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Abstract: This paper presents a methodology allowing to estimate the parameters
of two-dimensional damped/undamped sinusoids from high complexity noisy
signals, which is the case in 2-D nuclear magnetic resonance spectroscopy. The
proposed approach performs an adaptive subband decomposition combined with
a classical frequency estimator based on the Prony model. At each node resulting
from the decomposition, a stopping rule is computed in order to decide whether
the decomposition must be continued or not. The rule is a measure of flatness of
residuals resulting from the estimation step. The method is demonstrated using
simulated signals.
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1. INTRODUCTION

Since the discovery in 1945 of the magnetic res-
onance spectroscopy (NMR) phenomenon, this
technique became a powerful and very successful
tool to study structures and molecular interac-
tions Canet et al. [2002]. The multidimensional
NMR has widened the field of investigation to the
study of macromolecules structures by allowing
the detection and interpretation of interactions
which are impossible to analyze along a single
dimension (see e.g. Bax and Lerner [1986], Bax
[1985], Canet et al. [2002]).

In this paper, we consider the problem of estimat-
ing the parameters of two-dimensional NMR sig-
nals modeled as a sum of two-dimensional damped
exponentials (also called modes or resonances).
For this issue, several high-resolution methods
have been developed such as 2-D IQML in Clark

and Scharf [1994], 2-D MUSIC in Li et al. [1998],
TLS-Prony by Sacchini et al. [1993], Matrix Pencil
by Hua [1992], etc. Nevertheless, whatever the
method is used, its numerical implementation is
problematical. Indeed, in the case of high com-
plexity signals (large number of samples and/or
modes), the algorithms have to handle with very
large matrices that must be inverted and with
possible large order polynomial rooting, resulting
in prohibitive calculation cost and memory ca-
pacities requested. So, in such cases it is prefer-
able to perform a subband decomposition before
the estimation process itself. This enables one to
transform a complex estimation problem into a
set of subproblems, each much simpler and more
favorable from a numerical point of view since
the estimation is focused on small spectral re-
gions. Moreover, it is known that such decompo-
sition procedures may enhance the performances



of the spectral estimator used (e.g. Quirk and Liu
[1983], Rao and Pearlman [1996]). The purpose
of this work is to present a subband decompo-
sition approach combined with a frequency esti-
mator, suitable to the analysis of two-dimensional
damped/undamped sinusoidal signals. This tech-
nique is a generalization from 1-D to 2-D of the
approach proposed in Djermoune et al. [2004].

The paper is organized as follows. In the next sec-
tion, the model of a 2-D NMR signal is given, to-
gether with an estimation technique. In section 3,
we describe the proposed approach based on an
adaptive subband decomposition. This method is
then demonstrated in section 4 by using simu-
lation signals. Finally, conclusions are given in
section 5.

2. SIGNAL MODELING AND PARAMETER
ESTIMATION

The model of the signals considered here is a com-
bination of a certain number I of two-dimensional
distinct damped complex exponentials, also called
resonances in NMR spectroscopy:

d(n, m) =

I
∑

i=1

hiz
n
i wm

i + e(n, m), (1)

for n = 0, ..., N − 1 and m = 0, ..., M − 1. Here,
zi = exp(−αx

i + jωx
i ) and wi = exp(−αy

i + jωy
i )

are the components of the mode (zi, wi) with
amplitude hi (αx

i > 0 and αy
i > 0). The error term

e(n, m) is representative of measurement noise. It
is assumed to be spatially and temporally uncor-
related. The problem is to estimate the number of
modes I and the set of parameters {zi, wi, hi}I

i=1
,

given the noisy measurements d(n, m).

There are several methods that may be used to
solve this problem. Most of them are derived from
the well known one-dimensional Prony method
which is a linear prediction-based technique. The
reader is referred to Ying et al. [1996] and the
references therein for performance comparison be-
tween some of these methods. Without loss of
generality, here we choose to use the 2-D TLS-
Prony method developed in Sacchini et al. [1993]
and which is now briefly recalled.

