
HAL Id: hal-00199168
https://hal.science/hal-00199168

Submitted on 18 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counter-example generation in symbolic abstract
model-checking

Gordon Pace, Nicolas Halbwachs, Pascal Raymond

To cite this version:
Gordon Pace, Nicolas Halbwachs, Pascal Raymond. Counter-example generation in symbolic abstract
model-checking. International Journal on Software Tools for Technology Transfer, 2004, 5 (2-3),
pp.158-164. �10.1007/s10009-003-0127-4�. �hal-00199168�

https://hal.science/hal-00199168
https://hal.archives-ouvertes.fr


Counter-Example Generation

in Symbolic Abstract Model-Checking

Gordon Pace, Nicolas Halbwachs, and Pascal Raymond∗

Vérimag†, Grenoble — France

Abstract

The boundaries of model-checking have been extended through the use
of abstraction. When applied to correct programs, these techniques work
very well in practice. However, when applied to incorrect programs, it
is, in general, undecidable whether an abstract trace corresponding to a
counter-example has any concrete counterparts. For debugging purposes,
one usually desires to go further than giving a yes/no answer, and gener-
ate such concrete counter-examples. We propose a solution in which we
apply standard test-pattern generation technology to search for concrete
instances of abstract traces.

1 Introduction

The ultimate goal of program verification techniques is to certify that an im-
plementation satisfies a number of properties or matches a given specification.
Recent progress in model-checking techniques has made it possible to apply au-
tomatic verification not only to large hardware systems, but also to critical soft-
ware. The key techniques are symbolic model-checking [BCM+90, CMB90] and
abstraction [CGL94, GL93]. Symbolic techniques allow large state space systems
to be dealt with by avoiding state enumeration: sets of states are characterized
globally by Boolean formulas, generally encoded with BDDs, and reachable state
traversal is performed through symbolic computations over formulas. Abstrac-
tion is especially important for software verification, since it extends automatic
verification to infinite state systems, like programs with numerical variables: by
simply abstracting away numerical aspects of the program, the model-checker
is still able to provide conservative results about a wide class of properties, in-
cluding all safety properties. When such a property is verified on the abstract
model, it is sure to hold on the concrete one, but the converse is false: it may be

∗{Gordon.Pace,Nicolas.Halbwachs,Pascal.Raymond}@imag.fr
†Verimag is a joint laboratory of Université Joseph Fourier (Grenoble I), CNRS and INPG.

see www-verimag.imag.fr

1



the case that a state violating the property seems to be reachable in the abstract
model, while being actually forbidden by the behavior of numerical variables.

In this paper, we address the problem of reporting a meaningful explanation
when the verification of a safety property fails. Of course, even in the finite
state case, explaining the source of the error to the user is very important for
identifying the error, which can lie either in the program or in the specification of
the property. But it is especially important when abstraction is used, since one
has to decide whether such a failure corresponds to an actual error, or whether it
only results from a weakness of the abstraction. In the case of safety properties,
the natural explanation consists of a counter-example — a trace leading from an
initial state of the system to a state violating the property. Although exhibiting
such an erroneous trace is straightforward in enumerative model-checking of
finite state systems, it is a bit less trivial in symbolic model checking, and it
is generally undecidable in abstract model checking of infinite state systems.
In this case, we propose to use a test-case generation tool to allow the user to
search for a concrete counter-example, within the apparently erroneous traces
identified by the model-checker. This approach has been implemented in the
framework of the verification of reactive programs written in the synchronous
language Lustre [HCRP91], using the model-checker Lesar [HLR92] and the
test-case generation tool Lurette [RWNH98], and experimented on several real
examples extracted from the flight control software of the Ariane-V rocket.

