, T ]× IR× IRd → IR; g : Ω× [0, T ]× IR× IRd → IR` be jointly measurable such
that for any (y, z) ∈ IR× IRd

f(., y, z) ∈M2(0, T, IR), g(., y, z) ∈M2(0, T, IR`)

Moreover, we assume that there exist constants C > 0 and 0 < α < 1 such that for any
(ω, t) ∈ Ω× [0, T ]; (y1, z1), (y2, z2) ∈ IR× IRd,

H1


|f(t, y1, z1)− f(t, y2, z2)|2 ≤ C(|y1 − y2|2 + ‖z1 − z2‖2)

‖g(t, y1, z1)− g(t, y2, z2)‖2 ≤ C|y1 − y2|2 + α‖z1 − z2‖2

(A2) ξ is a F0−measurable variable such that IE(|ξ|2) < +∞

(A3) (St)t≥0 is a continuous progressively measurable real-valued process satisfying:

(i) IE
(
sup0≤t≤T (S+

t )2
)
< +∞

(ii) ST ≤ ξ P a.s.

Our objectif is to construct a solution of re�ected BDSDE (ξ, f, g, S). As we explained in
introduction, our method (penalization method) relies heavily on a priori estimate and the
comparaison theorem.
For each n ∈ IN∗ we set

fn(s, y, z) = f(s, y, z)− n(Ss − y)−

and considered the following BDSDE

Y n
t = ξ +

∫ t

0

fn(s, Y n
s , Z

n
s )ds+

∫ t

0

g(s, Y n
s , Z

n
s ) dBs −

∫ t

0

Zn
s ↓ dWs (2.2)

that is the penalized version of re�ected BDSDE (ξ, f, g, S). Then it is known from Pardoux and
Peng in [19], that for t ∈ [0, T ] the BDSDE (2.2) has a unique solution (Y n, Zn) ∈ S2([0, T ]; IR)×
M2(0, T ; IRd).

Lemma 2.2 Let us consider (Y n, Zn) ∈ S2([0, T ]; IR)×M2(0, T ; IRd) solution of BDSDE (2.2).
Then there exists C > 0 such that for each n ∈ IN

IE

(
sup

0≤t≤T
|Y n

t |
2 +

∫ T

0

+ ‖Zn
s ‖

2 ds+ |Kn
T |2

)
< C
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where

Kn
t = n

∫ t

0

(Y n
s − Ss)

−ds, 0 ≤ t ≤ T.

Proof.

From Itô's formula, it follows that

|Y n
t |

2 +

∫ t

0

|Zn
s |

2 ds = |ξ|2 + 2

∫ t

0

Y n
s f(s, Y n

s , Z
n
s )ds+ 2

∫ t

0

〈Y n
s g(s, Y

n
s , Z

n
s ), dBs〉

(2.3)

+

∫ t

0

‖g(s, Y n
s , Z

n
s )‖2ds+ 2

∫ t

0

Y n
s dK

n
s − 2

∫ t

0

〈Y n
s Z

n
s , ↓ dWs〉.

By using (H1) we have

2Y n
s f(s, Y n

s , Z
n
s ) ≤ β|Y n

s |+
1

β
|f(s, Y n

s , Z
n
s )|2

≤ (β +
C

β
)|Y n

s |2 +
C

β
‖Zn

s ‖2 +
1

β
|f(s, 0, 0)|2 (2.4)

and

‖g(s, Y n
s , Z

n
s )‖2 ≤ (1 + β′)‖g(s, Y n

s , Z
n
s )− g(s, 0, 0)‖2 + (

1

β′
+ 1)‖g(s, 0, 0)‖2

(2.5)

≤ C(1 + β′)|Y n
s |2 + α(1 + β′)‖Zn

s ‖2 + (
1

β′
+ 1)‖g(s, 0, 0)‖2.

Moreover since

∫ t

0

(Y n
s − Ss)dK

n
s ≤ 0 we obtain

∫ t

0

Y n
s dK

n
s =

∫ t

0

(Y n
s − Ss)dK

n
s +

∫ t

0

SsdK
n
s

≤
∫ t

0

SsdK
n
s . (2.6)

If we choose β and β′ such that C
β

+ α(1 + β′) ≤ 1 it follows from (2.3)− (2.6) that

IE

{
|Y n

t |
2 +

∫ T

0

‖Zn
s ‖

2 ds

}
≤ CIE

{
|ξ|2 +

∫ T

0

|Y n
s |2ds+

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+

∫ T

0

SsdK
n
s

}
.
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Gronwall's lemma applied to Y n gives

IE
{
|Y n

t |
2} ≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+

∫ T

0

SsdK
n
s

}
. (2.7)

Then we have

IE

{∫ T

t

‖Zn
s ‖

2 ds

}
≤ C ′IE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+

∫ T

0

SsdK
n
s

}
. (2.8)

We now give an estimation of IE(|Kn
T |2. From the equation

Kn
T = YT − ξ −

∫ T

0

f(s, Y n
s , Z

n
s )ds−

∫ T

0

g(s, Y n
s , Z

n
s ) dBs +

∫ T

0

Zn
s ↓ dWs (2.9)

and inequalities (2.7) and (2.8), we show the following inequalities

IE
{
|Kn

T |
2} ≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+

∫ T

0

SsdK
n
s

}
.

≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+ γ sup
0≤t≤T

(S+
t )2

}
+

1

γ
IE(|Kn

T |2).

Choosing γ such C
γ
< 1 we get

IE
{
|Kn

T |
2} ≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+ sup
0≤t≤T

(S+
t )2

}
. (2.10)

Combining (2.7), (2.8) and (2.10), it follows that

IE

{
|Y n

t |2 +

∫ T

0

‖Zn
s ‖2ds+ |Kn

T |2
}

≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+ sup
0≤t≤T

(S+
t )2

}
. (2.11)
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Finally applied Burkhölder-Gundy-Davis inequality we have

IE

{
sup

0≤t≤T
|Y n

t |2 +

∫ T

0

‖Zn
s ‖2ds+ |Kn

T |2
}

≤ CIE

{
|ξ|2 +

∫ T

0

|f(s, 0, 0)|2ds

+

∫ T

0

‖g(s, 0, 0)‖2ds+ sup
0≤t≤T

(S+
t )2

}
(2.12)

which end the prove of this Lemma

The main result of this section is the following.

Theorem 2.3 Assume that (A1), (A2), (A3) hold. Moreover if the obstacle process (St) is the
Itô process in the form dSt = mtdt+ ntdBt + vtdWt,

with IE

(∫ T

0

(
|ms|2 + |vs|2 + |ns|2

)
ds

)
< +∞. Then there exists a unique triple (Y, Z,K) so-

lution of the re�ected BDSDE (ξ, f, g, S) . Further,

lim
n−→+∞

IE

(
sup

0≤t≤τ
|Kn

t −Kt|2
)

= 0.

Proof.

This proof will be spilt in two steps. In the sequel, C denotes a positive constant which may
vary from one line to another.
Existence

According it de�nition we have fn(t, y, z) ≤ fn+1(t, y, z). Thanks to the comparison theorem
(see Th.3.1 in Yufeng Shi et al [20]) we deduce that the sequence (Y n)n>0 is non-decreasing.
Hence there exists a progressively measurable process Y such that Y n

t ↗ Yt a.s. Then, according
to Fatou's Lemma and Lemma 2.2, we deduce that

IE

(
sup

0≤t≤T
|Yt|2

)
< +∞.

Moreover, the Lebegue's dominated convergence theorem ensures that

IE

(∫ T

0

|Y n
s − Ys|2 ds

)
−→ 0, as n→∞. (2.13)

On the other hand, for any n ≥ p, it follows by Itô's formula that

|Y n
t − Y p

t |
2 +

∫ t

0

|Zn
s − Zp

s |
2 ds

= 2

∫ T

t

(Y n
s − Y p

s )[f(s, Y n
s , Z

n
s )− f(s, Y p

s , Z
p
s )]ds+

∫ t

0

‖g(s, Y n
s , Z

n
s )− g(s, Y p

s , Z
p
s )‖2ds

+2

∫ t

0

(Y n
s − Y p

s )〈(g(s, Y n
s , Z

n
s )− g(s, Y p

s , Z
p
s )), dBs〉 − 2

∫ t

0

(Y n
s − Y p

s )〈(Zn
s − Zp

s ), ↓ dWs〉

+2

∫ t

0

(Y n
s − Y p

s )(dKn
s − dKp

s ). (2.14)
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Following the same computation as in Lemma 2.1, taking the expectation and in virtue of
assumptions (H1) we obtain

E

{
|Y n

s − Y p
s |

2 +

∫ T

0

‖Zn
s − Zp

s‖
2 ds

}
≤ cIE

{∫ T

0

|Y n
s − Y p

s |2ds

+

∫ T

0

(Y n
s − Y p

s )(dKn
s − dKp

s )

}
. (2.15)

But it clearly seen that

IE

{∫ T

t

(Y n
s − Y p

s )(dKn
s − dKp

s )

}
≤ IE

{
sup

0≤s≤T
(Y n

s − Ss)
−Kn

T

+ sup
0≤s≤T

(Y p
s − Ss)

