
HAL Id: hal-00199009
https://hal.science/hal-00199009

Submitted on 18 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Matching in Protein-Protein Interaction Graphs
Gaëlle Brevier-Giberti, Roméo Rizzi, Stéphane Vialette

To cite this version:
Gaëlle Brevier-Giberti, Roméo Rizzi, Stéphane Vialette. Pattern Matching in Protein-Protein Interac-
tion Graphs. FCT 2007, Aug 2007, Budapest, Hungary. pp.137-148, �10.1007/978-3-540-74240-1_13�.
�hal-00199009�

https://hal.science/hal-00199009
https://hal.archives-ouvertes.fr

Pattern Matching in Protein-Protein

Interaction Graphs

Gaëlle Brevier

Laboratoire G-SCOPE
46 avenue Félix Viallet, 38031 Grenoble Cedex - France

Romeo Rizzi

Dipartimento di Matematica ed Informatica (DIMI),
Università di Udine, Via delle Scienze 208, I-33100 Udine, Italy

Stéphane Vialette

IGM-LabInfo, CNRS UMR 8049, Univ. Paris-Est,
5 Bd Descartes 77454 Marne-la-Vallée, France

Abstract

In the context of comparative analysis of protein-protein interaction graphs, we use
a graph-based formalism to detect the preservation of a given protein complex (pat-
tern graph) in the protein-protein interaction graph (target graph) of another species
with respect to (w.r.t.) orthologous proteins. We give an efficient exponential-time
randomized algorithm in case the occurrence of the pattern graph in the target graph
is required to be exact. For approximate occurrences, we prove a tight inapproxima-
bility results and give four approximation algorithms that deal with bounded degree
graphs, small ortholog numbers, linear forests and very simple yet hard instances,
respectively.

Email addresses: Gaelle.Giberti@imag.fr (Gaëlle Brevier),
Romeo.Rizzi@dimi.uniud.it (Romeo Rizzi), vialette@univ-mlv.fr (Stéphane
Vialette).

Preprint submitted to Elsevier Science December 3, 2007

1 Introduction

High-throughput analysis makes possible the study of protein-protein interac-
tions at a genome-wise scale [GB+02,HG+02,UG+00], and comparative anal-
ysis tries to determine the extent to which protein networks are conserved
among species. Indeed, mounting evidence suggests that proteins that func-
tion together in a pathway or a structural complex are likely to evolve in a
correlated fashion, and, during evolution, all such functionally linked proteins
tend to be either preserved or eliminated in a new species [PMT+99].

Protein interactions identified on a genome-wide scale are commonly visual-
ized as protein interaction graphs, where proteins are vertices and interac-
tions are edges [TSU04]. Experimentally derived interaction networks can be
extremely complex, so that it is a challenging problem to extract biological
functions or pathways from them. However, biological systems are hierarchi-
cally organized into functional modules. Several methods have been proposed
for identifying functional modules in protein-protein interaction graphs. As ob-
served in [PLEO04], cluster analysis is an obvious choice of methodology for
the extraction of functional modules from protein interaction networks. Com-
parative analysis of protein-protein interaction graphs aims at finding com-
plexes that are common to different species. Kelley et al. [KSK+03] developed
the program PathBlast, which aligns two protein-protein interaction graphs
combining topology and sequence similarity. Sharan et al. [SIK+04] studied
the conservation of complexes (they focused on dense, clique-like interaction
patterns) that are conserved in Saccharomyces cerevisae and Helicobacter py-
lori, and found 11 significantly conserved complexes (several of these com-
plexes match very well with prior experimental knowledge on complexes in
yeast only). They actually recasted the problem of searching for conserved
complexes as a problem of searching for heavy subgraphs in an edge- and
node-weighted graph, whose vertices are orthologous protein pairs. A promis-
ing computational framework for alignment and comparison of more than one
protein network together with a three-way alignment of the protein-protein
interaction networks of Caenorhabditis elegans, Drosophila melanogaster and
Saccharomyces cerevisae is presented in [SSK+04].