2 Verification and Diagnosis with Lesar

We are interested in the verification of synchronous systems, which can be
modeled as transition systems with inputs and outputs (generalized Mealy Ma-
chines). Such a machine starts from an initial state and performs an infinite
loop, by selecting a transition from its current state according to the current
values of its inputs. Performing a transition consists in assigning the corre-
sponding values to the outputs and moving to the target state of the transition,
i.e., assigning the corresponding values to state variables. Since input, output,
and state variables can be either Boolean or of infinite types, the set of states
can be infinite. Such a machine can be described by giving an initial state (or
a formula characterizing the set of initial states), and a set {tk|k = 1..n} of
transitions, each of which being a guarded command of the form:

tk : gk(s, i) → o := ωk(s, i); s := σk(s, i)

where gk(s, i) is a condition on the current state s and the current input i, ωk

and σk are functions, respectively giving the values of outputs and next state.
We consider deterministic systems, hence ωk and σk are functions. Moreover,
these systems are supposed to always accept inputs, so these functions will also
be total. For the same reasons, the guards are assumed to be pairwise exclusive,
and their disjunction

∨
k gk is assumed to be true.

2



Observer

of the property

Observer

inputs

ok

Program

ObserverObserver

of the assertion
realistic

outputs

Figure 1: Verification program

Note that, in general, such a “program” results from the compilation of a higher
level language. As an important consequence, state variables are generally
meaningless for the user, and should not be used in the diagnosis. They result
from the encoding of internal processes control points and internal memories.

The more conventional transition relation can be defined from this guarded
transition formulation as follows:

s
i

−→ s′
df
= ∃k · gk(s, i) ∧ s′ = σk(s, i)

2.1 Model Checking Lustre Programs With Lesar

A standard way of specifying a safety property is by giving an automaton recog-
nizing the erroneous traces. In synchronous programming, such an automaton
may be given as a program (i.e., a machine as before), called a synchronous
observer, receiving as inputs the inputs and outputs of the program to be ver-
ified, and computing a single Boolean output variable, which is true as long as
the property is satisfied. Moreover, since the considered programs interact with
an environment, we are generally interested in proving properties under some
known assertion about the behavior of the environment. An assertion is also a
safety property, which can be described by an observer which detects whenever
the environment behaves unrealistically. The general verification problem con-
sists in considering the program and the two observers, connected as shown by
Fig. 1, and to check that, whatever the sequence of inputs, either the output
“ok” of the property observer is always true, or the output “realistic” of the
assertion observer becomes at some point false.

Lesar takes such a compound program (in Lustre), and applies standard sym-
bolic model-checking techniques, with abstraction of numerical variables, to

3



perform the verification. The abstraction consists in ignoring all operations on
numerical variables, and in considering conditions involving numerical variables
as additional Boolean inputs. If, in this abstract model, the output “ok” can
go low, with the output “realistic” always high, Lesar will find a sequence of
(symbolic) states which leads to a bug. The sequence is guaranteed, by virtue
of its construction, to be the shortest possible. More precisely, the model-
checking procedure starts from the formula F1 characterizing the initial states
of the program, and computes forward a sequence of formulas F2, F3, . . ., where
Fj+1 = Post(Fj), and where Post(F ) is the characteristic formula of states di-
rectly reachable from states satisfying F by transitions satisfying the assertion:

Post(F )
df
= λs′ · ∃s, i · realistic(s, i) ∧ F (s) ∧ s

i
−→ s′

If, at some step n, Fn allows some transitions violating the property, an error
is found. Then the diagnosis is built backward: let Dn be the characteristic
formula of the erroneous transitions starting from states in Fn. Lesar computes
backward the sequence of formulas Dn−1, Dn−2, . . . , D1, where each Dj = Fj ∧
Pre(Dj+1) characterizes the transitions — i.e., the pairs (state, inputs) — which
belong to an erroneous trace.

Pre(F )
df
= λs · ∃s′, i · realistic(s, i) ∧ F (s′) ∧ s

i
−→ s′

2.2 Diagnosis Without Abstraction

As a first step, we will look at problems arising within systems with no abstrac-
tions applied — programs using only Boolean data.