−Kp
T

}
and it follows from (2.15), the Hölder inequality and Lemma 2.1 that

E

{
|Y n

s − Y p
s |

2 +

∫ T

0

‖Zn
s − Zp

s‖
2 ds

}
≤ cIE

{∫ T

0

|Y n
s − Y p

s |2ds+ sup
0≤s≤T

| (Y n
s − Ss)

− |2

+ sup
0≤s≤T

| (Y p
s − Ss)

− |2
}
. (2.16)

If we admit for a moment the following

Lemma 2.4

IE

(
sup

0≤t≤T

∣∣(Y n
t − St)

−∣∣2) −→ 0, as n −→∞;

then we can conclude now. Indeed by passing of limit in (2.16) and using Lemma 2.2, we deduce
that

IE

{
|Y n

s − Y p
s |

2 +

∫ T

0

|Zn
s − Zp

s |
2 ds

}
−→ 0, as n, p −→∞. (2.17)

Taking sup0≤s≤T (.) in (2.14) and using Bürkhölder-Davis-Gundy's inequality, it holds that

IE

(
sup

0≤s≤T
|Y n

s − Y p
s |

2

)
−→ 0, as n, p −→∞, (2.18)

and then from (2.9), we derive easily

IE

{
sup

0≤s≤T
|Kn

s −Kp
s |

2

)
−→ 0, as n, p→∞. (2.19)
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According (2.17) and (2.19) we deduce that the sequence of processes (Y n, Zn, Kn) is a Cauchy
sequence in the Banach space S2([0, T ]; IR)×M2(0, T ; IRd)×S2([0, T ]; IR). Consequently there
exists a triplet (Y, Z,K) ∈ S2([0, T ]; IR)×M2(0, T ; IRd)× S2([0, T ]; IR) such that

IE

{
sup

0≤s≤T
|Y n

s − Ys|
2 +

∫ T

0

|Zn
s − Zs|2ds+ sup

0≤s≤T
|Kn

s −Ks|
2

)
→ 0, as n→∞. (2.20)

In view of Lemma 2.2 we have Yt ≥ St a.s. Now, to conclude the proof of the existence, it
remains to show (ii) of De�nition 2.1. For instance let us remark that by (2.13) and (2.19) we
get ∫ T

0

(Y n
s − Ss)dK

n
s −→

∫ T

0

(Ys − Ss)dKs

in L1(Ω), as n −→∞. But since Yt ≥ St a.s. and∫ T

0

(Y n
s − Ss)dK

n
s = −n

∫ T

0

|(Y n
s − Ss)

−|2ds ≤ 0 a.s.

we obtain ∫ T

0

(Ys − Ss)dKs = 0, a.s.

Finally passing to the limit in (2.2) we proved that (Y, Z,K) solves the re�ected BDSDE asso-
ciated to data (ξ, f, g, S). Now to end let us return to the proof of Lemma 2.2.

Proof of Lemma 3.1

Since Y n
t ≥ Y 0

t , we can w.l.o.g. replace St by St∨Y 0
t , i.e. we may assume that IE( sup

0≤t≤T
S2

t ) <∞.

Let
{

(Ỹt

n
, Z̃n

t ), 0 ≤ t ≤ T
}
be the unique solution of the BDSDE

Ỹ n
t = ξ +

∫ t

0

f(s, Ỹ n
s , Z̃

n
s )ds+

∫ t

0

g(s, Ỹ n
s , Z̃

n
s ) dBs

+n

∫ t

0

(Ss − Ỹ n
s )ds−

∫ t

0

Z̃n
s ↓ dWs, 0 ≤ t ≤ T

From the comparison theorem for BDSDE (see [20]), we have for every n ∈ IN∗,

Ỹ n
t ≤ Y n

t , a.s.

On the other hand, let ν be a stopping time such that 0 ≤ ν ≤ T . Hence it follows from Itô's
formula applying to e−n(ν−t)Yt that

Ỹ n
ν = e−n(ν)ξ +

∫ ν

0

e−n(ν−s)f(s, Ỹ n
s , Z̃

n
s )ds

+

∫ ν

0

e−n(ν−s)g(s, Ỹ n
s , Z̃

n
s )dBs + n

∫ ν

0

e−n(ν−s)Ssds

−
∫ ν

0

e−n(ν−s)Z̃n
s dWs (2.21)
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Taking the conditional expectation of both side of (2.21) we get

Ỹ n
ν = IE

{
e−n(ν)ξ +

∫ ν

0

e−n(ν−s)f(s, Ỹ n
s , Z̃

n
s )ds

+

∫ ν

0

e−n(ν−s)g(s, Ỹ n
s , Z̃

n
s )dBs

+n

∫ ν

0

e−n(ν−s)Ssds | Fν

}
(2.22)

