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Stein's method on Wiener 
haosby Ivan Nourdin∗ and Giovanni Pe

ati†University of Paris VIA
tual version: 3rd February 2008Abstra
t: We 
ombine Malliavin 
al
ulus with Stein's method, in order to derive expli
it bounds inthe Gaussian and Gamma approximations of random variables in a �xed Wiener 
haos of a generalGaussian pro
ess. We also prove results 
on
erning random variables admitting a possibly in�niteWiener 
haoti
 de
omposition. Our approa
h generalizes, re�nes and uni�es the 
entral and non-
entral limit theorems for multiple Wiener-It� integrals re
ently proved (in several papers, from 2005to 2007) by Nourdin, Nualart, Ortiz-Latorre, Pe

ati and Tudor. We apply our te
hniques to proveBerry-Esséen bounds in the Breuer-Major CLT for subordinated fun
tionals of fra
tional Brownianmotion. By using the well-known Mehler's formula for Ornstein-Uhlenbe
k semigroups, we also re-
over a result re
ently proved by Chatterjee, in the 
ontext of limit theorems for linear statisti
s ofeigenvalues of random matri
es.Key words: Berry-Esséen bounds; Breuer-Major CLT; Fra
tional Brownian motion; Gammaapproximation; Malliavin 
al
ulus; Multiple sto
hasti
 integrals; Normal approximation; Stein'smethod.2000 Mathemati
s Subje
t Classi�
ation: 60F05; 60G15; 60H05; 60H07.1 Introdu
tion and overview1.1 MotivationsLet Z be a random variable whose law is absolutely 
ontinuous with respe
t to the Lebesguemeasure (for instan
e, Z is a standard Gaussian random variable or a Gamma random vari-able). Suppose that {Zn : n > 1} is a sequen
e of random variables 
onverging in distributiontowards Z, that is:for all z ∈ R, P (Zn 6 z) −→ P (Z 6 z) as n→ ∞. (1.1)It is sometimes possible to asso
iate an expli
it uniform bound with the 
onvergen
e (1.1),providing a global des
ription of the error one makes when repla
ing P (Z 6 z) by P (Zn 6 z)for a �xed n > 1. One of the most 
elebrated results in this dire
tion is the following Berry-Esséen Theorem (see e.g. Feller [16℄ for a proof), that we re
ord here for future referen
e:Theorem 1.1 (Berry-Esséen) Let (Uj)j>1 be a sequen
e of independent and identi
ally dis-tributed random variables, su
h that E(|Uj |3) = ρ < ∞, E(Uj) = 0 and E(U2
j ) = σ2. Then,
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by setting Zn = 1
σ
√

n

∑n
j=1 Uj , n > 1, one has that Zn

Law−→ Z ∼ N (0, 1), as n → ∞, andmoreover:
sup
z∈R

|P (Zn 6 z) − P (Z 6 z)| 6
3ρ

σ3
√
n
. (1.2)The aim of this paper is to show that one 
an 
ombine Malliavin 
al
ulus (see e.g. [34℄)and Stein's method (see e.g. [10℄), in order to obtain bounds analogous to (1.2), whenever therandom variables Zn in (1.1) 
an be represented as fun
tionals of a given Gaussian �eld. Ourresults are general, in the sense that (i) they do not rely on any spe
i�
 assumption on theunderlying Gaussian �eld, (ii) they do not require that the variables Zn have the spe
i�
 formof partial sums, and (iii) they allow to deal (at least in the 
ase of Gaussian approximations)with several di�erent notions of distan
e between probability measures. As suggested by thetitle, a prominent role will be played by random variables belonging to a Wiener 
haos oforder q (q > 2), that is, random variables having the form of a multiple sto
hasti
 Wiener-It� integral of order q (see Se
tion 2 below for pre
ise de�nitions). It will be shown thatour results provide substantial re�nements of the 
entral and non-
entral limit theorems formultiple sto
hasti
 integrals, re
ently proved in [32℄ and [36℄. Among other appli
ations andexamples, we will provide expli
it Berry-Esséen bounds in the Breuer-Major CLT (see [4℄) for�elds subordinated to a fra
tional Brownian motion.Con
erning point (iii), we shall note that, as a by-produ
t of the �exibility of Stein'smethod, we will indeed establish bounds for Gaussian approximations related to a number ofdistan
es of the type

dH (X,Y ) = sup {|E(h(X)) − E(h(Y ))| : h ∈ H } , (1.3)where H is some suitable 
lass of fun
tions. For instan
e: by taking H = {h : ‖h‖L 6 1},where ‖·‖L is the usual Lips
hitz seminorm, one obtains the Wasserstein (or Kantorovi
h-Wasserstein) distan
e; by taking H = {h : ‖h‖BL 6 1}, where ‖·‖BL = ‖·‖L + ‖·‖∞, oneobtains the Fortet-Mourier (or bounded Wasserstein) distan
e; by taking H equal to the
olle
tion of all indi
ators 1B of Borel sets, one obtains the total variation distan
e; by taking
H equal to the 
lass of all indi
ators fun
tions 1(−∞,z], z ∈ R, one has the Kolmogorovdistan
e, whi
h is the one taken into a

ount in the Berry-Esséen bound (1.2). In whatfollows, we shall sometimes denote by dW(., .), dFM(., .), dTV(., .) and dKol(., .), respe
tively,the Wasserstein, Fortet-Mourier, total variation and Kolmogorov distan
es. Observe that
dW(., .) > dFM(., .) and dTV(., .) > dKol(., .). Also, the topologies indu
ed by dW, dTV and
dKol are stronger than the topology of 
onvergen
e in distribution, while one 
an show that
dFM metrizes the 
onvergen
e in distribution (see e.g. [15, Ch. 11℄ for these and further resultsinvolving distan
es on spa
es of probability measures).1.2 Stein's methodWe shall now give a short a

ount of Stein's method, whi
h is basi
ally a set of te
hniquesallowing to evaluate distan
es of the type (1.3) by means of di�erential operators. This theoryhas been initiated by Stein in the path-breaking paper [46℄, and then further developed inthe monograph [47℄. The reader is referred to [10℄, [42℄ and [43℄ for detailed surveys of re
entresults and appli
ations. The paper by Chatterjee [7℄ provides further insights into the existingliterature. In what follows, we will apply Stein's method to two types of approximations,2



namely Gaussian and (
entered) Gamma. We shall denote by N (0, 1) a standard Gaussianrandom variable. The 
entered Gamma random variables we are interested in have the form
F (ν)

Law
= 2G(ν/2) − ν, ν > 0, (1.4)where G(ν/2) has a Gamma law with parameter ν/2. This means that G(ν/2) is a (a.s.stri
tly positive) random variable with density g(x) = x

ν
2 −1e−x

Γ(ν/2) 1(0,∞)(x), where Γ is the usualGamma fun
tion. We 
hoose this parametrization in order to fa
ilitate the 
onne
tion withour previous paper [32℄ (observe in parti
ular that, if ν > 1 is an integer, then F (ν) has a
entered χ2 distribution with ν degrees of freedom).Standard Gaussian distribution. Let Z ∼ N (0, 1). Consider a real-valued fun
tion h :
R → R su
h that the expe
tation E(h(Z)) is well-de�ned. The Stein equation asso
iated with
h and Z is 
lassi
ally given by

h(x) −E(h(Z)) = f ′(x) − xf(x), x ∈ R. (1.5)A solution to (1.5) is a fun
tion f whi
h is Lebesgue a.e.-di�erentiable, and su
h that thereexists a version of f ′ verifying (1.5) for every x ∈ R. The following result is basi
ally dueto Stein [46, 47℄. The proof of point (i) (whose 
ontent is usually referred as Stein's lemma)involves standard integration by parts (see e.g. [10, Lemma 2.1℄). Point (ii) is proved e.g. in[10, Lemma 2.2℄; point (iii) 
an be obtained by 
ombining e.g. the arguments in [47, p. 25℄and [8, Lemma 5.1℄; a proof of point (iv) is 
ontained in [47, Lemma 3, p. 25℄; point (v) isproved in [7, Lemma 4.3℄.Lemma 1.2 (i) Let W be a random variable. Then, W Law
= Z ∼ N (0, 1) if, and only if,

E[f ′(W ) −Wf(W )] = 0, (1.6)for every 
ontinuous and pie
ewise 
ontinuously di�erentiable fun
tion f verifying therelation E|f ′(Z)| < ∞.(ii) If h(x) = 1(−∞,z](x), z ∈ R, then (1.5) admits a solution f whi
h is bounded by √
2π/4,pie
ewise 
ontinuously di�erentiable and su
h that ‖f ′‖∞ 6 1.(iii) If h is bounded by 1/2, then (1.5) admits a solution f whi
h is bounded by √π/2,Lebesgue a.e. di�erentiable and su
h that ‖f ′‖∞ 6 2.(iv) If h is bounded and absolutely 
ontinuous (then, in parti
ular, Lebesgue-a.e. di�eren-tiable), then (1.5) has a solution f whi
h is bounded and twi
e di�erentiable, and su
hthat ‖f‖∞ 6

√
π/2‖h−E(h(Z))‖∞, ‖f ′‖∞ 6 2‖h−E(h(Z))‖∞ and ‖f ′′‖∞ 6 2‖h′‖∞.(v) If h is absolutely 
ontinuous with bounded derivative, then (1.5) has a solution f whi
his twi
e di�erentiable and su
h that ‖f ′‖∞ 6 ‖h′‖∞ and ‖f ′′‖∞ 6 2‖h′‖∞.We also re
all the relation:

2dTV(X,Y ) = sup{|E(u(X)) − E(u(Y ))| : ‖u‖∞ 6 1}. (1.7)Note that point (ii) and (iii) (via (1.7)) imply the following bounds on the Kolmogorov andtotal variation distan
e between Z and an arbitrary random variable Y :
dKol(Y,Z) 6 sup

f∈FKol

|E(f ′(Y ) − Y f(Y ))| (1.8)
dTV(Y,Z) 6 sup

f∈FTV

|E(f ′(Y ) − Y f(Y ))| (1.9)3



where FKol and FTV are, respe
tively, the 
lass of pie
ewise 
ontinuously di�erentiable fun
-tions that are bounded by √
2π/4 and su
h that their derivative is bounded by 1, and the
lass of pie
ewise 
ontinuously di�erentiable fun
tions that are bounded by √π/2 and su
hthat their derivative is bounded by 2.Analogously, by using (iv) and (v) along with the relation ‖h‖L = ‖h′‖∞, one obtains

dFM(Y,Z) 6 sup
f∈FFM

|E(f ′(Y ) − Y f(Y ))|, (1.10)
dW(Y,Z) 6 sup

f∈FW

|E(f ′(Y ) − Y f(Y ))|, (1.11)where: FFM is the 
lass of twi
e di�erentiable fun
tions that are bounded by √
2π, whose�rst derivative is bounded by 4, and whose se
ond derivative is bounded by 2; FW is the
lass of twi
e di�erentiable fun
tions, whose �rst derivative is bounded by 1 and whose se
ondderivative is bounded by 2.Centered Gamma distribution. Let F (ν) be as in (1.4). Consider a real-valued fun
tion

h : R → R su
h that the expe
tation E[h(F (ν))] exists. The Stein equation asso
iated with hand F (ν) is:
h(x) −E[h(F (ν))] = 2(x+ ν)f ′(x) − xf(x), x ∈ (−ν,+∞). (1.12)The following statement 
olle
ts some slight variations around results proved by Stein [47℄,Dia
onis and Zabell [14℄, Luk [24℄, S
houtens [45℄ and Pi
kett [40℄. It is the �Gamma 
oun-terpart� of Lemma 1.2. The proof is detailed in Se
tion 5.Lemma 1.3 (i) Let W be a real-valued random variable (not ne
essarily with values in
(−ν,+∞)) whose law admits a density with respe
t to the Lebesgue measure. Then,
W