In [FLV04], this pattern matching problem was stated as the problem of finding
an occurrence of a pattern graph G in a target graphs H w.r.t lists constraints
(referred hereafter as the Exact-(ρ, σ)-Matching problem): to each vertex u

of G is associated a lists L(u) of vertices in H and the occurrence of G in H

is required to be an injective graph homomorphism φ from G to H such that
φ(u) ∈ L(u) for each vertex u in G. The two parameters ρ and σ denote the
maximum size of a list of G and the maximum number of occurrences of a
vertex of H among the lists of G, respectively ; Roughly speaking, the ratio-
nale of this approach is as follows. First, graph homomorphism only preserves

2

adjacency, and hence can deal with interaction datasets that are missing many
true protein interactions. Second, injectivity is required in order to establish
a bijective relationship between proteins in the complex and proteins in the
occurrence. Finally, graph homomorphism with respect to orthologous links
can be easily recasted as list homomorphism: a list of putative orthologs is
associated to each protein (vertex) of the complex, and each such protein can
only be mapped by the homomorphism to a protein occurring in its list. In the
context of comparative analysis of protein-protein interaction graphs, drastic
restrictions were imposed on the size of the lists. Some (classical and parame-
terized) hardness results together with several heuristics for the Exact-(ρ, σ)-

Matching problem were presented in [FLV04]. These results were improved
in [FRV05]. Of particular importance in the context of computational biology,
we investigated in [FRV05] the problem of finding approximate occurrences
(the Max-(ρ, σ)-Matching problem), i.e., the injective mapping of G to H

were no longer required to be a graph homomorphism but to match as many
edges as possible.

Aiming at presenting accurate computational models, we combine here state-
of-the art approaches to identifying orthologs (genes in different species that
originate from a single gene in the last common ancestor of these species) for
transferring functional information between genes in different organisms with
a high degree of reliability [TKL97,RSS01] and the above mentioned line of
research by considering additional structural constraints on the lists: for each
distinct vertices u and v of G, either L(u) = L(v) or L(u) ∩ L(v) = ∅. The
obtained problem is modeled by replacing lists by colors: to all vertices of G

and H is associated a color and a vertex of G can only be mapped to a vertex
of H with the same color.

This paper is organized as follows. We briefly discuss in Section 2 basic nota-
tions and definitions that we will use throughout the paper. In Section 3 we
give a randomized algorithm for finding an injective mapping w.r.t to the col-
orings that matches all the edges of the pattern graph. We prove in Section 4
that the problem of finding an injective mapping w.r.t to the colorings that
matches as many edges of the pattern graph as possible is hard to approximate
even if both the pattern graph and the target graph are linear forests or trees.
Section 5 is devoted to approximation with a focus on three restricted but still
hard cases: (i) the pattern graph or the target graph has bounded degree, (ii)
the number of occurrences of each color in the target graph is considered to
be small, (iii) both the pattern graph and the target graphs are linear forests
and (iv) each color occurs two times in both G and H. Section 6 concludes
our word and propose future directions of research.

3

2 Preliminaries

We assume readers have basic knowledge about graph theory [Die00] and we
shall thus use most conventional terms of graph theory without defining them
(we only recall basic notations). Let G be a graph. We write V(G) for the
set of vertices and E(G) for the set of edges. Also, we write n(G) for |V(G)|
and m(G) for |E(G)|. The maximum degree ∆(G) of a graph G is the largest
degree over all vertices. A graph is called a linear forest if every component
is a path. Let G be a graph together with a coloring λ : V(G) → C of its
vertices. For any color ci ∈ C, we denote by CG(ci) the set of vertices of
G that are colored with color ci, i.e., CG(ci) = {u ∈ V(G) : λ(u) = ci}.
The multiplicity of λ in G, written mult(G, λ), is the maximum number of
occurrences of a color in G, i.e., mult(G, λ) = max{|CG(ci)| : ci ∈ C}. Let G

and H be two graphs and let θ : V(G) → V(H) be an injective mapping.
The set of edges of G that are preserved in H by θ is written match(G, H, θ),
i.e., match(G, H, θ) = {{u, v} ∈ E(G) : {θ(u), θ(v)} ∈ E(H)}. If both G and
H are equipped with some colorings λG : V(G) → C and λH : V(H) → C
of their vertices, a mapping θ : V(G) → V(H) is said to be with respect
to (w.r.t.) λG and λH if λG(u) = λH(θ(u)) for every u ∈ V(G), i.e., θ is a
color preserving mapping. For simplicity, we shall usually abbreviate such a

mapping as θ : V(G)
λG,λH−−−−→ V(H).

We are now in position to formally define the Max–(ρ, σ)–Matching–Colors

problem we are interested in.

Max–(ρ, σ)–Matching–Colors

• Input : Two graphs G and H together with the coloring map-
pings λG : V(G) → C, mult(G, λG) = ρ, and λH : V(H) → C,
mult(H,λH) = σ.

• Solution : An injective mapping θ : V(G)
λG,λH−−−−→ V(H).

• Measure : The number of edges of G matched by the injective map-
ping θ, i.e., |match(G, H, θ)|.