It easily seen that

e−n(ν)ξ + n

∫ ν

0

e−n(s−ν)Ssds −→ ξ1{ν=0} + Sν1{ν>0} (2.23)

a.s.and in L2(Ω), the conditional expectation converge also in L2(Ω). Moreover, since∣∣∣∣∫ ν

0

e−n(s−ν)f(s, Ỹ n
s , Z̃

n
s )ds

∣∣∣∣ ≤ 1√
2n

(∫ ν

0

|f(s, Ỹ n
s , Z̃

n
s )|2ds

) 1
2

and

IE

(∫ ν

0

e−n(ν−s)g(s, Ỹ n
s , Z̃

n
s ) dBs

)
= 0

Ỹ n
ν = IE

{∫ ν

0

e−n(ν−s)f(s, Ỹ n
s , Z̃

n
s )ds

+

∫ ν

0

e−n(ν−s)g(s, Ỹ n
s , Z̃

n
s )dBs | Fν

}
−→ 0

in L(Ω), as n −→∞. Consequently,

Ỹ n
ν −→ ξ1{ν=0} + Sν1{ν>0} in L2(Ω)

and further
Yν ≥ Sν a.s. (2.24)

From (2.24) and the section theorem in Dellacherie and Meyer [10], ( page 220), we get that

Yt ≥ St a.s.

Hence (Y n
t − St)

− ↓ 0, a.s. and according Dini's theorem, the convergence is uniform in t.
Finally, since (Y n

t − St)
− ≤ (St − Y 0

t )+ ≤ |St|+
∣∣Y 0

t

∣∣, the dominated convergence theorem en-
sures that

lim
n−→+∞

IE( sup
0≤t≤T

| (Y n
t − St)

− |2) = 0.
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Uniqueness

Let us d�ne

{(∆Yt,∆Zt,∆Kt) , 0 ≤ t ≤ T} = {(Yt − Y ′
t , Zt − Z ′t, Kt −K ′

t), 0 ≤ t ≤ T}

where {(Yt, Zt, Kt) , 0 ≤ t ≤ τ} and {(Y ′
t , Z

′
t, K

′
t), 0 ≤ t ≤ T} denote two solutions of the re-

�ected BDSDE associated to the data (ξ, f, g, S). Let us �rst note that∫ T

t

∆Ys∆dKs ≤ 0. (2.25)

Moreover, Itô formula yields that for every 0 ≤ t ≤ T

|∆Yt|2 +

∫ t

0

‖4Zs‖2ds

= 2

∫ t

0

4Ys(f(s, Ys, Zs)− f(s, Y ′
s , Z

′
s))ds+

∫ t

0

‖g(s, Ys, Zs)− g(s, Y ′
s , Z

′
s)‖2ds

+

∫ t

0

〈4Ys, (g(s, Ys, Zs)− g(s, Y ′
s , Z

′
s))〉dBs − 2

∫ t

0

〈4Ys,4ZsdWs〉+ 2

∫ t

0

4Ys4dKs.

Then, by using similar computation as the proof of existence and using (2.25) one have

IE

{
|∆Yt|2 +

∫ T

0

‖4Zs‖2ds

}
≤ CIE

∫ T

0

|4Ys|ds

from which, we deduce that ∆Yt = 0 and further ∆Zt = 0. On the other hand since

∆Kt = ∆Yt −
∫ t

0

f(s, Ys, Zs)− f(s, Y ′
s , Z

′
s)ds

−
∫ t

0

(g(s, Ys, Zs)− g(s, Y ′
s , Z

′
s))dBs +

∫ t

0

4ZsdWs,

we have ∆Kt = 0 which end the proof of the theorem.

3 Re�ected BDSDE and obstacle problem for a non linear

parabolic stochastic PDE

3.1 Preliminaries and de�nitions

According notations of subsection 2.1, let recall FB = {FB
t }0≤t≤T andMB

0,T denote all the FB−
stopping times τ such 0 ≤ τ ≤ T , a.s. For generic Euclidean spaces E and E1 we introduce the

11



following vector spaces of functions:

• for integers k, n the symbol Ck,n([0, T ]×E;E1) stands for the space of all E1− valued functions
de�ned on [0, T ]×E which are k−times continuously di�erentiable in t and n−times continu-
ously di�erentiable in x, and Ck,n

b ([0, T ] × E;E1) denotes the subspace of C
k,n([0, T ] × E;E1)

in which all functions have uniformly bounded partial derivatives.
• For any sub-σ-�eld G ⊆ FB

T , C
k,n(G, [0, T ] × E;E1) (resp.C

k,n
b (G, [0, T ] × E;E1)) denote the

space of all Ck,n([0, T ] × E;E1) (resp. C
k,n
b ([0, T ] × E;E1)− valued random variable that are