Law
= F (ν) if, and only if,
E[2(W + ν)+f

′(W ) −Wf(W )] = 0, (1.13)where a+ := max(a, 0), for every smooth fun
tion f su
h that the mapping x 7→ 2(x +
ν)+f

′(x) − xf(x) is bounded.(ii) If |h(x)| 6 c exp(ax) for every x > −ν and for some c > 0 and a < 1/2, and if h is twi
edi�erentiable, then (1.12) has a solution f whi
h is bounded on (−ν,+∞), di�erentiableand su
h that ‖f‖∞ 6 2‖h′‖∞ and ‖f ′‖∞ 6 ‖h′′‖∞.(iii) Suppose that ν > 1 is an integer. If |h(x)| 6 c exp(ax) for every x > −ν and forsome c > 0 and a < 1/2, and if h is twi
e di�erentiable with bounded derivatives,then (1.12) has a solution f whi
h is bounded on (−ν,+∞), di�erentiable and su
h that
‖f‖∞ 6

√
2π/ν‖h‖∞ and ‖f ′‖∞ 6

√
2π/ν‖h′‖∞.Now de�ne

H1 = {h ∈ C 2
b : ‖h‖∞ 6 1, ‖h′‖∞ 6 1, ‖h′′‖∞ 6 1}, (1.14)

H2 = {h ∈ C 2
b : ‖h‖∞ 6 1, ‖h′‖∞ 6 1}, (1.15)

H1,ν = H1 ∩ C 2
b (ν) (1.16)

H2,ν = H2 ∩ C 2
b (ν) (1.17)4



where C 2
b denotes the 
lass of twi
e di�erentiable fun
tions with support in R and withbounded derivatives, and C 2

b (ν) denotes the subset of C 2
b 
omposed of fun
tions with sup-port in (−ν,+∞). Note that point (ii) in the previous statement implies that, by adoptingthe notation (1.3) and for every ν > 0 and every real random variable Y (not ne
essarily withsupport in (−ν,+∞)),

dH1,ν
(Y, F (ν)) 6 sup

f∈F1,ν

|E[2(Y + ν)f ′(Y ) − Y f(Y )]| (1.18)where F1,ν is the 
lass of di�erentiable fun
tions with support in (−ν,+∞), bounded by 2 andwhose derivatives are bounded by 1. Analogously, point (iii) implies that, for every integer
ν > 1,

dH2,ν
(Y, F (ν)) 6 sup

f∈F2,ν

|E[2(Y + ν)f ′(Y ) − Y f(Y )]|, (1.19)where F2,ν is the 
lass of di�erentiable fun
tions with support in (−ν,+∞), bounded by√
2π/ν and whose derivatives are also bounded by √2π/ν. A little inspe
tion shows that thefollowing estimates also hold: for every ν > 0 and every random variable Y ,

dH1(Y, F (ν)) 6 sup
f∈F1

|E[2(Y + ν)+f
′(Y ) − Y f(Y )]| (1.20)where F1 is the 
lass of fun
tions (de�ned on R) that are 
ontinuous and di�erentiable on

R\{ν}, bounded by max{2, 2/ν}, and whose derivatives are bounded by max{1, 1/ν + 2/ν2}.Analogously, for every integer ν > 1,
dH2(Y, F (ν)) 6 sup

f∈F2

|E[2(Y + ν)+f
′(Y ) − Y f(Y )]|, (1.21)where F2 is the 
lass of fun
tions (on R) that are 
ontinuous and di�erentiable on R\{ν},bounded by max{

√
2π/ν, 2/ν}, and whose derivatives are bounded by max{

√
2π/ν, 1/ν +

2/ν2}.Now, the 
ru
ial issue is how to estimate the right-hand side of (1.8)�(1.11) and (1.18)�(1.21) for a given 
hoi
e of Y . Sin
e Stein's initial 
ontribution [46℄, an impressive panoply ofte
hniques has been developed in this dire
tion (see again [9℄ or [42℄ for a survey; here, we shallquote e.g.: ex
hangeable pairs [47℄, di�usion generators [3, 18℄, size-bias transforms [19℄, zero-bias transforms [20℄, lo
al dependen
y graphs [9℄ and graphi
al-geometri
 rules [7℄). Startingfrom the next se
tion, we will show that, when working within the framework of fun
tionalsof Gaussian �elds, one 
an very e�e
tively estimate expressions su
h as (1.8)�(1.11), (1.18)and (1.19) by using te
hniques of Malliavin 
al
ulus. Interestingly, a 
entral role is played byan in�nite dimensional version of the same integration by parts formula that is at the veryheart of Stein's 
hara
terization of the Gaussian distribution.1.3 The basi
 approa
h (with some examples)Let H be a real separable Hilbert spa
e and, for q > 1, let H⊗q (resp. H⊙q) be the qth tensorprodu
t (resp. qth symmetri
 tensor produ
t) of H. We write
X = {X(h) : h ∈ H} (1.22)5



to indi
ate a 
entered isonormal Gaussian pro
ess on H. For every q > 1, we denote by Iqthe isometry between H⊙q (equipped with the norm √
q!‖ · ‖H⊗q) and the qth Wiener 
haosof X. Note that, if H is a σ-�nite measure spa
e with no atoms, then ea
h random variable

Iq(h), h ∈ H⊙q, has the form of a multiple Wiener-It� integral of order q. We denote by
L2(X) = L2(Ω, σ(X), P ) the spa
e of square integrable fun
tionals of X, and by D

1,2 thedomain of the Malliavin derivative operator D (see the forth
oming Se
tion 2 for pre
isede�nitions). Re
all that, for every F ∈ D
1,2, DF is a random element with values in H.We start by observing that, thanks to (1.6), for every h ∈ H su
h that ‖h‖H = 1 and forevery smooth fun
tion f , we have E[X(h)f(X(h))] = E[f ′(X(h))]. Our point is that this lastrelation is a very parti
ular 
ase of the following 
orollary of the 
elebrated integration byparts formula of Malliavin 
al
ulus: for every Y ∈ D

1,2,
E[Y f(Y )] = E[〈DY,−DL−1Y 〉Hf ′(Y )], (1.23)where the linear operator L−1, from L2(X) into D

2,2 ⊂ D
1,2 (the spa
e D

2,2 is de�ned inSe
tion 2), is the inverse of the generator of the Ornstein-Uhlebe
k semigroup, noted L. Thereader is referred to Se
tion 2 and Se
tion 3 for de�nitions and for a full dis
ussion of thispoint; here, we shall note that L is an in�nite-dimensional version of the generator asso
iatedwith Ornstein-Uhlenbe
k di�usions (see [34, Se
tion 1.4℄ for a proof of this fa
t), an obje
twhi
h is also 
ru
ial in the Barbour-Götze �generator approa
h� to Stein's method [3, 18℄.It follows that, for every Y ∈ D
1,2, the expressions appearing on the RHS of (1.8)�(1.11)(or (1.18)�(1.21)) 
an be assessed by �rst repla
ing Y f(Y ) with 〈DY,−DL−1Y 〉Hf ′(Y ) insidethe expe
tation, and then by evaluating the L2 distan
e between 1 (resp. 2Y + 2ν) andthe inner produ
t 〈DY,−DL−1Y 〉H. In general, this 
omputations are 
arried out by �rstresorting to the representation of 〈DY,−DL−1Y 〉H as a (possibly in�nite) series of multiplesto
hasti
 integrals. We will see that, when Y = Iq(g), for q > 2 and some g ∈ H⊙q, then

〈DY,−DL−1Y 〉H = q−1‖DY ‖2
H
. In parti
ular, by using this last relation one 
an dedu
ebounds involving quantities that are intimately related to the 
entral and non-
entral limittheorems re
ently proved in [36℄, [35℄ and [32℄.Remark 1.4 1. The 
ru
ial equality E[Iq(g)f(Iq(g))] = E[q−1‖DIq(g)‖2

H
f ′(Iq(g))], in the
ase where f is a 
omplex exponential, has been �rst used in [35℄, in order to givere�nements (as well as alternate proofs) of the main CLTs in [36℄ and [38℄. The samerelation has been later applied in [32℄, where a 
hara
terization of non-
entral limittheorems for multiple integrals is provided. Note that neither [32℄ nor [35℄ are 
on
ernedwith Stein's method or, more generally, with bounds on distan
es between probabilitymeasures.2. We will see that formula (1.23) 
ontains as a spe
ial 
ase a result re
ently proved byChatterjee [8, Lemma 5.3℄, in the 
ontext of limit theorems for linear statisti
s of eigen-values of random matri
es. The 
onne
tion between the two results 
an be establishedby means of the well-known Mehler's formula (see e.g. [26, Se
tion 8.5, Ch. I℄ or[34, Se
tion 1.4℄), providing a mixture-type representation of the in�nite-dimensionalOrnstein-Uhlenbe
k semigroup. See Remarks 3.6 and 3.12 below for a pre
ise dis
us-sion of this point. See e.g. [29℄ for a detailed presentation of the in�nite-dimensionalOrnstein-Uhlebe
k semigroup.3. We stress that the random variable 〈DY,−DL−1Y 〉H appearing in (1.23) is in generalnot measurable with respe
t to σ(Y ). For instan
e, if X is taken to be the Gaussian6



spa
e generated by a standard Brownian motion {Wt : t > 0} and Y = I2(h) with
h ∈ L2

s([0, 1]
2), then DtY = 2

∫ 1
0 h(u, t)dWu, t ∈ [0, 1], and

〈DY,−DL−1Y 〉L2([0,1]) = 2 I2(h⊗1 h) + 2‖h‖2
L2([0,1]2)whi
h is, in general, not measurable with respe
t to σ(Y ) (the symbol h⊗1 h indi
atesa 
ontra
tion kernel that will be de�ned in Se
tion 2).4. Note that (1.23) also implies the relation