Consider the following simple program (with observers inside — ok being the
output of the observer, and real being that of the assertion about the environ-
ment) which checks that, apart from the initial step, the input a is true and its
previous value is false:

Example 1:
init s0 = s1 = false;
transitions

¬s0 → real := true; ok := true; s0 := true; s1 := a;
s0 ∧ s1 → real := true; ok := false; s0 := true; s1 := a;

s0 ∧ ¬s1 → real := true; ok := a; s0 := true; s1 := a;

Clearly, the shortest counter-examples are of
length 2 — the ones shown in the adjacent
diagram.
As explained above, Lesar builds first the se-
quence of state formulas:

F1 = ¬s0 ∧ ¬s1 F2 = s0

1

1

2

2

1

1

2

2

1

1

2

2

a

ok

4



It finds that in F2, ok is false when s1∨¬a, and computes backward the sequence:

D2 = s0 ∧ (s1 ∨ ¬a) D1 = ¬s0 ∧ ¬s1

This sequence perfectly describes the set of all the shortest executions leading to
the violation of the property. Now, since the formulas Dj involve state variables
(s0, s1), they are meaningless for the user. To solve this problem, one might
try to get rid of state variables by existential quantification in the formulas.
But, in our example, it would produce D′

1 = true, D′

2 = true which gives no
information at all.

2.3 Diagnosis of Programs With Abstraction

When the program being verified uses variables ranging over infinite types, Lesar
reduces the state space to a finite one by removing these variables and taking
the Boolean conditions dependent on these variables as inputs of the system.
These conditions are controlled by an unconstrained environment, meaning that
their behavior need not be according to the original program.

Consider the following example :

Example 2:
init ¬s;
transitions
¬s → i := 1; ok := a ∨ (i < 15); s := true;
s → i := (17 ∗ i)mod 9; ok = a ∨ (i < 15); s := true;

It should be (intuitively) clear that the condition i < 15 is always satisfied, and
thus ok is always true. However, the abstraction performed on the program only
gives: true → ok = a ∨ cond; where cond is an auxiliary variable introduced to
stand for the numerical condition i < 15.

Upon analyzing this, the model-checker would point out a counter-example of
length 1, with inputs a and cond both having value false. This counter model
clearly has no counterpart in the concrete program behavior. It is thus desirable
to help the user to try and map back the behavior to the concrete model, thus
verifying whether or not it is a real counter-example. However, this is to be
done with caution, since the non-existence of a concrete instance of the counter-
example does not mean that the program is correct (e.g., if the constant 15 in
the above example is modified to 5, the same counter-example would be given,
which still has no counterpart in the concrete node. However, ok can become
false on the second step).

5



3 The Proposed Solution

3.1 A First Solution

If we consider only unabstracted programs, producing counter traces from the
internal symbolic representation is not very difficult. If the shortest counter-
example is of length n, the model checker returns a symbolic counter-example
as n formulas D1, . . . , Dn over state and input variables. The selection of an
explicit counter-example1 i1, . . . , in can be done by the following procedure:

s := init;
for j:= 1 to n do
ij = Choose(Dj ,s); s := σ(s,ij);

where σ stands for the function σk such that gk(s, ij) holds, and Choose(D, s)
is any procedure returning a variable assignment i such that (s, i) satisfies the
formula D.

As a debugging aid, Choose may also be implemented as an interactive pro-
cedure, allowing the user to explore the counter-examples. In practice, this
approach can work reasonably well. The main problem is the implementation
of Choose. In the Boolean case, its implementation is straightforward and sim-
ple. However, it is not easily extended to deal with abstractions. Furthermore,
one can imagine various strategies to choose assignments (interactive, one ran-
dom shortest counter-example, enumerate all shortest counter-examples, etc). It
would thus make more sense to generate enough information through the model
checker to be used by another tool. The information we need is the sequence
D1, . . . , Dn.

3.2 Data Sequence Selection Under Constraints: The Test-

ing Tool Lurette

The sequence D1, . . . , Dn of formulas can be viewed as a sequence of constraints
(on state and input variables) which must be successively satisfied by a valid
counter-example. The general problem is then the generation of sequences under
such constraints. This is precisely what can be done using the test generation
tool Lurette [RWNH98, HR99]: given a program and two observers, just as in
Fig. 1, Lurette randomly generates sequences of input data of a chosen length,
such that the assertion observer always returns true, while checking that the
property observer is satisfied. The principle is as follows: from the current
state of the assertion observer, Lurette deduces a constraint to be satisfied by
the current inputs. When this constraint only involves Boolean variables and
linear restraints about numerical variables, Lurette can select — randomly, or
according to various heuristics — a solution to the constraints. The selected

1Since we talk only about deterministic automata, a counter-example can be readily rep-
resented as a sequence of inputs.