⊗B([0, T ]× E)− measurable;
• Ck,n(FB, [0, T ] × E;E1) (resp.Ck,n

b (FB, [0, T ] × E;E1)) is the space of all random �elds
φ ∈ Ck,n(FT , [0, T ] × E;E1) (resp. Ck,n(FT , [0, T ] × E;E1), such that for �xed x ∈ IE, the
mapping (t, ω1) → φ(t, ω1, x) is FB− progressively measurable.
• For any sub-σ-�eld G ⊆ FB and a real number p ≥ 0, Lp(G;E) to be all E−valued
G−measurable random variable ξ such that IE|ξ|p < ∞. Furthermore, for (t, x, y) ∈ [0, T ] ×
IRd × IR, we denote Dx = ( ∂

∂x1
, ...., ∂

∂xd
),

Dxx = (∂2
xixj

)d
i,j=1, Dy = ∂

∂y
, Dt = ∂

∂t
. The meaning of Dxy and Dyy is then self-explanatory.

In this section, we consider the continuous coe�cients f, g as the following:

f : Ω1 × [0, T ]× IRd × IR× IRd −→ IR

g : Ω1 × [0, T ]× IRd × IR −→ IR`

h : Ω1 × [0, T ]× IRd −→ IR

with the property that for all x ∈ IRd, f(., x, ., .) and g(., x, .) are Lipschitz continuous in x
and satisfy the condition (H1) uniformly in x where for some constant K > 0. Moreover h is
jointly continuous in (t, x) such that

|h(t, x)| ≤ K(1 + ‖x‖). (H2).

Furthermore, we shall make use the following assumptions;

(A4) The function σ : IRd −→ IRd×d and b : IRd −→ IRd are uniformly Lipschitz continuous ,
with common Lipschitz constant K > 0.

(A5) The function l : IRd −→ IR is continuous, such that for some constant K > 0,

|l(x)| ≤ K(1 + ‖x‖) and h(0, x) ≤ l(x), x ∈ IRd.

(A6) The function g ∈ C0,2,3
b ([0, T ]× IRd × IR; IR`).

Let us consider the related obstacle problem for stochastic partial di�erential equation.
Roughly speaking, a solution of a stochastic obstacle problem of SPDE (f, g, h, l) is a random

12



�eld u : Ω1 × [0, T ]× IR→ IR which satis�es

(f, g, h, l)


min {u(t, x)− h(t, x), du(t, x) + [Lu(t, x) + f(t, x, u(t, x), σ∗(x)Dxu(t, x))]dt

+g(t, x, u(t, x)) dBs} = 0, (t, x) ∈ [0, T ]× IRd

u(0, x) = l(x), x ∈ IRd

where

L =
1

2

d∑
i,j

(σ(x)σ∗(x))i,j
∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

.

More precisely, we shall consider the solution of SPDE associated to the data (f, g, f, h, l) in the
two stochastic viscosity sense, inspired respectively by the work of Buckdahn and Ma [5, 6] and
[7]. It will convenient for the sequel to de�ne this two notion of stochastic viscosity for SPDE
(f, g, h, l). Let us remark that the second stochastic viscosity notion use stochastic g−superjet
and g−subjet notion. So Before give that de�nition, it is reasonable to recall the notion of
stochastic g− superjet or subjet.

De�nition 3.1 Let τ ∈MB
0,T and ξ ∈ L0(FB

τ ; IRd). We say that a sequence of random variables

(τk, ξk) is a (τ, ξ)− approximating sequence if (τk, ξk) ∈MB
0,T × L2(FB

τ ; IRd),∀ k such that

(i) ξk −→ ξ in probability

(ii) either τk ↑ τ a.s. and τk < τ on {τ > 0}.

If {ξk} is a sequence of random variable that converge to 0 in probability, then we shall denote
θk = o(ξk), k = 1, 2, ..., ... to be any sequence of random variables such that [o(ξk)/ξk]I{ξk 6=0} −→
0 as k −→∞ in probability.

De�nition 3.2 Assume g ∈ C0,1([0, T ] × Rd+1; IR`). Let (τ, ξ) ∈ MB
0,T × L2(Fτ , IR), and

u ∈ C(FB; [0, T ]×Rd). A triplet (a, p,X) is called a stochastic g− superjet of u at (τ, ξ) if the
following hold

(i) (a, b, c, p, q,X) is an IR × IR × IR × IRn × IRn × S(n)− valued Fτ− measurable random
vector;

(ii) denoting


b = g(τ, ξ, u(τ, ξ)) c = (g∂ug)(τ, ξ, u(τ, ξ))

q = ∂xg(τ, ξ, u(τ, ξ)) + ∂ug(τ, ξ, u(τ, ξ))p

13



then for any (τ, ξ)−approximation sequence (τk, ξk) it holds that

u(τk, ξk) ≤ u(τ, ξ) + a(τk − τ) + b(Bk −Bτ ) +
c

2
(Bk −Bτ )

2

+ < p, ξk − ξ > + < q, ξk − ξ > (Bk −Bτ )

+
1

2
< X(ξk − ξ), ξk − ξ > +o(|τk − τ |) + o(|ξk − ξ|2). (3.1)

We denote the set of all stochastic g−superjet of u at (τ, ξ) by J 1,2+u(τ, ξ). Similarly, we say
that the triple (a, p,X) is a stochastic g−subjet of u at (τ, ξ) if (i) holds and the inequality in
(3.1) is reversed; and we denote the set of stochastic g−subjet by J 1,2−u(τ, ξ).