E[Y f(Y )] = E[τ(Y )f ′(Y )], (1.24)where τ(Y ) = E[〈DY,−DL−1Y 〉H|Y ]. Some general results for the existen
e of a real-valued fun
tion τ satisfying (1.24) are 
ontained e.g. in [47, Le
ture VI℄ and [5℄. Notethat, in general, it is very hard to �nd an analyti
 expression for τ(Y ), espe
ially when
Y is a random variable with a very 
omplex stru
ture, su
h as e.g. a multiple Wiener-It� integral. On the other hand, we will see that, in many 
ases, the random variable
〈DY,−DL−1Y 〉H is remarkably tra
table and expli
it. See Remark 3.10 below for a
onne
tion with Goldstein and Reinert's zero bias transform [19℄.5. The reader is referred to [41℄ for appli
ations of integration by parts te
hniques to theStein-type estimation of drifts of Gaussian pro
esses. See [21℄ for a Stein 
hara
terizationof Brownian motions on manifolds by means of integration by parts formulae. See [12℄ fora 
onne
tion between Stein's method and algebras of operators on 
on�guration spa
es.Before pro
eeding to a formal dis
ussion, and in order to motivate the reader, we shall providetwo examples of the kind of results that we will obtain in the subsequent se
tions. The �rststatement involves double Wiener-It� integrals, that is, random variables living in the se
ond
haos of X. The proof is given in Se
tion 5.Theorem 1.5 Let (Zn)n>1 be a sequen
e belonging to the se
ond Wiener 
haos of X.1. Assume that E(Z2

n) → 1 and E(Z4
n) → 3 as n → ∞. Then Zn

Law−→ Z ∼ N (0, 1) as
n→ ∞. Moreover, we have:

dTV(Zn, Z) 6 2

√
1

6

∣∣E(Z4
n) − 3

∣∣+ 3 + E(Z2
n)

2

∣∣E(Z2
n) − 1

∣∣.2. Fix ν > 0 and assume that E(Z2
n) → 2ν and E(Z4

n) − 12E(Z3
n) → 12ν2 − 48ν as n → ∞.Then, as n→ ∞, Zn

Law−→ F (ν), where F (ν) has a 
entered Gamma distribution of parameter
ν. Moreover, we have:

dH1(Zn, F (ν))

6 K1

√
1

6

∣∣E(Z4
n)−12E(Z3

n)−12ν2+48ν
∣∣+
∣∣8 − 6ν + E(Z2

n)
∣∣

2

∣∣E(Z2
n)−2ν

∣∣,where K1 := max{1, 1/ν, 2/ν2} and H1 is de�ned by (1.14).For instan
e, when applied to the 
ase where X is the isonormal pro
ess generated by afra
tional Brownian motion, the �rst point of Theorem 1.5 
an be used to derive the follow-ing bound for the Kolmogorov distan
e in the Breuer-Major CLT asso
iated with quadrati
transformations: 7



Theorem 1.6 Let B be a fra
tional Brownian motion with Hurst index H ∈ (0, 3/4). We set
σ2

H =
1

2

∑

t∈Z

(
|t+ 1|2H + |t− 1|2H − 2|t|2H

)2
<∞,and

Zn =
1

σH
√
n

n−1∑

k=0

(
n2H(B(k+1)/n −Bk/n)2 − 1

)
, n > 1.Then, as n → ∞, Zn

Law−→ Z ∼ N (0, 1). Moreover, there exists a 
onstant cH (dependinguniquely on H) su
h that, for any n > 1:
dKol(Zn, Z) 6

cH

n
1
2
∧( 3

2
−2H)

. (1.25)Note that both Theorem 1.5 and 1.6 will be signi�
antly generalized in Se
tion 3 and Se
tion4.Remark 1.7 1. When H = 1/2, then B is a standard Brownian motion (and therefore hasindependent in
rements), and we re
over from the previous result the rate n−1/2, that
ould be also obtained by applying the Berry-Esséen Theorem 1.1. This rate is still validfor H < 1/2. But, for H > 1/2, the rate in the Breuer-Major CLT be
omes n2H− 3
2 .2. To the authors knowledge, Theorem 1.6 and its generalizations are the �rst Berry-Esséenbounds ever established for the Breuer-Major CLT.3. To keep the length of this paper within limits, we do not derive the expli
it expression ofsome of the 
onstants (su
h as the quantity cH in formula (1.25)) 
omposing our bounds.As will be
ome 
lear later on, the exa
t value of these quantities 
an be dedu
ed by a
areful bookkeeping of the bounding 
onstants appearing at the di�erent stages of theproofs.1.4 PlanThe rest of the paper is organized as follows. In Se
tion 2 we re
all some notion of Malliavin
al
ulus; in Se
tion 3 we state and dis
uss our main bounds in Stein-type estimates for fun
-tionals of Gaussian �elds; Se
tion 4 
ontains an appli
ation to the Breuer-Major CLT. Proofsand further re�nements are 
olle
ted in Se
tion 5.2 Elements of Malliavin 
al
ulusThe reader is referred to [23℄ or [34℄ for any unexplained notion dis
ussed in this se
tion. Asin (1.22), we denote by X = {X(h) : h ∈ H} an isonormal Gaussian pro
ess over H. Byde�nition, X is a 
entered Gaussian family indexed by the elements of H and su
h that, forevery h, g ∈ H,

E
[
X(h)X(g)

]
= 〈h, g〉H. (2.26)8



As before, we use the notation L2(X) = L2(Ω, σ(X), P ). It is well-known (see again [34,Ch. 1℄ or [23℄) that any random variable F belonging to L2(X) admits the following 
haoti
expansion:
F =

∞∑

q=0

Iq(fq), (2.27)where I0(f0) := E[F ], the series 
onverges in L2 and the kernels fq ∈ H⊙q, q > 1, are uniquelydetermined by F . As already dis
ussed, in the parti
ular 
ase where H = L2(A,A , µ), where
(A,A ) is a measurable spa
e and µ is a σ-�nite and non-atomi
 measure, one has that
H⊙q = L2

s(A
q,A ⊗q, µ⊗q) is the spa
e of symmetri
 and square integrable fun
tions on Aq.Moreover, for every f ∈ H⊙q, Iq(f) 
oin
ides with the multiple Wiener-It� integral (of order

q) of f with respe
t to X (see [34, Ch. 1℄). Observe that a random variable of the type Iq(f),
f ∈ H⊙q , has �nite moments of all orders (see e.g. [23, Ch. VI℄). See again [34, Ch. 1℄ or [44℄for a 
onne
tion between multiple Wiener-It� and Hermite polynomials. For every q > 0, wewrite Jq to indi
ate the orthogonal proje
tion operator on the qth Wiener 
haos asso
iatedwith X, so that, if F ∈ L2(Ω,F , P ) is as in (2.27), then JqF = Iq(fq) for every q > 0.Let {ek, k ≥ 1} be a 
omplete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q , forevery r = 0, . . . , p ∧ q, the rth 
ontra
tion of f and g is the element of H⊗(p+q−2r) de�ned as

f ⊗r g =

∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir〉H⊗r . (2.28)Note that, in the parti
ular 
ase where H = L2(A,A , µ) (with µ non-atomi
), one has that
f ⊗r g =

∫

Ar

f(t1, . . . , tp−r, s1, . . . , sr) g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)dµ(s1) . . . dµ(sr).Moreover, f ⊗0 g = f ⊗ g equals the tensor produ
t of f and g while, for p = q, f ⊗p g =
〈f, g〉H⊗p . Note that, in general (and ex
ept for trivial 
ases), the 
ontra
tion f ⊗r g is not asymmetri
 element of H⊗(p+q−2r). The 
anoni
al symmetrization of f ⊗r g is written f⊗̃rg.We also have the useful multipli
ation formula: if f ∈ H⊙p and g ∈ H⊙q, then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (2.29)Let S be the set of all smooth 
ylindri
al random variables of the form
F = g

(
X(φ1), . . . ,X(φn)

)where n > 1, g : R
n → R is a smooth fun
tion with 
ompa
t support and φi ∈ H. TheMalliavin derivative of F with respe
t to X is the element of L2(Ω,H) de�ned as

DF =
n∑

i=1

∂g

∂xi

(
X(φ1), . . . ,X(φn)

)
φi.In parti
ular, DX(h) = h for every h ∈ H. By iteration, one 
an de�ne the mth derivative

DmF (whi
h is an element of L2(Ω,H⊗m)) for every m > 2. As usual, for m > 1, D
m,2 denotesthe 
losure of S with respe
t to the norm ‖ · ‖m,2, de�ned by the relation

‖F‖2
m,2 = E

[
F 2
]
+

m∑

i=1

E
[
‖DiF‖2

H⊗i

]
.9



Note that, if F 6= 0 and F is aequal to a �nite sum of multiple Wiener-It� integrals, then
F ∈ D

m,2 for everym > 1 and the law of F admits a density with respe
t to Lebesgue measure.The Malliavin derivative D veri�es the following 
hain rule: if ϕ : R
n → R is in C 1

b (thatis, the 
olle
tion of bounded 
ontinuously di�erentiable fun
tions with a bounded derivative)and if {Fi}i=1,...,n is a ve
tor of elements of D
1,2, then ϕ(F1, . . . , Fn) ∈ D

1,2 and
Dϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.Observe that the previous formula still holds when ϕ is a Lips
hitz fun
tion and the law of

(F1, . . . , Fn) has a density with respe
t to the Lebesgue measure on R
n (see e.g. Proposition1.2.3 in [34℄). We denote by δ the adjoint of the operator D, also 
alled the divergen
eoperator. A random element u ∈ L2(Ω,H) belongs to the domain of δ, noted Domδ, if, andonly if, it veri�es

|E〈DF, u〉H| 6 cu ‖F‖L2 for any F ∈ S ,where cu is a 
onstant depending uniquely on u. If u ∈ Domδ, then the random variable δ(u)is de�ned by the duality relationship (
ustomarily 
alled �integration by parts formula�):
E(Fδ(u)) = E〈DF, u〉H, (2.30)whi
h holds for every F ∈ D

1,2. One sometimes needs the following property: for every
F ∈ D

1,2 and every u ∈ Domδ su
h that Fu and Fδ(u) + 〈DF, u〉H are square integrable, onehas that Fu ∈ Domδ and
δ(Fu) = Fδ(u) − 〈DF, u〉H. (2.31)The operator L, a
ting on square integrable random variables of the type (2.27), is de�nedthrough the proje
tion operators {Jq}q>0 as L =