The starting point of the TLS-Prony method is
the following form of equation (1) Sacchini et al.
[1993]:

d(n, m) =

K
∑

k=1

Lk
∑

l=1

ak,lp
n
xk

pm
yk,l

+ e(n, m) (2)

=

K
∑

k=1

ck,mpn
xk

+ e(n, m), (3)

where

ck,m =

Lk
∑

l=1

ak,lp
m
yk,l

, (4)

pxk
is the kth x-mode (x-component of 2-D expo-

nential), pyk,l
is the k, lth y-mode, ak,l is the k, lth

amplitude coefficient and Lk is the number of y-
modes corresponding to the kth x-mode. In order
to estimate the 2-D signal parameters, the idea
is to perform a set of 1-D estimation procedures
using equations (3) and (4). Indeed, it is clear
from equation (3) that the sequence obtained for a
fixed value of m is a 1-D exponential signal whose
parameters may be estimated with a 1-D high-
resolution technique.

The TLS-Prony algorithm for 2-D frequency es-
timation in Sacchini et al. [1993] consists in the
following four steps.

(1) Using Eq. (3), form the backward linear
prediction system given in Eq. (6), where
p > K is the prediction order. By performing
the singular value decomposition (SVD) of
the matrix S, one can estimate the number
of x-modes K̂ using a theoretical information
criterion, such as MDL or AIC (see Wax
and Kailath [1985]). Then, Eq. (6) should
be solved in the total least squares (TLS)
sense Rahman and Yu [1987] with an SVD

truncation to obtain b̂. Finally, the estimated
x-modes are found by

p̂xk
=

1

zerok(B̂(z))
, k = 1, 2, ..., K̂, (5)

where B(z) = 1 + b1z + ... + bpz
p (the p− K̂

zeros of B̂(z) lying inside the unit circle must
be discarded).

(2) For each time index m = 0, ..., M − 1, com-
pute the x-amplitude coefficients ĉk,m in the
least squares sense using Eq. (3) and the
estimated modes p̂xk

.

(3) For each x-mode p̂xk
, k = 1, ..., K̂, obtain

the corresponding L̂k y-modes p̂yk,l
from

Eq. (4) using once again the 1-D TLS-Prony
approach (here the prediction equations are
made over the m index, for a fixed k).

(4) Compute the amplitude coefficients âk,l for

k = 1, ..., K̂ by solving the set of Vander-
monde equations obtained from Eq. (4) in
the least squares sense.

Finally, the 2-D signal parameters (ẑi, ŵi) with

amplitudes ĥi correspond to the set of couples

(p̂xk
, {p̂yk,l

}L̂k

l=1
) with amplitudes {âk,l}L̂k

l=1
. The

total number of estimated modes is then:

Î =

K̂
∑

k=1

L̂k. (7)

Generally speaking, the use of the so-called high-
resolution techniques to estimate the parameters
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≈ 0. (6)

of a 2-D signal leads to good performances in
terms of resolution as compared to that obtained
with the classical Fourier transform. Unfortu-
nately, when the number of measurements and/or
the number of the signal parameters are large, it
is often difficult to take advantage of these perfor-
mances because of implementation problems. For
instance, the dimension of matrix S in Eq. (6) is
approximately N.M ×p, which is directly propor-
tional to the number of samples (N or M) and the
number of parameters expressed by the prediction
order p. So it is clear that, in this case, it becomes
necessary to reduce the underlaying problem com-
plexity by using some separation techniques such
as subband decomposition.

3. SUBBAND DECOMPOSITION

The concept of subband decomposition is used in
various fields of investigation. In the particular do-
main of spectral analysis, the advantages of a sub-
band decomposition approach, have been empha-
sized by several authors Steedly et al. [1994], Rao
and Pearlman [1996], Tkacenko and Vaidyanathan
[2001], Djermoune et al. [2004]. This idea enables
to transform a complex estimation problem into
a set of sub-problems, each being much simpler
than the original.