6



data is then given to the program for a single reaction; the returned outputs are
used to check the current value of the property, and to perform one transition
of the assertion observer, thus computing its new state for the next step.

3.3 Using Lurette to Generate Counter-Examples

Recall that the formulas Dj involve in-
put and state variables, and that state
variables are internal to the program.
In order to use these formulas in the as-
sertion given to Lurette, the state vari-
ables must be output by the program,
which requires a straightforward modi-
fication of the program. Lurette can be
applied to the program shown beside.

inputs

relevant
Assertion

next stateProgram
Modified

Note that we have no observer to check for the correctness of the trace, since, by
virtue of the way in which the assertion is constructed, only counter-examples
can be produced. Whenever a trace of the required length is generated, it is a
counter-example.

The assertion itself only selects the current formula to be satisfied, according to
the current step:

init step = 1;
transitions

step = 1 → relevant := D1; step := 2;
step = 2 → relevant := D2; step := 3;
...

step = n → relevant := Dn;

3.4 Adding Variables of Infinite Types

If the program has variables of an infinite type, Lesar first abstracts these by
using Boolean input conditions. Let us come back to the program Example 2:

Example 2:
init ¬s;
transitions
¬s → i := 1; ok := a ∨ (i < 15); s := true;
s → i := (17 ∗ i)mod 9; ok = a ∨ (i < 15); s := true;

As explained before, Lesar abstracts it into “true → ok = a ∨ cond;” and finds
a counter-example of length 1: D1 = (¬a ∧ ¬cond). Note that the value of the
abstracted condition cond is determined by the constructed counter-example,
despite the fact that it is not a real input of the concrete program. In our
framework, Lurette would be required to try and find a solution to both the

7



input constraints and the condition constraints. However, the definitions of the
abstract condition constraint and the variables on which it depends are known,
and can therefore be placed inside the assertion observer:

true → relevant := (¬a ∧ ¬cond ∧
(cond = (i < 15))∧
((¬s ∧ i = 1) ∨ (s ∧ i = (17 ∗ i)mod 9)))

3.5 An Overview

To summarize the procedure for debugging:

1. Once the model-checker finds a counter-example, it must create a special
diagnosis file which contains:

• A description of the transformed program, which outputs the values
of the next state.

• An assertion checking that the inputs and state variables can lead up
to a counter-example.

It also reports the length of the shortest counter-example.

2. Lurette is run on the diagnosis file generated by Lesar, to generate test
vectors of the required length.

4 Applications of the Tool

4.1 A Trivial Boolean Example

Consider once again our Example 1:

Example 1:
init s0 = s1 = false;
transitions

¬s0 → real := true; ok := true; s0 := true; s1 := a;
s0 ∧ s1 → real := true; ok := false; s0 := true; s1 := a;

s0 ∧ ¬s1 → real := true; ok := a; s0 := true; s1 := a;

Running the program through Lesar, we are told that there are counter-examples
of length 2. Remember that the symbolic counter-example is D0 = ¬s0 ∧ ¬s1,
D1 = s0 ∧ (s1 ∨ a). A new file is generated with the main node modified to
output state variables, and the following assertion, to allow only the generation
of counter examples:

8



init step := 1;
transitions

step = 1 → relevant := true; step := 2;
step = 2 → relevant = if s1then true else a;

From this information, Lurette immediately finds the three input traces listed
in Section 2.2.

4.2 A Numerical Example

To illustrate the approach with a slightly bigger example, we apply this tech-
nique to a small train specification from [BCDPV99].

Consider a system consisting of two trains moving along the same tracks in the
same direction. We would like to control the second train, making sure that
we do not run into the train in front of us. We realistically assume that we
cannot control the current distance between trains or the velocity of our train
directly, but can only do so indirectly by changing our acceleration. The model
is parameterized by three constants: the initial distance between the trains
init d, the maximum acceleration that the trains can achieve a max, and the
braking acceleration brake.