∑∞
q=0 −qJq, and is 
alled the in�nitesimalgenerator of the Ornstein-Uhlenbe
k semigroup. It veri�es the following 
ru
ial property: arandom variable F is an element of DomL (= D

2,2) if, and only if, F ∈ DomδD (i.e. F ∈ D
1,2and DF ∈ Domδ), and in this 
ase: δDF = −LF. Note that a random variable F as in (2.27)is in D

1,2 (resp. D
2,2) if, and only if,

∞∑

q=1

q‖fq‖2
H⊗q <∞ (resp. ∞∑

q=1

q2‖fq‖2
H⊗q <∞),and also E[‖DF‖2

H

]
=
∑

q>1 q‖fq‖2
H⊗q . If H = L2(A,A , µ) (with µ non-atomi
), then thederivative of a random variable F as in (2.27) 
an be identi�ed with the element of L2(A×Ω)given by

DaF =

∞∑

q=1

qIq−1

(
fq(·, a)

)
, a ∈ A. (2.32)We also de�ne the operator L−1, whi
h is the inverse of L, as follows: for every F ∈ L2(X)with zero mean, we set L−1F =
∑

q>1 −1
qJq(F ). Note that L−1 is an operator with valuesin D

2,2. The following Lemma 
ontains two statements: the �rst one (formula (2.33)) is animmediate 
onsequen
e of the de�nition of L and of the relation δD = −L, whereas the se
ond(formula (2.34)) 
orresponds to Lemma 2.1 in [32℄.10



Lemma 2.1 Fix an integer q > 2 and set F = Iq(f), with f ∈ H⊙q. Then,
δDF = qF. (2.33)Moreover, for every integer s > 0,
E
(
F s‖DF‖2

H

)
=

q

s+ 1
E
(
F s+2

)
. (2.34)3 Stein's method and integration by parts on Wiener spa
e3.1 Gaussian approximationsOur �rst result provides expli
it bounds for the normal approximation of random variablesthat are Malliavin derivable. Although its proof is quite easy to obtain, the following statementwill be 
entral for the rest of the paper.Theorem 3.1 Let Z ∼ N (0, 1), and let F ∈ D

1,2 be su
h that E(F ) = 0. Then, the followingbounds are in order:
dW(F,Z) 6 E[(1 − 〈DF,−DL−1F 〉H)2]1/2, (3.35)
dFM(F,Z) 6 4E[(1 − 〈DF,−DL−1F 〉H)2]1/2. (3.36)If, in addition, the law of F is absolutely 
ontinuous with respe
t to Lebesgue measure, onehas that
dKol(F,Z) 6 E[(1 − 〈DF,−DL−1F 〉H)2]1/2, (3.37)
dTV(F,Z) 6 2E[(1 − 〈DF,−DL−1F 〉H)2]1/2, (3.38)Proof. Start by observing that one 
an write F = LL−1F = −δDL−1F . Now let f bea real di�erentiable fun
tion. By using the integration by parts formula and the fa
t that

Df(F ) = f ′(F )DF (note that, for this formula to hold when f is only a.e. di�erentiable, oneneeds F to have an absolutely 
ontinuous law, see Proposition 1.2.3 in [34℄), we dedu
e
E(Ff(F )) = E[f ′(F )〈DF,−DL−1F 〉H].It follows that E[f ′(F ) − Ff(F )] = E(f ′(F )(1 − 〈DF,−DL−1F 〉H)) so that relations (3.35)�(3.38) 
an be dedu
ed from (1.8)�(1.11) and the Cau
hy-S
hwarz inequality.

2We shall now prove that the bounds appearing in the statement of Theorem 3.1 
an beexpli
itly 
omputed, whenever F belongs to a �xed Wiener 
haos.Proposition 3.2 Let q > 2 be an integer, and let F = Iq(f), where f ∈ H⊙q. Then,
〈DF,−DL−1F 〉H = q−1‖DF‖2

H
, and

E[(1 − 〈DF,−DL−1F 〉H)2] = E[(1 − q−1‖DF‖2
H)2] (3.39)

= (1 − q! ‖f‖2
H⊗q)

2 + q2
q−1∑

r=1

(2q − 2r)!(r − 1)!2
(
q − 1

r − 1

)4

‖f⊗̃rf‖2
H⊗2(q−r) (3.40)

6 (1 − q! ‖f‖2
H⊗q)2 + q2

q−1∑

r=1

(2q − 2r)!(r − 1)!2
(
q − 1

r − 1

)4

‖f ⊗r f‖2
H⊗2(q−r) . (3.41)11



Proof. The equality 〈DF,−DL−1F 〉H = q−1‖DF‖2
H
is an immediate 
onsequen
e of therelation L−1Iq(f) = −q−1Iq(f). From the multipli
ation formulae between multiple sto
hasti
integrals, see (2.29), one dedu
es that

‖D[Iq(f)]‖2
H = qq! ‖f‖2

H⊗q + q2
q−1∑

r=1

(r − 1)!

(
q − 1

r − 1

)2

I2(q−r)

(
f⊗̃rf

) (3.42)(see also [35, Lemma 2℄). We therefore obtain (3.40) by using the orthogonality and isometri
properties of multiple sto
hasti
 integrals. The inequality in (3.41) is just a 
onsequen
e ofthe relation ‖f⊗̃rf‖H⊗2(q−r) 6 ‖f ⊗r f‖H⊗2(q−r) .
2The previous result should be 
ompared with the forth
oming Theorem 3.3, where we
olle
t the main �ndings of [35℄ and [36℄. In parti
ular, the 
ombination of Proposition 3.2and Theorem 3.3 shows that, for every (normalized) sequen
e {Fn : n > 1} living in a �xedWiener 
haos, the bounds given in (3.35)�(3.36) are �optimal� with respe
t to the 
onvergen
ein distribution towards Z ∼ N (0, 1), in the sense that these bounds 
onverge to zero if, andonly if, Fn 
onverges in distribution to Z.Theorem 3.3 ([35, 36℄) Fix q > 2, and 
onsider a sequen
e {Fn : n > 1} su
h that Fn =

Iq(fn), n > 1, where fn ∈ H⊙q. Assume moreover that E[F 2
n ] = q!‖fn‖2

H⊗q → 1. Then, thefollowing four 
onditions are equivalent, as n→ ∞:(i) Fn 
onverges in distribution to Z ∼ N (0, 1);(ii) E[F 4
n ] → 3;(iii) for every r = 1, ..., q − 1, ‖fn ⊗r fn‖H⊗2(q−r) → 0;(iv) ‖DFn‖2

H
→ q in L2.The impli
ations (i) ↔ (ii) ↔ (iii) have been �rst proved in [36] by means of sto
hasti

al
ulus te
hniques. The fa
t that (iv) is equivalent to either one of 
onditions (i)�(iii) isproved in [35℄. Note that Theorem 3.1 and Proposition 3.2 above provide an alternate proofof the impli
ations (iii) → (iv) → (i). The impli
ation (ii) → (i) 
an be seen as a drasti
simpli�
ation of the �method of moments and 
umulants�, that is a 
ustomary tool in orderto prove limit theorems for fun
tionals of Gaussian �elds (see e.g. [4, 6, 17, 25, 48℄). In [38℄one 
an �nd a multidimensional version of Theorem 3.3.Remark 3.4 Theorem 3.3 and its generalizations have been applied to a variety frame-works, su
h as: p-variations of sto
hasti
 integrals with respe
t to Gaussian pro
esses [2, 11℄,quadrati
 fun
tionals of bivariate Gaussian pro
esses [13℄, self-interse
tion lo
al times of fra
-tional Brownian motion [22℄, approximation s
hemes for s
alar fra
tional di�erential equations[30℄, high-frequen
y CLTs for random �elds on homogeneous spa
es [27, 28, 37℄, needlets anal-ysis on the sphere [1℄, estimation of self-similarity orders [54℄, power variations of iteratedBrownian motions [33℄. We expe
t that the new bounds proved in Theorem 3.1 and Propo-sition 3.2 will lead to further re�nements of these results. See Se
tion 4 for appli
ations andexamples. 12



As shown in the following statement, the 
ombination of Proposition 3.2 and Theorem3.3 implies that, on any �xed Wiener 
haos, the Kolmogorov, total variation and Wassersteindistan
es metrize the 
onvergen
e in distribution towards Gaussian random variables. Othertopologi
al 
hara
terizations of the set of laws of random variables belonging to a �xed sumof Wiener 
haoses are dis
ussed in [23, Ch. VI℄.Corollary 3.5 Let the assumptions and notation of Theorem 3.3 prevail. Then, the fa
tthat Fn 
onverges in distribution to Z ∼ N (0, 1) is equivalent to either one of the following
onditions:(a) dKol(Fn, Z) → 0;(b) dTV(Fn, Z) → 0;(
) dW(Fn, Z) → 0.Note that the previous result is not trivial, sin
e the topologies indu
ed by dKol, dTV and
dW are stronger than 
onvergen
e in distribution.Remark 3.6 (Mehler's formula and Stein's method, I). In [8, Lemma 5.3℄, Chatterjee hasproved the following result (we use a notation whi
h is slightly di�erent from the originalstatement). Let Y = g(V ), where V = (V1, ..., Vn) is a ve
tor of 
entered i.i.d. standardGaussian random variables, and g : R

n → R is a smooth fun
tion su
h that: (i) g and itsderivatives have subexponential growth at in�nity, (ii) E(g(V )) = 0, and (iii) E(g(V )2) = 1.Then, for any Lips
hitz fun
tion f , one has that
E[Y f(Y )] = E[S(V )f ′(Y )], (3.43)where, for every v = (v1, ..., vn) ∈ R

n,
S(v) =

∫ 1

0

1

2
√
t
E

[
n∑

i=1

∂g

∂vi
(v)

∂g

∂vi
(
√
tv +

√
1 − tV )

]
dt, (3.44)so that, for instan
e, for Z ∼ N (0, 1) and by using (1.9), Lemma 1.2 (iii), (1.7) and Cau
hy-S
hwarz inequality,

dTV(Y,Z) 6 2E[(S(V ) − 1)2]1/2. (3.45)We shall prove that (3.43) is a very spe
ial 
ase of (1.23). Observe �rst that, without lossof generality, we 
an assume that Vi = X(hi), where X is an isonormal pro
ess over someHilbert spa
e of the type H = L2(A,A , µ) and {h1, ..., hn} is an orthonormal system in
H. Sin
e Y = g(V1, . . . , Vn), we have DaY =