The decomposition being achieved classically through
filtering and decimation stages, the problem which
arises is about the endpoint of the decomposition.
At first, a tradeoff must be reached between two
alternatives. To improve frequency resolution, it
is necessary to increase the decimation factor,
but the number of data samples reduces as the
decimation gets deeper. Secondly, it would be de-
sirable to stop the decomposition as soon as all the
information is retrieved. These remarks suggest to
use adaptive forms of decomposition rather than
simple uniform ones. In this case, the decimation
is carried out according to the spectral content
of the subbands encountered, but the problem is

then to establish a stop-criterion that determines
an optimal decomposition tree (in some sense).

For instance, in van den Branden Lambrecht and
Karrakchou [1995], the selection of the optimal
decomposition is made by maximizing the num-
ber of modes over the whole decomposition tree.
The number of modes lying in some band being
unknown, it has to be estimated using, say, the
minimum description length (MDL) criterion Wax
and Kailath [1985]. The problem which arises with
such an approach is that it does not ensure that
all the spectral information has been retrieved,
because order criteria are not always reliable. As
an alternative, we propose to use a stop-criterion
that reflects the quality of the estimation in a
given subband, that is a measure of whiteness
of the corresponding residuals. Unlike adaptive
decompositions using order criteria, the decision
about stopping or following up the decomposition
is made after the estimation process. This allows
one to minimize the number of possible missed
components.

3.1 Decomposition of a 2-D signal

The subband decomposition is achieved by succes-
sive filtering and decimation stages as illustrated
in figure 1. In each subband (node), the model of
the 2-D signal is still a sum of a (reduced) number
of modes which can be estimated by the TLS-
Prony method presented in the previous section.

Let d′(n, m) be the sub-signal corresponding to a
given node in the decomposition tree, constituted
of I ′ 2-D damped exponentials:

d′(n, m) =

I′

∑

i=1

h′

iz
′n
i w′m

i + e′(n, m). (8)

Assume that Î ′ modes are detected and estimated
by the TLS-Prony approach, and define the es-
timation residuals by the difference between the
true sub-signal and the reconstructed one:
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Fig. 1. Principle of decomposition of a 2-D signal s(n, m) into four subbands. Gi,k(z, w) are the frequency

responses of bandpass filters.

r(n, m) = d′(n, m) −
Î′

∑

i=1

ĥ′

iẑ
′n
i ŵ′m

i . (9)

for n = 0, ..., N ′−1 and m = 0, ..., M ′−1. Ideally,
if all subband modes are correctly retrieved (i.e.
Î ′ = I ′), the residuals are close to a white
noise. If one or more modes are missed, then the
signal r(n, m) is no more white. The stopping rule
described below is based on this observation.

3.2 The measure of spectral flatness

The stopping rule of the decomposition is based on
the measure of whiteness of the subband residuals.
Assume that r(n, m) is a wide sense stationary
Gaussian sequence. Its power spectral density is
estimated by the periodogram defined by:

P̂ ′(ω1, ω2) =

1

N ′M ′

∣

∣

∣

∣

∣

∣

N ′
−1

∑

n=0

M ′
−1

∑

m=0

r(n, m)e−jnω1e−jmω2

∣

∣

∣

∣

∣

∣

2

. (10)

The test of whiteness developed in Drouiche [2000]
is a spectral flatness measure of a 1-D sequence.
If we denote by Q̂(ω) the periodogram of a 1-
D sequence of length L, then the measure of
whiteness is defined by:

Ŵ = log
1

2π

∫ π

−π

Q̂(ω)dω

− 1

2π

∫ π

−π

log Q̂(ω)dω − γ, (11)

where γ = 0.57721 denotes the Euler constant. It
can be shown that Ŵ ≈ 0 for a white noise and
Ŵ → ∞ if the sequence is maximally correlated.
In practice, we reject the whiteness hypothesis if
Ŵ > tα, where tα is a threshold obtained using a
false alarm rate α:

tα =

√
2ν0√
L

erf−1(1 − 2α), (12)

where ν0 =
√

π2/6 − 1, and erf−1(x) is the inverse
of the standard error function

erf(x) =
2√
π

∫ x

0

e−t2dt. (13)