The system receives two inputs: the acceleration and velocity of the other train
(a other and v other respectively), and calculates three outputs: the accelera-
tion, velocity and train distance (a, v and d respectively):

init pre d = init d ∧ pre v = 0;
transitions

true → a := if danger then − brake else a other;
v := max{0, pre v + a};
d := pre d + v other − v;
pre d := d;
pre v := v;

danger is used as shorthand for the condition expressing a potentially dangerous
situation:

(pre v + a max ≥ brake) ∨ (pre v + a max > pre d)

To avoid repetition, we express some of the values of the outputs and states in
terms of previously defined outputs. These can be eliminated by replacing them
by the appropriate expressions from the previous definitions.

The observer simply makes sure that the trains never bump into each other:
d > 0. We can also add the property that the velocity never exceeds brake:

true → ok := d > 0 ∧ v ≤ brake

9



Clearly, this is not satisfiable unless we constrain the environment and constants.
This is usually one of the more difficult stages in expressing a specification. Some
restrictions may be clear, but it is always a dilemma whether a proof failed to go
through because of a bug or because of a weakly specified environment. In this
case, we start by adding a number of restrictions on the inputs and constants.
The restrictions on the constants are the following:

• The braking acceleration is not negative: brake ≥ 0

• The trains start off some distance from each other: init d > 0

• The train can brake faster than it can accelerate: brake > a max

An observer is also added to make sure that the other train never reverses into
us:

init s0 = true;
transitions

s0 → real := v other = 0; s0 := false;
¬s0 → real := v other >= 0; s0 := false;

When the system is run through Lesar, we get a counter-example of length 1.
Obviously, due to the abstraction applied for the verification, it is unclear as to
whether there are concrete counter-examples corresponding to the abstract one.
Lurette answers this in the affirmative, by generating the following concrete
counter-example:

a max = 1, brake = 2, init d = 1, a other = 2, v other = 0

It is immediately clear what is happening: the other train is exceeding the
maximum acceleration and since (i) the train under our control mimics the
acceleration of the other train, and (ii) the safety distance is based on the maxi-
mum acceleration we believed we could achieve, we bump straight into the other
train. Adding the extra constraint that a other ≤ a max solves this problem,
and Lurette can no longer generate concrete counter-examples corresponding
to the abstract one. The whole system can then be proved using a refined
abstraction function.

4.3 Industrial Application

This tool has been applied in the verification of a Lustre model of the flight
control software of the ARIANE-V rocket. As a typical example, for one of
the properties which was not confirmed by Lesar, Lurette produced 16 counter-
examples of length 23, involving more than 40 variables (including 2 numerical
variables) in a matter of a few seconds. The counter-examples showed that the
problem with the code lay (as is often the case) with an environment assertion
which is too weak to guarantee correctness.

10



If a case-study is small enough to run through a model-checker, generation of the
counter-model can be done in linear time (with respect to the size of the BDDs
representing the sets of states leading to a counter example). The constraints
implied by the resultant automaton are then to be solved by the trace generator
(which can be done by running a Simplex program). Overall, the complexity
of generating counter-examples, depends primarily on the model-checking and
constraint solving algorithms. In practice, we are thus limited by the current
state-of-the-art algorithms for these problems.

5 Related Work

Abstraction is now accepted as a necessary means to verify realistically sized
systems. However, abstractions introduce new information and may also intro-
duce spurious counter-examples which make it very difficult for non-expert users
to use tools which use abstraction effectively. Translating abstract traces into
concrete ones can be particularly difficult. Surprisingly, the amount of work on
how this translation can be automated is rather sparse.

In [CSPV01], Păsăreanu et al extend the Java PathFinder (JPF) model-checker
so as to generate concrete counter-examples in the presence of abstractions.
Two techniques are used: (i) searching for a deterministic counter-example,
which clearly would correspond to a concrete one, and (ii) using simulation to
verify whether the generated abstract counter-example, has at least one related
concrete one. The first technique is clearly not complete. The second one works
because the systems they analyze are closed, i.e., they do not interact with the
environment. In our case, the counter-examples correspond to actual behavior
only if the inputs take carefully chosen values. Since the inputs may range over
infinite data types, straightforward simulation does not always work. A similar
constraint is applied in SLAM [BR00], where the aim is to model check boolean
programs (programs in which variables and procedure parameters are always
boolean). Feasability of abstract paths is checked using path simulation — in
which, a heuristic decision procedure is used to try and decide whether the path
is a feasible one. In general, this is undecidable and thus the decision procedure
may sometime report “don’t know”.