∑n
i=1

∂g
∂xi

(V )hi(a). On the other hand, sin
e
Y is 
entered and square integrable, it admits a 
haoti
 representation of the form Y =∑

q>1 Iq(ψq). This implies in parti
ular that DaY =
∑∞

q=1 qIq−1(ψq(a, ·)). Moreover, one hasthat −L−1Y =
∑

q>1
1
q Iq(ψq), so that −DaL

−1Y =
∑

q>1 Iq−1(ψq(a, ·)). Now, let Tz, z > 0,denote the (in�nite dimensional) Ornstein-Uhlenbe
k semigroup, whose a
tion on randomvariables F ∈ L2(X) is given by Tz(F ) =
∑

q>0 e−qzJq(F ). We 
an write
∫ 1

0

1

2
√
t
Tln(1/

√
t)(DaY )dt =

∫ ∞

0
e−zTz(DaY )dz =

∑

q>1

1

q
Jq−1(DaY )

=
∑

q>1

Iq−1(ψq(a, ·)) = −DaL
−1Y . (3.46)13



Now re
all that Mehler's formula (see e.g. [34, formula (1.54)℄) implies that, for every fun
tion
f with subexponential growth,

Tz(f(V )) = E
[
f(e−zv +

√
1 − e−2zV )

]∣∣
v=V

, z > 0.In parti
ular, by applying this last relation to the partial derivatives ∂g
∂vi

, i = 1, ..., n, wededu
e from (3.46) that
∫ 1

0

1

2
√
t
Tln(1/

√
t)(DaY )dt =

n∑

i=1

hi(a)

∫ 1

0

1

2
√
t
E
[ ∂g
∂vi

(
√
t v +

√
1 − t V )

]
dt
∣∣
v=V

.Consequently, (3.43) follows, sin
e
〈DY,−DL−1Y 〉H =

〈
n∑

i=1

∂g

∂vi
(V )hi,

n∑

i=1

∫ 1

0

1

2
√
t
E
[ ∂g
∂vi

(
√
t v +

√
1 − t V )

]
dt
∣∣
v=V

hi

〉

H

= S(V ).

2The following result 
on
erns �nite sums of multiple integrals.Proposition 3.7 For s > 2, �x s integers 2 6 q1 < . . . < qs. Consider a sequen
e of theform
Zn =

s∑

i=1

Iqi
(f i

n), n > 1,where f i
n ∈ H⊙qi . Set
I =

{
(i, j, r) ∈ {1, . . . , s}2 × N : 1 6 r 6 qi ∧ qj and (r, qi, qj) 6= (qi, qi, qi)

}
.Then,

E[(1 − 〈DZn,−DL−1Zn〉H)2] 6 2

(
1 −

s∑

i=1

qi!‖f i
n‖2

H⊗qi

)2

+2s2
∑

(i,j,r)∈I

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!

×‖f i
n ⊗qi−r f

i
n‖H⊗2r‖f j

n ⊗qj−r f
j
n‖H⊗2r .In parti
ular, if (as n → ∞) E[Z2

n] =
∑s

i=1 qi!‖f i
n‖2

H⊗qi
−→ 1 and if, for any i = 1, . . . , sand r = 1, . . . , qi − 1, one has that ‖f i

n ⊗r f
i
n‖H⊗2(qi−r) −→ 0 , then Zn

Law−→ Z ∼ N (0, 1) as
n→ ∞, and the inequalities in Theorem 3.1 allow to asso
iate bounds with this 
onvergen
e.Remark 3.8 1. By using Proposition 3.7, it is possible to prove bounds for limit theoremsinvolving the Gaussian approximation of in�nite sums of multiple integrals, su
h as forinstan
e the CLT proved in [22, Th. 4℄.14



2. Note that, to obtain the 
onvergen
e result stated in Proposition 3.7, one does notneed to suppose that the quantity E[Iq(fi)
2] = qi!‖f i

n‖2
H⊗qi

is 
onvergent for every i.One should 
ompare this �nding with the CLTs proved in [38℄, as well as the Gaussianapproximations established in [37℄.Proof of Proposition 3.7. Observe �rst that, without loss of generality, we 
an assume that
X is an isonormal pro
ess over some Hilbert spa
e of the type H = L2(A,A , µ). For every
a ∈ A, it is immediately 
he
ked that

DaZn =
s∑

i=1

qiIqi−1

(
f i

n(·, a)
)and

−Da(L
−1Zn) = Da

(
s∑

i=1

1

qi
Iqi

(f i
n)

)
=

s∑

i=1

Iqi−1

(
f i

n(·, a)
)
.This yields, using in parti
ular the multipli
ation formula (2.29):

〈DZn,−DL−1Zn〉H

=
s∑

i,j=1

qi

∫

A
Iqi−1

(
f i

n(·, a)
)
Iqj−1

(
f j

n(·, a)
)
µ(da)

=

s∑

i,j=1

qi

qi∧qj−1∑

r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r

(∫

A
f i

n(·, a) ⊗r f
j
n(·, a)µ(da)

)

=

s∑

i,j=1

qi

qi∧qj−1∑

r=0

r!

(
qi − 1

r

)(
qj − 1

r

)
Iqi+qj−2−2r

(
f i

n ⊗r+1 f
j
n

)

=
s∑

i,j=1

qi

qi∧qj∑

r=1

(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f i

n ⊗r f
j
n

)

=

s∑

i=1

qi!‖f i
n‖2

H⊗qi
+

∑

(i,j,r)∈I

qi(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f i

n ⊗r f
j
n

)
.

15



Thus, by using (among others) inequalities of the type (a1 + . . .+ av)
2 6 v(a2

1 + . . .+ a2
v), theisometri
 properties of multiple integrals as well ‖f⊗̃rg‖ 6 ‖f ⊗r g‖, we obtain

E
(
[〈DZn,−DL−1Zn〉H − 1]2

)

6 2

(
1 −

s∑

i=1

qi!‖f i
n‖2

H⊗qi

)2

+2E




∑

(i,j,r)∈I

qi(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f i

n ⊗r f
j
n

)



2

6 2

(
1 −

s∑

i=1

qi!‖f i
n‖2

H⊗qi

)2

+2s2
∑

(i,j,r)∈I

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!‖f i
n ⊗r f

j
n‖2

H
⊗qi+qj−2r

6 2

(
1 −

s∑

i=1

qi!‖f i
n‖2

H⊗qi

)2

+2s2
∑

(i,j,r)∈I

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!

×‖f i
n ⊗qi−r f

i
n‖H⊗2r‖f j

n ⊗qj−r f
j
n‖H⊗2r ,the last inequality being a 
onsequen
e of the (easily veri�ed) relation

‖f i
n ⊗r f

j
n‖2

H
⊗qi+qj−2r = 〈f i

n ⊗qi−r f
i
n, f

j
n ⊗qj−r f

j
n〉H⊗2r .

23.2 A property of 〈DF,−DL−1F 〉HBefore dealing with Gamma approximations, we shall prove the a.s. positivity of a spe
i�
proje
tion of the random variable 〈DF,−DL−1F 〉H appearing in Theorem 3.1. This fa
t willbe used in the proof of the main result of the next se
tion.Proposition 3.9 Let F ∈ D
1,2. Then, P -a.s.,

E[〈DF,−DL−1F 〉H|F ] > 0. (3.47)Proof. Let g be a non-negative real fun
tion, and set G(x) =
∫ x
0 g(t)dt, with the usual
onvention ∫ x

0 = −
∫ 0
x for x < 0. Sin
e G is in
reasing and vanishing at zero, we have

xG(x) > 0 for all x ∈ R. In parti
ular, E(FG(F )) > 0. Moreover,
E[F G(F )] = E[〈DF,−DL−1F 〉H g(F )] = E[E[〈DF,−DL−1F 〉H|F ]g(F )].We therefore dedu
e that

E[E[〈DF,−DL−1F 〉H|F ]1A] > 0for any σ(F )-measurable set A. This implies the desired 
on
lusion.16



2Remark 3.10 A

ording to Goldstein and Reinert [19℄, for F as in the previous statement,there exists a random variable F ∗ having the F -zero biased distribution, that is, F ∗ is su
hthat, for every absolutely 
ontinuous fun
tion f ,
E[f ′(F ∗)] = E[Ff(F )].By the 
omputations made in the previous proof, one also has that

E[g(F ∗)] = E[〈DF,−DL−1F 〉Hg(F )],for any real-valued and smooth fun
tion g. This implies, in parti
ular, that the 
onditionalexpe
tation E[〈DF,−DL−1F 〉H|F ] is a version of the Radon-Nikodym derivative of the lawof F ∗ with respe
t to the law of F , whenever the two laws are equivalent.3.3 Gamma approximationsWe now 
ombine Malliavin 
al
ulus with the Gamma approximations dis
ussed in the se
ondpart of Se
tion 1.2.Theorem 3.11 Fix ν > 0 and let F (ν) have a 
entered Gamma distribution with parameter
ν. Let G ∈ D

1,2 be su
h that E(G) = 0 and the law of G is absolutely 
ontinuous with respe
tto the Lebesgue measure. Then:
dH1

(G,F (ν)) 6 K1E[(2ν + 2G− 〈DG,−DL−1G〉H)2]1/2, (3.48)
dH2(G,F (ν)) 6 K2E[(2ν + 2G− 〈DG,−DL−1G〉H)2]1/2, (3.49)where H1 and H2 are de�ned in (1.14)�(1.15), K1 := max{1, 1/ν+2/ν2} andK2:=max{

√
2π/ν,

1/ν + 2/ν2}.Proof. We will only prove (3.48), the proof of (3.49) being analogous. Fix ν > 0. Thanks to(1.20) and (1.23) (in the 
ase Y = G) and by applying Cau
hy-S
hwarz, we dedu
e that
dH1(G,F (ν)) 6 sup

F1

|E[f ′(G)(2(ν +G)+ − 〈DG,−DL−1G〉H)|

6 K1 × E[(2(ν +G)+ − 〈DG,−DL−1G〉H)2]1/2

6 K1 × E[(2(ν +G) − 〈DG,−DL−1G〉H)2]1/2,where the last inequality is a 
onsequen
e of the fa
t that E[〈DG,−DL−1G〉H|G] > 0 (thanksto Proposition 3.9).
2Remark 3.12 (Mehler's formula and Stein's method, II). De�ne Y = g(V ) as in Remark3.6. Then, sin
e (3.44) and (3.45) are in order, one dedu
es from Theorem 3.11 that, for every

ν > 0,
dH1

(Y, F (ν)) 6 K1E[(2ν + 2Y − S(V ))2]1/2.An analogous estimate holds for dH2 , when applied to the 
ase where ν > 1 is an integer.17



We will now 
onne
t the previous results to the main �ndings of [32℄. To do this, we shallprovide expli
it estimates of the bounds appearing in Theorem 3.11, in the 
ase where Gbelongs to a �xed Wiener 
haos of even order q.Proposition 3.13 Let q > 2 be an even integer, and let G = Iq(g), where g ∈ H⊙q. Then,
E[(2ν + 2G− 〈DG,−DL−1G〉H)2] = E[(2ν + 2G − q−1‖DG‖2

H)2] (3.50)
6 (2ν − q! ‖g‖2

H⊗q)
2 + (3.51)

+q2
∑

r∈{1,...,q−1}

r 6=q/2

(2q − 2r)!(r − 1)!2
(
q − 1

r − 1

)4

‖g ⊗r g‖2
H⊗2(q−r) +

+4q!
∥∥c−1

q × g⊗̃q/2g − g
∥∥2

H⊗q , (3.52)where
cq :=

1

(q/2)!
( q−1
q/2−1

)2 =
4

(q/2)!
( q
q/2

)2 . (3.53)Proof. By using (3.42) we dedu
e that
q−1‖DG‖2

H − 2ν − 2G = (q! ‖g‖2
H⊗q − 2ν) +

+ q
∑

r∈{1,...,q−1}

r 6=q/2

(r − 1)!