Now we will be able to give the two de�nitions of stochastic viscosity solution of the re�ected
SPDE (f, g, h, l). For this end let us recall some notations in [7]. Indeed, we consider process
η ∈ C(FB, [0, T ]× IRd × IR) as the solution to the equation

η(t, x, y) = y +
1

2

∫ t

0

(gDyg)(s, x, η(s, x, y))ds+

∫ t

0

g(s, x, η(s, x, y))ds.. (3.2)

Further the mapping y 7→ η(s, x, y) de�nes a di�eomorphism for all t, x a.s. (see Protter, 1990
[?]). Denote the y− inverse of η(s, x, y) by ε(s, x, y). Then since ε(s, x, η(s, x, y)) = y, one can
show that (see Buckdhan and Ma [5, 6])

ε(t, x, y) = y −
∫ t

0

Dyε(s, x, y)g(s, x, y) ◦ dBs. (3.3)

To simplify the notation in the sequel we denote

Af,g(ϕ(t, x)) = Lϕ(t, x) + f(t, x, ϕ(t, x), σ∗Dxϕ(t, x))− 1

2
(g,Dyg)(t, x, ϕ(t, x)).

De�nition 3.3 (a) A random �eld u ∈ C(FB, [0, T ] × IRd) is called a stochastic viscosity
subsolution of the SPDE (f, g, h, l) if u(0, x) ≤ l(x), x ∈ IRd and if for any stopping time
τ ∈MB

0,T , any state variable ξ ∈ L0(FB
τ ; IRd), any random �eld ϕ ∈ C1,2(FB

τ , [0, T ]× IR)
with the property that for almost all ω ∈ {0 < τ < T},
u(t, x) − η(t, x, ϕ(t, x)) ≤ 0 = u(τ(ω), ξ(ω)) − η(τ(ω), ξ(ω), ϕ(τ(ω), ξ(ω))) is ful�lled for
all (t, x) in some neighborhood V(ω, τ(ω), ξ(ω)) of (τ(ω), ξ(ω)), the following condition is
satis�ed:

min (u(τ, ξ)− h(τ, ξ), Af,g(ψ(τ, ξ))−Dyψ(τ, ξ)Dtϕ(τ, ξ)) ≤ 0

hold almost surely.
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(b) A random �eld u ∈ C(FB, [0, T ] × IRd) is called a stochastic viscosity supersolution of the
SPDE (f, g, h, l) if u(T, x) ≥ l(x), x ∈ IRd and if for any stopping time τ ∈ MB

0,t, any
state variable ξ ∈ L0(FB

τ ;Rd), any random �eld ϕ ∈ C1,2(FB
τ , [0, T ]×IR) with the property

that for almost all ω ∈ {0 < τ < T},
u(t, x) − η(t, x, ϕ(t, x)) ≥ 0 = u(τ(ω), ξ(ω)) − η(τ(ω), ξ(ω), ϕ(τ(ω), ξ(ω))) is ful�lled for
all (t, x) in some neighborhood V(ω, τ(ω), ξ(ω)) of (τ(ω), ξ(ω)), the following condition is
satis�ed:

min (u(τ, ξ)− h(τ, ξ), Af,g(ψ(τ, ξ))−Dyψ(τ, ξ)Dtϕ(τ, ξ)) ≥ 0

hold almost surely.

(c) u ∈ C(FB, [0, T ] × IRd) is said to be a stochastic solution of SPDE(f, g, h, l) if it both a
stochastic viscosity subsolution and a stochastic viscosity supersolution.