Table 1. Parameters of signal 1.

i 1 2 3 4 5 6 7

fx
i

-.15 -.15 .10 .10 .15 .40 .40
f

y

i
-.10 .10 .10 .40 .08 .20 .40

αx
i

.05 .05 .05 .05 .10 .10 .08
α

y

i
.05 .05 .05 .05 .10 .10 .08

hi 1 .5 .5 1 1 1 1

In this paper, we fixed α = 5%. In order to test
for the whiteness of the 2-D signal r(n, m), we
apply the previous measure on the two marginals
of P̂ ′(ω1, ω2) along the two dimensions to obtain
Ŵ1 and Ŵ2. The signal r(n, m) is a white noise
only if the two measures are less than a threshold.

Finally, the stopping rule of the decomposition
can be expressed as:
{

if Ŵ1 6 tα and Ŵ2 6 tα, then stop,

if Ŵ1 > tα or Ŵ2 > tα, then continue.
(14)

4. EXPERIMENTS

In this section, we present two experiments made
on simulated signals of increasing complexity.

4.1 Signal 1

The first simulated signal is composed of 7 com-
plex modes given in table 1. The number of sam-
ples in both dimensions is 64 and the noise vari-
ance is fixed to 10−4 (i.e. 40 dB for a mode with
unitary amplitude).

The results achieved with the method developed
using a prediction order p = 6 in all subbands
are presented in figure 2. Figure 2(a) shows the
final spectral decomposition together with the
number of estimated modes in each subband. We
can observe that the subband decomposition is
sufficient at this level since all the modes have
been retrieved. Figures 2(b) and 2(c) represent the
power spectra of subband signals corresponding to
the frequency ranges [0, .25]×[0, .25] and [.25, .5]×
[0, .25], respectively. The estimated modes are
represented by filled circles. In both subbands, the
estimated positions of the modes are close to the
theoretical ones.



(a) Representation of final spectral subbands with the number of estimated
modes.
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Fig. 2. Some results achieved on signal 1. Band 1 and Band 2 correspond to the frequency ranges
[0, .25]× [0, .25] and [.25, .5]× [0, .25], respectively.
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Fig. 3. Power spectrum of signal 2.

4.2 Signal 2

The second signal is intended to demonstrate the
capability of the proposed approach to track the
spectral subbands in which information is local-
ized. The signal contains 21 modes. Ten modes
are positioned randomly in the lower-left quarter
of the frequency plane (i.e. in the frequency range
[−.5, 0] × [−.5, 0]), and ten other modes in the
upper-right quarter. The last one is located at
(.4,−.4). All damping factors are equal to 0.02
and the amplitudes are generated randomly in
the interval [0.5, 3.5]. As before, the variance of
the additive noise is fixed to 10−4. The generated
samples form a data matrix of dimension 256 ×
256, whose Fourier transform is shown on figure 3.

The results obtained with a prediction order p =
6 are shown on figure 4. One can observe on
figure 4(a) that the decomposition is generally
deeper in the spectral regions where several modes
are located. On the other hand, for remote modes,
the decomposition is stopped at lower decimation
levels. This is the case for instance for mode
(.4, .4). So the method is able to adapt the de-
composition on the local complexity of a signal,
allowing one to reduce the calculation time as
compared to a uniform decomposition in which
several small subbands should be analyzed.

5. CONCLUSION

We have proposed in this paper an adaptive
subband decomposition approach for the analysis
of 2-D NMR data. This method uses a stopping
rule based on a spectral flatness measure of the
subband residuals. If the test for whiteness fails
in a given node, then the decomposition is carried
on, otherwise the decomposition is stopped. The
results obtained points out the advantage the
method over a global estimation and a uniform
decomposition.
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