(
q − 1

r − 1

)2

I2(q−r)

(
g⊗̃rg

)
+

+q(q/2 − 1)!

(
q − 1

q/2 − 1

)
Iq(g⊗̃q/2g − 2g).The 
on
lusion is obtained by using the isometri
 properties of multiple Wiener-It� integrals,as well as the relation ‖g⊗̃rg‖H⊗2(q−r) 6 ‖g⊗r g‖H⊗2(q−r) , for every r ∈ {1, ..., q − 1} su
h that

r 6= q/2.
2By using Proposition 3.13, we immediately re
over the impli
ations (iv) → (iii) → (i) in thestatement of the following result, re
ently proved in [32, Th. 1.2℄.Theorem 3.14 ([32℄) Let ν > 0 and let F (ν) have a 
entered Gamma distribution withparameter ν. Fix an even integer q > 2, and de�ne cq a

ording to (3.53). Consider asequen
e of the type Gn = Iq(gn), where n > 1 and gn ∈ H⊙q, and suppose that

lim
n→∞

E
[
G2

n

]
= lim

n→∞
q!‖gn‖2

H⊗q = 2ν.Then, the following four 
onditions are equivalent:(i) as n→ ∞, the sequen
e (Gn)n>1 
onverges in distribution to F (ν);(ii) limn→∞E[G4
n] − 12E[G3

n] = 12ν2 − 48ν;(iii) as n→ ∞, ‖DGn‖2
H
− 2qGn −→ 2qν in L2.(iv) limn→∞ ‖gn⊗̃q/2gn − cq × gn‖H⊗q = 0, where cq is given by (3.53), and limn→∞ ‖gn ⊗r

gn‖H⊗2(q−r) = 0, for every r = 1, ..., q − 1 su
h that r 6= q/2.18



Observe that E(F (ν)2) = 2ν, E(F (ν)3) = 8ν and E(F (ν)4) = 48ν + 12ν2, so that theimpli
ation (ii) → (i) in the previous statement 
an be seen as a further simpli�
ation ofthe method of moments and 
umulants, as applied to non-
entral limit theorems (see e.g.[49℄, and the referen
es therein, for a survey of 
lassi
 non-
entral limit theorems). Also, the
ombination of Proposition 3.13 and Theorem 3.14 shows that, inside a �xed Wiener 
haosof even order, one has that: (i) dH1 metrizes the weak 
onvergen
e towards 
entered Gammadistributions, and (ii) dH2 metrizes the weak 
onvergen
e towards 
entered χ2 distributionswith arbitrary degrees of freedom.The following result 
on
erns the Gamma approximation of a sum of two multiple integrals.Note, at the 
ost of a quite heavy notation, one 
ould easily establish analogous estimates forsums of three or more integrals. The reader should 
ompare this result with Proposition 3.7.Proposition 3.15 Fix two real numbers ν1, ν2 > 0, as well as two even integers 2 6 q1 < q2.Set ν = ν1 + ν2 and suppose (for the sake of simpli
ity) that q2 > 2q1. Consider a sequen
e ofthe form
Zn = Iq1(f

1
n) + Iq2(f

2
n), n > 1,where f i

n ∈ H⊙qi . Set
J =

{
(i, j, r) ∈ {1, 2}2 × N : 1 6 r 6 qi ∧ qj and, whenever i = j, r 6= qi and r 6= qi

2

}
.Then

E[(2Zn + 2ν − 〈DZn,−DL−1Zn〉H)2]

6 3


2ν −

∑

i=1,2

qi!‖f i
n‖2

H⊗qi




2

+ 24
∑

i=1,2

c−2
qi
qi! ‖f i

n⊗̃qi/2f
i
n − cqi

× f i
n‖2

H⊗qi

+12
∑

(i,j,r)∈J

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)! (3.54)
×‖f i

n ⊗qi−r f
i
n‖H⊗2r‖f j

n ⊗qj−r f
j
n‖H⊗2r .In parti
ular, if(i) E[Z2

n] =
∑

i=1,2 qi!‖f i
n‖2

H⊗qi
−→ 2ν as n→ ∞,(ii) for i = 1, 2, ‖f i

n⊗̃qi/2f
i
n − cqi

× f i
n‖H⊗qi −→ 0 as n→ ∞, where cqi

is de�ned in Theorem3.14,(iii) for any i = 1, 2 and r = 1, . . . , qi − 1 su
h that r 6= qi

2 , ‖f i
n ⊗r f

i
n‖H⊗2(qi−r) −→ 0 as

n→ ∞,then Zn
Law−→ F (ν) as n → ∞, and the 
ombination of Theorem 3.1 and (3.54) allows toasso
iate expli
it bounds with this 
onvergen
e.Proof of Proposition 3.15. We have (see the proof of Proposition 3.7)
〈DZn,−DL−1Zn〉H − 2Zn − 2ν

=



∑

i=1,2

qi!‖f i
n‖2

H⊗qi
− 2ν


+

∑

i=1,2

2 c−1
qi
Iqi

(f i
n⊗̃qi/2f

i
n − cqi

× f i
n)

+
∑

(i,j,r)∈J

qi(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f i

n ⊗r f
j
n

)
.19



Thus
E
(
[〈DZn,−DL−1Zn〉H − 2Zn − 2ν]2

)

6 3


2ν −

∑

i=1,2

qi!‖f i
n‖2

H⊗qi




2

+ 24
∑

i=1,2

c−2
qi
qi! ‖f i

n⊗̃qi/2f
i
n − cqi

× f i
n‖2

H⊗qi

+3E




∑

(i,j,r)∈J

qi(r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)
Iqi+qj−2r

(
f i

n ⊗r f
j
n

)



2

6 3


2ν −

∑

i=1,2

qi!‖f i
n‖2

H⊗qi




2

+ 24
∑

i=1,2

c−2
qi
qi! ‖f i

n⊗̃qi/2f
i
n − cqi

× f i
n‖2

H⊗qi

+12
∑

(i,j,r)∈J

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!‖f i
n ⊗r f

j
n‖2

H
⊗qi+qj−2r

6 3


2ν −

∑

i=1,2

qi!‖f i
n‖2

H⊗qi




2

+ 24
∑

i=1,2

c−2
qi
qi! ‖f i

n⊗̃qi/2f
i
n − cqi

× f i
n‖2

H⊗qi

+12
∑

(i,j,r)∈J

q2i (r − 1)!2
(
qi − 1

r − 1

)2(qj − 1

r − 1

)2

(qi + qj − 2r)!

×‖f i
n ⊗qi−r f

i
n‖H⊗2r‖f j

n ⊗qj−r f
j
n‖H⊗2r .

24 Berry-Esséen bounds in the Breuer-Major CLTIn this se
tion, we use our main results in order to derive an expli
it Berry-Esséen bound for the
elebrated Breuer-Major CLT for Gaussian-subordinated random sequen
es. For simpli
ity,we fo
us on sequen
es that 
an be represented as Hermite-type fun
tions of the (normalized)in
rements of a fra
tional Brownian motion. Our framework in
lude examples of Gaussiansequen
es whose auto
ovarian
e fun
tions display long dependen
e. Plainly, the te
hniquesdeveloped in this paper 
an also a

ommodate the analysis of more general transformations(for instan
e, obtained from fun
tions with an arbitrary Hermite rank � see [50℄), as well asalternative 
ovarian
e stru
tures.4.1 General setupWe re
all that a fra
tional Brownian motion (fBm) B = {Bt : t ∈ [0, 1]}, of Hurst index
H ∈ (0, 1), is a 
entered Gaussian pro
ess, started from zero and with 
ovarian
e fun
tion
E(BsBt) = RH(s, t), where

RH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
; s, t ∈ [0, 1].If H = 1/2, then RH(s, t) = min(s, t) and B is a standard Brownian motion. For any 
hoi
eof the Hurst parameter H ∈ (0, 1), the Gaussian spa
e generated by B 
an be identi�ed with20



an isonormal Gaussian pro
ess of the type X = {X(h) : h ∈ H}, where the real and separableHilbert spa
e H is de�ned as follows: (i) denote by E the set of all R-valued step fun
tionson [0, 1], (ii) de�ne H as the Hilbert spa
e obtained by 
losing E with respe
t to the s
alarprodu
t 〈
1[0,t],1[0,s]

〉
H

= RH(t, s).In parti
ular, with su
h a notation one has that Bt = X(1[0,t]). Note that, if H = 1/2,then H = L2[0, 1]; when H > 1/2, the spa
e H 
oin
ides with the spa
e of distributions
f su
h that s 1

2
−HI

H− 1
2

0+ (f(u)uH− 1
2 )(s) belongs to L2[0, 1]; when H < 1/2 one has that H is

I
H− 1

2
0+ (L2[0, 1]). Here, I H− 1

2
0+ denotes the a
tion of the fra
tional Riemann-Liouville operator,de�ned as

I
H− 1

2
0+ f(x) =

1

Γ(H − 1
2 )

∫ x

0
(x− y)H− 3

2 f(y)dy.The reader is referred e.g. to [34℄ for more details on fBm and fra
tional operators.4.2 A Berry-Esséen boundIn what follows, we will be interested in the asymptoti
 behaviour (as n → ∞) of randomve
tors that are subordinated to the array
Vn,H = {nH(B(k+1)/n −Bk/n) : k = 0, ..., n − 1}, n > 1. (4.55)Note that, for every n > 1, the law of Vn,H in (4.55) 
oin
ides with the law of the �rst n instantsof a 
entered stationary Gaussian sequen
e indexed by {0, 1, 2, ...} and with auto
ovarian
efun
tion given by

ρH(k) =
1

2
(|k + 1|2H + |k − 1|2H − 2|k|2H), k ∈ Z(in parti
ular, ρH(0) = 1 and ρH(k) = ρH(−k)). From this last expression, one dedu
es thatthe 
omponents of the ve
tor Vn,H are: (a) i.i.d. for H = 1/2, (b) negatively 
orrelated for

H ∈ (0, 1/2) and (
) positively 
orrelated for H ∈ (1/2, 1). In parti
ular, if H ∈ (1/2, 1), then∑
k ρH(k) = +∞: in this 
ase, one 
ustomarily says that ρH exhibits long-range dependen
e(or, equivalently, long memory � see e.g. [52℄ for a general dis
ussion of this point).Now denote by Hq, q > 2, the qth Hermite polynomial, de�ned as

Hq(x) =
(−1)q

q!
e

x2

2
dq

dxq
e−

x2

2 , x ∈ R.For instan
e, H2(x) = (x2 − 1)/2, H3(x) = (x3 − 3x)/6, and so on. Finally, set
σ =

√
1

q!