De�nition 3.4 (a) A random �eld u ∈ C(FB, [0, T ] × IRd) is called a stochastic viscosity
subsolution of SPDE (f, g, h, l) if u(0, x) ≤ l(x),∀ x ∈ IRd and for any (τ, ξ) ∈ MB

0,T ×
L2(FB

τ ; IRd) and any (a, p,X) ∈ J 1,2+u(τ, ξ) it holds that

min

(
u(τ, ξ)− h(τ, ξ),−a− 1

2
Tra(σσ∗X)− 〈b(x), p〉 − f(τ, ξ, u(τ, ξ), pσ(τ, ξ))

+
1

2
(g∂ug)(τ, ξ, u(τ, ξ))

)
≤ 0. (3.4)

In the other words at any (τ, ξ) ∈MB
0,T × L2(FB

τ ; IRd) where u(τ, ξ) > h(τ, ξ),

−a− 1

2
Tra(σσ∗X)− 〈b(x), p〉 − f(τ, ξ, u(τ, ξ), pσ(τ, ξ)) +

1

2
(g∂ug)(τ, ξ, u(τ, ξ)) ≤ 0.

(b) u is said to be a stochastic viscosity supersolution if u(0, x) ≥ l(x),∀x ∈ IRd, and for
any (τ, ξ) ∈ MB

0,T × L2(FB
τ ; IRd) and any (a, p,X) ∈ J 1,2−u(τ, ξ), (3.4) holds with the

inequality being reversed. In the other words, at each (τ, ξ) ∈ MB
0,T × L2(FB

τ ; IRd), we
have both u(τ, ξ) ≥ h(τ, ξ) and

−a− 1

2
Tra(σσ∗X)− 〈b(x), p〉 − f(τ, ξ, u(τ, ξ), pσ(τ, ξ)) +

1

2
(g∂ug)(τ, ξ, u(τ, ξ)) ≥ 0.

(c) If u is both a stochastic viscosity subsolution and supersolution, we say that u is a stochastic
viscosity solution of SPDE (f, g, h, l).

Remark 3.5 Observe that if f, h are deterministic and g ≡ 0 the De�nition 3.3 coincide with
the deterministic case (see [13]).
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3.2 Existence of stochastic viscosity solutions

In this subsection we apply the result of the previous section to prove the existence of stochastic
viscosity solutions with respect De�nition 3.4 to obstacle problem of quasi-linear SPDE. Let
consider u a random �eld de�ned on Ω1 × [0, T ]× IRd by

u(t, x) = Y t,x
t , (t, x) ∈ [0, T ]× IRd, (3.5)

which is FB
t − measurable for each t ∈ [0, T ]; in the other words, u ∈ C(FB, [0, T ]× IRd).

Theorem 3.6 u de�ned by (3.5), is the stochastic viscosity solution with respect De�nition 3.4
of the obstacle problem of SPDE (f, g, l, h).

Proof. For each (t, x) ∈ [0, T ] × IRn, n ≥ 1, let {nY t,x
s , nZt,x

s , 0 ≤ s ≤ t} denote the solution
of the BDSDE

nY t,x
s = l(X t,x

T ) =

∫ s

0

f(r,X t,x
r , nY t,x

r , nZt,x
r )dr + n

∫ s

0

(nY t,x
r − h(r,X t,x

r ))−dr

+

∫ s

0

g(r,X t,x
r ,n Y t,x

r )dBr −
∫ s

0

nZt,x
r dWr.

It is know from Buckdahn and Ma [7] that

un(t, x) = nY t,x
t , (t, x) ∈ [0, T ]× IRn,

is the stochastic viscosity solution of the parabolic SPDE:
dun(t, x) + [Lun(t, x) + fn(t, x, un(t, x), σ∗Dxun(t, x))]dt

+gn(t, x, un(t, x)) dBt = 0, (t, x) ∈ [0, T ]× IRd

un(0, x) = l(x), x ∈ IRd,

where fn(t, x, y, z) = f(t, x, y, z) + n(y− h(t, x))−. But from the proof of theorem 2.1, for each
(t, x) ∈ [0, T ]× IRd we have

un(t, x) ↑ u(t, x) a.s. as n→∞.

Since un and u are continuous, it follows from Dini's theorem that the above convergence is
uniform on the compacts. We now show that u is a stochastic viscosity subsolution of obstacle
problem of SPDE (f, g, l, h). Let (τ, ξ) ∈MB

0,T × L2(FB
τ ; IRd) at which u(τ, ξ) > h(τ, ξ), and

let (a, p,X) ∈ J 1,2+u(τ, ξ). The stochastic verson of Lemma 6.1 in Crandall and al [8], proved
there exists sequences

nk → +∞
(τk, ξk) → (τ, ξ)

(ak, pk, Xk) ∈ J 1,2+unk
(τk, ξk)
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such that

(ak, pk, Xk) → (a, p,X).

But for any k, since (ak, pk, Xk) ∈ J 1,2+unk
(τk, ξk) and unk

is a stochastic viscosity solution of
SPDE (fn, g, l) we have

−ak −
1

2
Tra(σσ∗Xk)− 〈b, p〉 − fnk

(τk, ξk, unk
(τk, ξk), pkσ(τk, ξk)) +

1

2
(g∂ug)(τk, ξk, u(τk, ξk)) ≤ 0.