We designate by Exact–(ρ, σ)–Matching–Colors the extremal problem of

finding an injective mapping θ : V(G)
λG,λH−−−−→ V(H) that matches all the edges

of G, i.e., θ is required to be an injective graph homomorphism [FRV05]. Also,
we call an instance of both the Max–(ρ, σ)–Matching–Colors and Exact–

(ρ, σ)–Matching–Colors problems colorful if ρ = 1.

Let 〈G, H, λG, λH〉 be an instance of the Max–(ρ, σ)–Matching–Colors. First,
a necessary and sufficient condition for an injective mapping to exist is |CG(ci)| ≤

4

|CH(ci)| for each color ci ∈ C. Second, an edge {u, v} ∈ E(G), λG(u) = cu and
λG(v) = cv, is called a bad edge if there does not exist distinct u′ ∈ CH(cu)
and v′ ∈ CH(cv) such that {u′, v′} ∈ E(H). Clearly, if we remove from G

its bad edges, this does not affect the optimal solutions for the Max–(ρ, σ)–

Matching–Colors problem, since bad edges can never be matched. Notice
that we can tell bad edges apart in O(σ2 m(G)) = O(m(G)) time, provided
σ is a constant. Therefore, throughout the paper, we will consider only trim
instances as defined in the following.

Definition 1 (Trim instance) An instance 〈G, H, λG, λH〉 of the Max–(ρ, σ)–

Matching–Colors or the Exact–(ρ, σ)–Matching–Colors problem is said
to be trim if the following conditions hold true: (i) for each color ci ∈ C,
|CG(ci)| ≤ |CH(ci)|, and (ii) for each edge {ui, uj} ∈ E(G), there exists an
edge {vi, vj} ∈ E(H) such that λG(ui) = λH(vi) and λG(uj) = λH(vj).

3 Exact colorful instances

This section is devoted to the Exact–(1, σ)–Matching–Colors problem. On
the one hand, both the Exact–(1, σ)–Matching–Colors problem for ∆(G) ≤
2 and the Exact–(ρ, 2)–Matching–Colors problem are polynomial-time solv-
able for any constant ρ and σ [FLV04]. On the other hand, the Exact–(1, 3)–

Matching–Colors problem for ∆(G) = 3 and ∆(H) = 4 is NP-complete
[FRV05]. We first observe that the Exact–(1, σ)–Matching–Colors prob-
lem is easily solvable in Õ(σn(G)) time: the brute-force algorithm tries all

possible injective mappings θ : V(G)
λG,λH−−−−→ V(H) and returns the best

one. We give a faster randomized algorithm (referred hereafter as Algorithm
Rand-Exact-Matching-Colors) than runs in Õ(f(σ)n(G)) expected time, where

f(σ) =
4σ(2σ − 2)3

4(2σ − 2)3 + 27(2σ − 3)
. Observe that f(σ) < σ, for σ > 2. For

the sake of illustration, f(3) < 2.279, f(4) < 3.460 and f(5) < 4.578.

We present here a random walk algorithm which is similar to [MU05]. For
simplicity, we assume the worst case where each color occurs exactly σ times
in graph H. The basic idea is to start with a random injective mapping θ, look
at an edge e of G that is not matched by θ, select at random one end-vertex u of
e and finally change at random the image of u, i.e., θ(u). Observe however that,
oppositely to satisfiability-like algorithms where changing the assignment of a
boolean variable in an unsatisfied clause result in a satisfied clause, the edge e

might be here still not matched by the new injective mapping θ. The complete
description of the alorithm is given as Algorithm Rand-Exact-Matching-Colors.

Let 〈G, H, λG, λH〉 be an arbitrary instance of the Exact–(1, σ)–Matching–

Colors problem, and suppose that there exists an injective homomorphism

5

Rand-Exact-Matching-Colors(〈G, H, λG, λH〉)
Input: An instance 〈G, H, λG, λH〉 of the Exact–(1, σ)–Matching–

Colors problem.

Output: An occurrence of G in H, i.e., an injective homomorphism

θ : V(G)
λG,λH−−−−→ V(H) (if such a mapping exists).

Repeat, terminating whether an occurrence of G in H w.r.t λG and
λH is found:

· Let θ : V(G)
λG,λH−−−−→ V(H) be a random injective.

· Loop up to 3n(G) times, terminating whether an occurrence of
G in H w.r.t λG and λH is found:

Choose at random an edge e ∈ E(G) that is not matched by
θ, choose at random one vertex u ∈ e and change at random
the value of θ(u) w.r.t λG and λH .