∑

t∈Z

ρH(t)q,and de�ne
Zn =

1

σ
√
n

n−1∑

k=0

Hq

(
nH(B(k+1)/n −Bk/n)

)
=
nqH− 1

2

q!σ

n−1∑

k=0

Iq(δ
⊗q
k/n), (4.56)21



where Iq denotes the qth multiple integral with respe
t to the isonormal pro
ess asso
iatedwith B (see Se
tion 2). For simpli
ity, here (and for the rest of this se
tion) we write δk/ninstead of 1[k/n,(k+1)/n], and also δ⊗q
k/n = δk/n ⊗ · · · ⊗ δk/n (q times). Note that in (4.56) wehave used the standard relation: q!Hq(h) = Iq(h

⊗q) for every h ∈ H su
h that ‖h‖H = 1 (seee.g. [34, Ch. 1℄).Now observe that, for every q > 2, one has that ∑t |ρH(t)|q < ∞ if, and only if, H ∈
(0, 2q−1

2q ). Moreover, in this 
ase, E(Z2
n) → 1 as n → ∞. As a 
onsequen
e, a

ording toBreuer and Major's well-known result [4, Theorem 1℄, as n→ ∞

Zn → Z ∼ N (0, 1) in distribution.To the authors' knowledge, the following statement 
ontains the �rst Berry-Esséen bound everproved for the Breuer-Major CLT:Theorem 4.1 As n→ ∞, Zn 
onverges in law towards Z ∼ N (0, 1). Moreover, there existsa 
onstant cH , depending uniquely on H, su
h that, for any n > 1:
sup
z∈R

|P (Zn 6 z) − P (Z 6 z)| 6 cH ×





n−
1
2 if H ∈ (0, 1

2 ]

nH−1 if H ∈ (1
2 ,

2q−3
2q−2 ]

nqH−q+ 1
2 if H ∈ (2q−3

2q−2 ,
2q−1
2q )Remark 4.2 1. Theorem 1.6 (see the Introdu
tion) 
an be proved by simply setting q = 2in Theorem 4.1. Observe that in this 
ase one has 2q−3

2q−2 = 1
2 , so that the middle line inthe previous display be
omes immaterial.2. When H > 2q−1

2q , the sequen
e Zn does not 
onverge in law towards a Gaussian randomvariable. Indeed, in this 
ase a non-
entral limit theorem takes pla
e. See e.g. Nourdinet al. [31, Th. 1℄ or Taqqu [50, 51℄.3. As dis
ussed in [4, p. 429℄, it is in general not possible to derive CLTs su
h as the one inTheorem 4.1 from mixing-type 
onditions. In parti
ular, it seems unfeasible to dedu
eTheorem 4.1 from any mixing 
hara
terization of the in
rements of fra
tional Brownianmotion (as the one proved e.g. by Pi
ard in [39, Theorem A.1℄). See e.g. Tikhomirov[53℄ for general derivations of Berry-Esséen bounds from strong mixing 
onditions.4.3 Proof of Theorem 4.1We have
DZn =

nqH− 1
2

(q − 1)!σ

n−1∑

k=0

Iq−1(δ
⊗q−1
k/n )δk/n,hen
e

‖DZn‖2
H =

n2qH−1

(q − 1)!2σ2

n−1∑

k,ℓ=0

Iq−1(δ
⊗q−1
k/n )Iq−1(δ

⊗q−1
ℓ/n )〈δk/n, δℓ/n〉H.

22



By the multipli
ation formula (2.29):
Iq−1(δ

⊗q−1
k/n )Iq−1(δ

⊗q−1
ℓ/n ) =

q−1∑

r=0

r!

(
q − 1

r

)2

I2q−2−2r

(
δ⊗q−1−r
k/n ⊗̃δq−1−r

ℓ/n

)
〈δk/n, δℓ/n〉rH.Consequently,

‖DZn‖2
H =

n2qH−1

(q − 1)!2σ2

q−1∑

r=0

r!

(
q − 1

r

)2 n−1∑

k,ℓ=0

I2q−2−2r

(
δ⊗q−1−r
k/n ⊗̃δq−1−r

ℓ/n

)
〈δk/n, δℓ/n〉r+1

H
.Thus, we 
an write

1

q
‖DZn‖2

H − 1 =

q−1∑

r=0

Ar(n) − 1where
Ar(n) =

r!
(
q−1

r

)2

q(q − 1)!2σ2
n2qH−1

n−1∑

k,ℓ=0

I2q−2−2r

(
δ⊗q−1−r
k/n ⊗̃δq−1−r

ℓ/n

)
〈δk/n, δℓ/n〉r+1

H
.We will need the following easy Lemma (the proof is omitted). Here and for the rest of theproof of Theorem 4.1, the notation an ≍ bn means that supn>1 |an|/|bn| <∞.Lemma 4.3 1. We have ρH(n) ≍ |n|2H−2.2. For any α ∈ R, we have

n−1∑

k=1

kα ≍ 1 + nα+1.3. If α ∈ (−∞,−1), we have
∞∑

k=n

kα ≍ nα+1.By using elementary 
omputations (in parti
ular, observe that n2H〈δk/n, δℓ/n〉H = ρH(k − ℓ))and then Lemma 4.3, it is easy to 
he
k that
Aq−1(n) − 1 =

1

q!σ2
n2qH−1

n−1∑

k,ℓ=0

〈δk/n, δℓ/n〉qH − 1

=
1

q!σ2


 1

n

n−1∑

k,ℓ=0

ρH(k − ℓ)q −
∑

t∈Z

ρH(t)q




=
1

q!σ2


 1

n

∑

|t|<n

(n− 1 + t)ρH(t)q −
∑

t∈Z

ρH(t)q




=
1

q!σ2


 1

n

∑

|t|<n

(t− 1)ρH(t)q −
∑

|t|>n

ρH(t)q




≍ 1

n

n−1∑

t=1

t2qH−2q+1 +

∞∑

t=n

t2qH−2q ≍ n−1 + n2qH−2q+1.23



Now, we assume that r 6 q − 2 is �xed. We have
E|Ar(n)|2 = c(H, r, q)n4qH−2

n−1∑

i,j,k,ℓ=0

〈δk/n, δℓ/n〉r+1
H

〈δi/n, δj/n〉r+1
H

×〈δ⊗q−1−r
k/n ⊗̃δq−1−r

ℓ/n , δ⊗q−1−r
i/n ⊗̃δq−1−r

j/n 〉H⊗2q−2−2r

=
∑

α,β>0
α+β=q−r−1

∑

γ,δ>0
γ+δ=q−r−1

c(H, r, q, α, β, γ, δ)Br,α,β,γ,δ (n)where c(·) denotes a generi
 
onstant depending only on the obje
ts inside its argument, and
Br,α,β,γ,δ(n) = n4qH−2

n−1∑

i,j,k,ℓ=0

〈δk/n, δℓ/n〉r+1
H

〈δi/n, δj/n〉r+1
H

〈δk/n, δi/n〉αH

×〈δk/n, δj/n〉βH〈δℓ/n, δi/n〉γH〈δℓ/n, δj/n〉δH

= n−2
n−1∑

i,j,k,ℓ=0

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)α

×ρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ .When α, β, γ, δ are �xed, we 
an de
ompose the sum∑i,j,k,ℓ appearing in Br,α,β,γ,δ(n) justabove, as follows:
∑

i=j=k=ℓ

+



∑

i=j=k
ℓ 6=i

+
∑

i=j=ℓ
k 6=i

+
∑

i=k=ℓ
j 6=i

+
∑

j=k=ℓ
i6=j


+



∑

i=j,k=ℓ
k 6=i

+
∑

i=k,j=ℓ
j 6=i

+
∑

i=ℓ,j=k
j 6=i




+



∑

i=j,k 6=i
k 6=ℓ,ℓ 6=i

+
∑

i=k,j 6=i
j 6=ℓ,k 6=ℓ

+
∑

i=ℓ,k 6=i
k 6=j,j 6=i

+
∑

j=k,k 6=i
k 6=ℓ,ℓ 6=i

+
∑

j=ℓ,k 6=i
k 6=ℓ,ℓ 6=i

+
∑

k=ℓ,k 6=i
k 6=j,j 6=i


+

∑

i,j,k,ℓare all di�erent(all these sums must be understood as being de�ned over indi
es {i, j, k, ℓ} ∈ {0, ..., n−1}4).Now, we will deal with ea
h of these �fteen sums separately.The �rst sum is parti
ularly easy to handle: indeed, it is immediately 
he
ked that
n−2

∑

i=j=k=ℓ

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ ≍ n−1.For the se
ond sum, 
an write
n−2

∑

i=j=k
ℓ 6=i

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ

≍ n−2
∑

i6=ℓ

ρH(ℓ− i)q ≍ n−1
n−1∑

ℓ=1

ℓ2qH−2q = n−1 + n2qH−2q by Lemma 4.3.For the third sum, we 
an pro
eed analogously and we also obtain n−1 + n2qH−2q for bound.24



For the fourth sum, we write
n−2

∑

i=k=ℓ
j 6=i

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ

≍ n−2
∑

i6=j

ρH(j − i)r+1+β+δ ≍ n−2
∑

i6=j

|j − i|(r+1+β+δ)(2H−2) ≍ n−2
∑

i6=j

|j − i|2H−2

≍ n−1
n−1∑

j=1

j2H−2 ≍ n−1 + n2H−2(we used the fa
t that r + 1 + β + δ > 1 sin
e r, β, δ > 0). For the �fth sum, we 
an pro
eedanalogously and we also obtain n−1 + n2H−2 for bound.For the sixth sum, we have
n−2

∑

i=j
k=ℓ
k 6=i

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ

≍ n−2
∑

k 6=i

ρH(k − i)2q−2−2r ≍ n−2
∑

k 6=i

|k − i|(2q−2−2r)(2H−2) ≍ n−2
∑

k 6=i

|k − i|4H−4

≍ n−1
n−1∑

k=1

k4H−4 ≍ n−1 + n4H−4(here, we used r 6 q − 2). For the seventh and the eighth sums, we 
an pro
eed analogouslyand we also obtain n−1 + n4H−4 for bound.For the ninth sum, we have
n−2