A more general approach has been presented by Clarke et al [CGJ+00], in which
the abstract interpretation is refined if the one in use is not fine enough to allow
for a definite answer. An algorithm is presented, which allows the calculation
of a concrete set of paths from a set of abstract ones. If the resultant set
is empty, clearly, the abstract counter-examples have no counterpart in the
concrete world. The method is dependent on the computability of the inverse
of the abstraction function and also on the decidability of whether the set of
traces is empty or not. This is clearly not always possible (for example, in the
case of non-linear numeric constraints). These restrictions also hold in a similar
approach presented in [LBBO01] and used in InVeSt. When the inverse of the
abstraction function cannot be calculated, an upper approximation is used.

11



6 Conclusion

We have shown how the problem of calculating concrete traces from correspond-
ing abstract traces can be reduced to one of constrained test-pattern generation,
thus enabling us to use standard, off-the-shelf tools and algorithms to generate
the counter-examples.

This processing of the counter-example data stream generated is complete, in the
sense that no information is lost, and it is thus left to the test-pattern generator
to apply heuristics when attempting to produce the concrete traces. This gives
us the advantage of being able to try to generate concrete traces even when the
abstraction function is too complex for other approaches to be applicable. One
major problem is when no concrete counter-examples correspond to the shortest
counter-example under abstraction, but still, longer counter-examples do exist.
In such cases, it is straightforward to extend the algorithm to produce longer
counter-traces from which to generate concrete counter-examples.

The algorithm has been implemented in the Lesar model-checker and can be
used in conjunction with the Lurette test-pattern generator. These tools have
been successfully applied on a number of examples extracted from the Ariane-V
rocket flight control software.

Other than for debugging purposes, abstract trace feasibility is an essential
component of abstraction refinement techniques and it would be interesting to
explore the use of our approach with such techniques.

References

[BCDPV99] S. Bensalem, P. Caspi, C. Dumas, and C. Parent-Vigouroux. A
methodology for proving control programs with Lustre and PVS.
In Dependable Computing for Critical Applications, DCCA-7, San
Jose. IEEE Computer Society, January 1999.

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. In Fifth IEEE
Symposium on Logic in Computer Science, Philadelphia, 1990.

[BR00] Thomas Ball and Sriram K. Rajamani. Checking temporal proper-
ties of software with boolean programs. In Workshop on Advances
in Verification (with CAV 2000), 2000.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer-
Aided Verification, number 1855 in Lecture Notes in Computer
Science. Springer-Verlag, 2000.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and
abstraction. ACM TOPLAS, 16(5), 1994.

12



[CMB90] O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal prop-
erties of sequential machines without building their state diagrams.
In R. Kurshan, editor, International Workshop on Computer Aided
Verification, Rutgers (N.J.), June 1990.

[CSPV01] Matthew B. Dwyer Corina S. Păsăreanu and Willem Visser. Find-
ing feasible counter-examples when model checking Java programs.
In Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), volume 2031 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2001.

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification
and abstraction. In Fifth Conference on Computer-Aided Verifica-
tion, CAV’93, Elounda (Greece), July 1993. LNCS 697, Springer
Verlag.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. Proceedings of
the IEEE, 79(9):1305–1320, September 1991.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verify-
ing real-time systems by means of the synchronous data-flow pro-
gramming language Lustre. IEEE Transactions on Software En-
gineering, Special Issue on the Specification and Analysis of Real-
Time Systems, September 1992.

[HR99] N. Halbwachs and P. Raymond. Validation of synchronous reac-
tive systems: from formal verification to automatic testing. In
ASIAN’99, Asian Computing Science Conference, Phuket (Thai-
land), December 1999.

[LBBO01] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremen-
tal verification by abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic
testing of reactive systems. In 19th IEEE Real-Time Systems Sym-
posium, Madrid, Spain, December 1998.

13