(3.6)

On the other hand since u(τ, ξ) > h(τ, ξ) and the uniform convergence of un, it follows that for
k large enough u(τk, ξk) > h(τk, ξk), hence by passing to the limit as k →∞ in (3.6) we get

−a− 1

2
Tra(σσ∗X)− 〈b, p〉 − f(τ, ξ, u(τ, ξ), pσ(τ, ξ)) +

1

2
(g∂ug)(τ, ξ, u(τ, ξ)) ≤ 0,

and we have proved that u given by (3.5) is a stochastic viscosity subsolution of SPDE (f, g, h, l).
Using the similarly argument with replace J 1,2+unk

(τk, ξk) by J 1,2−unk
(τk, ξk) it not di�cult

to prove that u given by (3.5) is a stochastic viscosity supersolution of SPDE (f, g, h, l). So we
conclude that u is a stochastic viscosity of SPDE (f, g, h, l) and �nish the proof.

Remark 3.7 If the function g takes a simpler form: g(t, x, u) = g(t, x)u then according of
Buckdahn and Ma work's [7], it follows easily that the two previous de�nitions of stochastic
viscosity solution of refected SPDE (f, g, h, l) coincide.

References

[1] Aman A., Representation theorems for backward doubly stochastic di�erential equations.
prépublication de l'U.F.R de mathématiques Informatique, Université de Cocody, 5 (2007).

[2] Aman A., Paths regularity for solutions of backward doubly stochastic di�erential equa-
tions. En élaboaration (2007).

[3] Bismut J.M., Conjuquate convex function in optimalstochastic control. J. Math. Anal.
App. 44, 384− 404,(1973).

[4] Bismut J.M., An introductory approach to duality in stochastic control. J. Math. SIAM
Rev, 20, 62− 78, (1978).

[5] Buckdahn R. and Ma J., Stochastic viscosity solutions for nonlinear stochastic partial dif-
ferential equations. Part I, Stochastic processes and their Application 93; 205−228, (2001)

17



[6] Buckdahn R. and Ma J., Stochastic viscosity solutions for nonlinear stochastic partial
di�erential equations. Part II, Stochastic processes and their Application 93, 181 −
204, (2001)

[7] Buckdahn R. and Ma J., Pathwise stochastic Taylor expansions and stochastic viscosity
solutions for fully nonlinear stochastic PDEs.The annals of Probability 30 3, 1131−1171,
(2002).

[8] Crandall M., Ishii H., Lions P.L., User's guide to the viscosity solutions of second order
partial di�erential equations. Bull. A.M.S. 27 (1), 1− 67, (1992).

[9] El Karoui N., Peng S. and Quenez M. C. Backward stochastic di�erential equation in
�nance.Mathematical �nance. 7, 1− 71, (1997).

[10] Dellacherie, C. and Meyer, P., Probabilities and Potential, North Holland, (1978)

[11] Hamadène S. and Lepeltier J. P., Zero-sum stochastic di�erential games and BSDEs. Sys-
tems and Control Letters. 24, 259− 263, (1995).

[12] El Karoui, N., S. Peng, and M.C. Quenez, Backward stochastic di�erential equations in
�nance. Math. �nance 7(1): 1− 71, (1997).

[13] El Karoui, Kapoudjian C, Pardoux E, Peng S and Quenz M C, Re�ected solution of
backward SDE's, and related obstacle problem for PDE's, Annals. Probab. 25, No2, 702−
737.(1997).

[14] Ma J. and Zhang J., Representation theorems for Backward stochastic di�erential Equa-
tions, Anal. of Appl. Prob., 12: 4, 1390− 1418, (2002)

[15] Ma J. and Zhang J.,

[16] Pardoux E. and Peng S, Adapted solution of backward stochastic di�erential
equation. Syst. cont. Lett.4, 55− 61, (1990).

[17] Pardoux E. and Peng S. Backward stochastic di�erential equations and quasilinear par-
abolic partial di�erential equations. In: B. L.Rozovski, R. B. Sowers (eds). Stochastic
partial equations and their applications. Lect. Notes control Inf. Sci. 176, 200 − 217,
Springer, Berlin, (1992)

[18] Peng S., Probabilistic interpretation for systems of quasilinear parabolic partial di�erential
equations. Stochastics 37: 61− 74, (1991).

[19] Pardoux E. and Peng S., Backward doubly stochastic di�erential equations and systems
of quasilinear SPDEs. Probab. Theory Relat. Fields. 98, 209− 227, (1994).

[20] Yufen Shi, Yanling Gu and Kai Liu, Comparison theorem of backward doubly sto-
chastic di�erential equations and application. Stochastic Analysis and Applications 23,
97− 110, 2005.

18