∑

i=j,k 6=i
k 6=ℓ,ℓ 6=i

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ

≍ n−2
∑

k 6=i
k 6=ℓ,ℓ 6=i

ρH(k − ℓ)r+1ρH(k − i)q−r−1ρH(ℓ− i)q−r−1.Now, let us de
ompose the sum ∑
k 6=i,k 6=ℓ,ℓ 6=i into

∑

k>ℓ>i

+
∑

k>i>ℓ

+
∑

ℓ>i>k

+
∑

ℓ>k>i

+
∑

i>ℓ>k

+
∑

i>k>ℓ

.
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For the �rst term (for instan
e), we have
n−2

∑

k>ℓ>i

ρH(k − ℓ)r+1ρH(k − i)q−r−1ρH(ℓ− i)q−r−1

≍ n−2
∑

k>ℓ>i

(k − ℓ)(r+1)(2H−2)(k − i)(q−r−1)(2H−2)(ℓ− i)(q−r−1)(2H−2)

≍ n−2
∑

k>ℓ>i

(k − ℓ)q(2H−2)(ℓ− i)(q−r−1)(2H−2) sin
e k − i > k − ℓ

= n−2
∑

k

∑

ℓ<k

(k − ℓ)q(2H−2)
∑

i<ℓ

(ℓ− i)(q−r−1)(2H−2)

≍ n−2
∑

k

∑

ℓ<k

(k − ℓ)q(2H−2)
∑

i<ℓ

(ℓ− i)2H−2 sin
e q − r − 1 ≥ 1

≍ n−1
n−1∑

ℓ=1

ℓ2qH−2q
n−1∑

i=1

i2H−2

≍ n−1(1 + n2qH−2q+1)(1 + n2H−1) ≍ n−1 + n2H−2 sin
e 2qH − 2q + 1 < 0.We obtain the same bound for the other terms. By pro
eeding in the same way than for theninth term, we also obtain the bound n−1 +n2H−2 for the tenth, eleventh, twelfth, thirteenthand fourteenth terms.For the �fteenth (and last!) sum, we de
ompose ∑(i,j,k,ℓ are all di�erent) as follows
∑

k>ℓ>i>j

+
∑

k>ℓ>j>i

+ . . . . (4.57)For the �rst term, we have:
n−2

∑

k>ℓ>i>j

ρH(k − ℓ)r+1ρH(i− j)r+1ρH(k − i)αρH(k − j)βρH(ℓ− i)γρH(ℓ− j)δ

≍ n−2
∑

k>ℓ>i>j

(k − ℓ)q(2H−2)(i− j)(r+1)(2H−2)(ℓ− i)(q−r−1)(2H−2)

= n−2
∑

k

∑

ℓ<k

(k − ℓ)q(2H−2)
∑

i<ℓ

(ℓ− i)(q−r−1)(2H−2)
∑

j<i

(i− j)(r+1)(2H−2)

≍ n−1
n−1∑

ℓ=1

ℓq(2H−2)
n−1∑

i=1

i(q−r−1)(2H−2)
n−1∑

j=1

j(r+1)(2H−2)

≍ n−1(1 + n2qH−2q+1)(1 + n(q−r−1)(2H−2)+1)(1 + n(r+1)(2H−2)+1)

≍ n−1(1 + n2H−1 + n2qH−2q+2) sin
e 2qH − 2q + 1 < 0 and r + 1, q − r − 1 > 1

≍ n−1 + n2H−2 + n2qH−2q+1.The same bound also holds for the other terms in (4.57). By 
ombining all these bounds, weobtain
max

r=1,...,q−1
E|Ar(n)|2 ≍ n−1 + n2H−2 + n2qH−2q+1,that �nally gives:

E

(
1

q
‖DZn‖2

H − 1

)2

≍ n−1 + n2H−2 + n2qH−2q+1.The proof of Theorem 4.1 is now 
ompleted by means of Proposition 3.2. 226



5 Two proofs5.1 Proof of Lemma 1.3Proof of Point (i). Observe �rst that, for every ν > 0, the random variable F ∗(ν) := F (ν)+ νhas a non-
entered Gamma law with parameter ν/2. The fa
t that
E[2F ∗(ν)f ′(F ∗(ν) − ν)] = E[2(F ∗(ν) − ν)f ′(F ∗(ν))],for every f as in the statement, is therefore an immediate 
onsequen
e of [45, Proposition1 and Se
tion 4(2)℄. Now suppose that W veri�es (1.13). By 
hoosing f with support in

(−∞,−ν), one dedu
es immediately that P (W 6 −ν) = 0. To 
on
lude, we apply on
e againthe results 
ontained in [45℄, to infer that the relations
P (W 6 −ν) = 0 and E[2(W + ν)f ′(W ) −Wf(W )] = 0imply that, ne
essarily, W + ν

Law
= F ∗(ν).Proof of Point (ii). Fix ν > 0, 
onsider a fun
tion h as in the statement and de�ne hν(y) =

h(y − ν), y > 0. Plainly, hν is twi
e di�erentiable, and |hν(y)| 6 c exp{−νa} exp{ay}, y > 0(re
all that a > 1/2). In view of these properties, a

ording to Luk [24, Th. 1℄, the se
ond-order Stein equation
hν(y) −E(hν(F ∗(ν)) = 2yg′′(y) − (y − ν)g′(y), y > 0, (5.58)(where, as before, we set F ∗(ν) = F (ν) + ν) admits a solution g su
h that ‖g′‖∞ 6 2‖h′‖∞and ‖g′′‖∞ 6 ‖h′′‖∞. Sin
e f(x) = g′(x+ ν), x > −ν, is a solution of (1.12), the 
on
lusionis immediately obtained.Proof of Point (iii). A

ording to a result of Pi
kett [40℄, as reported in [42, Lemma 3.1℄,when ν > 1 is an integer, the an
illary Stein equation (5.58) admits a solution g su
h that

‖g′‖∞ 6
√

2π/ν‖h‖∞ and ‖g′′‖∞ 6
√

2π/ν‖h′‖∞. The 
on
lusion is obtained as in the proofof Point (ii).5.2 Proof of Theorem 1.5We begin with a te
hni
al lemma.Lemma 5.1 Let F = I2(f) be a random variable living in the se
ond Wiener 
haos of anisonormal Gaussian pro
ess X (over a real Hilbert spa
e H). Then
E
(
‖DF‖4

H

)
=

2

3
E(F 4) + 2E(F 2)2. (5.59)Proof. Without loss of generality, we 
an assume that H = L2(A,A , µ), where (A,A ) is ameasurable spa
e, and µ is a σ-�nite and non-atomi
 measure. On one hand, thanks to themultipli
ation formula (2.29), we 
an write

F 2 = I4(f ⊗ f) + 4 I2(f ⊗1 f) + E
(
F 2
)
.In parti
ular, this yields

L(F 2) = −4 I4(f ⊗ f) − 8 I2(f ⊗1 f).27



On the other hand, (2.32) implies that DaF = 2 I1
(
f(·, a)

)
. Consequently, again by (2.29):

‖DF‖2
H = 4

∫

A
I1
(
f(·, a)

)2
µ(da)

= 4

∫

A
I2
(
f(·, a) ⊗ f(·, a)

)
µ(da) + E

(
‖DF‖2

H

)

= 4 I2(f ⊗1 f) + 2E(F 2), by (2.34) and sin
e ∫A f(·, a) ⊗ f(·, a)µ(da) = f ⊗1 f .(5.60)Taking into a

ount the orthogonality between multiple sto
hasti
 integrals of di�erent orders,we dedu
e
E
[
‖DF‖2

HL(F 2)
]

= −32E
[(
I2(f ⊗1 f)

)2]
= −2E

[
‖DF‖2

H

(
F 2 − E(F 2)

)]
. (5.61)Finally, we have

E
[
‖DF‖4

H

]
= E

[
‖DF‖2

H〈DF,DF 〉H
]

= E
[
‖DF‖2

H

(
δDF × F − 1

2
δD(F 2)

)] by identity (2.31),
= 2E

[
‖DF‖2

HF
2
]
+

1

2
E
[
‖DF‖2

HL(F 2)
] using δD = −L,

= E
[
‖DF‖2

HF
2
]
+ E(F 2)E

[
‖DF‖2

H

] using (5.61),
=

2

3
E
(
F 4
)

+ 2E
(
F 2
)2 by (2.34).

2Now, let us go ba
k to the proof of the �rst point in Theorem 1.5. In view of Theorem 3.1, itis su�
ient to prove that
E

(∣∣∣∣1 − 1

2
‖DZn‖2

H

∣∣∣∣
2
)

6
1

6

∣∣E(Z4
n) − 3

∣∣+ 3 + E(Z2
n)

2

∣∣E(Z2
n) − 1

∣∣. (5.62)We have
E

(∣∣∣∣1 − 1

2
‖DZn‖2

H

∣∣∣∣
2
)

= 1 − E(‖DZn‖2
H) +

1

4
E(‖DZn‖4

H)

= 1 − 2E(Z2
n) +

1

6
E(Z4

n) +
1

2
E(Z2

n)2 by (2.34) and (5.59)
=

1

6
(E(Z4

n) − 3) + (E(Z2
n) − 1)

(
1

2
E(Z2

n) − 3

2

)
.The estimate (5.62) follows immediately.Similarly, for the se
ond point of Theorem 1.5, it is su�
ient to prove (see Proposition 3.13)that

E

(∣∣∣∣2Zn − 2ν − 1

2
‖DZn‖2

H

∣∣∣∣
2
) (5.63)

6
1

6

∣∣E(Z4
n) − 12E(Z3

n) − 12ν2 + 48ν
∣∣+
∣∣8 − 6ν + E(Z2

n)
∣∣

2

∣∣E(Z2
n) − 2ν

∣∣.28



By using the relations
E

(∣∣∣∣2Zn − 2ν − 1

2
‖DZn‖2

H

∣∣∣∣
2
)

= 4E(Z2
n) + 4ν2 +

1

4
E(‖DZn‖4

H) − 2E(Zn‖DZn‖2
H) − 2νE(‖DZn‖2

H)

= 4(1 − ν)E(Z2
n) + 4ν2 +

1

6
E(Z4

n) +
1

2
E(Z2

n)2 − 2E(Z3
n) by (2.34) and (5.59)

= (E(Z2
n) − 2ν)

(
4 − 3ν +

1

2
E(Z2

n)
)

+
1

6

(
E(Z4

n) − 12E(Z3
n) − 12ν2 + 48ν

)
,the estimate (5.63) follows immediately.
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