θopt : V(G)
λG,λH−−−−→ V(H), i.e., 〈G, H, λG, λH〉 is a YES instance. Without

loss of generality we may assume that, for each color ci ∈ C, exactly σ ver-
tices of H are colored with color ci (and hence H has σ|C| vertices). Fix any

injective mapping θ : V(G)
λG,λH−−−−→ V(H) and let θi : V(G)

λG,λH−−−−→ V(H)
be the injective mapping after the i-th step of the inner loop of Algorithm
Rand-Exact-Matching-Colors. Let Xi be the number of vertices u ∈ V(G) such
that θi(u) = θopt(u). If Xi = n(G), Algorithm Rand-Exact-Matching-Colors ter-
minates with an injective homomorphism. Clearly, the algorithm could termi-
nate before Xi = n(G) by finding a different injective homomorphism, but for
our analysis the worst case is that the algorithm only stops when Xi = n(G).

Suppose 1 ≤ Xi ≤ n(G) − 1. At each step, we choose an edge e = {u, v} ∈
E(G) that is not matched. Since 〈G, H, λG, λH〉 is a YES instance, θi and θopt

disagree on at least one of u and v. Suppose first that θi and θopt disagree
on exactly one of u and v. Then, the probability of increasing the number of
agreements between θopt and θi+1 is (2σ − 2)−1, the probability of decreasing
the number of agreements between θopt and θi+1 is (σ − 1)(2σ − 2)−1 and
the probability of obtaining the same number of agreements between θopt

and θi+1 is (σ − 2)(2σ − 2)−1. Suppose now that θi and θopt disagree on
both u and v. Then, the probability of increasing the number of agreements
between θopt and θi+1 is 2(2σ−2)−1, the probability of decreasing the number
of agreements between θopt and θi+1 is 0 (θi and θopt indeed already both
disagree on both vertices) and the probability of obtaining the same number
of agreements between θopt and θi+1 is (2σ − 4)(2σ − 2)−1. In the light of
the above probabilities, let us thus consider the pessimistic stochastic process

6

Y = (Y1, Y2, . . .) defined as follows:

Pr[Yi+1 = j + 1|Yi = j] ≥ 1

2σ − 2
,

Pr[Yi+1 = j − 1|Yi = j] ≤ 2σ − 3

2σ − 2
.

This stochastic process is best understood by using the same metaphor as
in [MU05]: consider a particle moving on the integer line, with probability
(2σ − 1)−1 of moving up by one and probability (2σ − 3)(2σ − 2)−1 of moving
down by one. Observe that in the pessimistic stochastic process Y the particle
never stays in place whereas the probability of obtaining the same number of
agreements is non-zero in Algorithm Rand-Exact-Matching-Colors. Let rj be the
probability of exactly k “moves down”, and j + k “moves up” in a sequence

of 2k + j moves. We have rj ≥
(

2σ − 3

2σ − 2

)k (1

2σ − 2

)j+k

. Now, let qj be the

probability that the algorithm finds an injective homomorphism within j +

2k ≤ 3n(G) steps, starting from a random injective mapping θ : V(G)
λG,λH−−−−→

V(H).

Lemma 2 qj ≥
√

3

8
√

πj

(

27(2σ − 3)

4(2σ − 2)3

)j

.

PROOF. We first observe that rj is a lower bound for qj, and hence

qj ≥ max
0≤k≤j

(

j + 2k

k

)

(

2σ − 3

2σ − 2

)k (1

2σ − 2

)j+k

.

If we restrict ourselves to k = j, we obtain

qj ≥
(

3j

j

)

(

2σ − 3

2σ − 2

)j (1

2σ − 2

)2j

=

(

3j

j

)(

2σ − 3

(2σ − 2)3

)j

.

Combining this with standard Stirling’s approximation yields

qj ≥
√

3

8
√

πj

(

27

4

)j
(

2σ − 3

(2σ − 2)3

)j

=

√
3

8
√

πj

(

27(2σ − 3)

4(2σ − 2)3

)j

and the lemma is proved. ✷

Let pj be the probability that a random injective mapping θ : V(G)
λG,λH−−−−→

V(H) has j disagreements with θopt. We now derive a lower bound for q, the
probability that the process finds an occurrence of G in H w.r.t λG and λH

in 3n(G) steps starting from a random injective mapping.

7

Lemma 3 q ≥
√

3

8
√

π n(G)

(

4(2σ − 2)3 + 27(2σ − 3)

4σ(2σ − 2)3

)n(G)

.

PROOF. By definition, we have q ≥ ∑n(G)
j=0 qj pj ≥ 1

σn(G)
+
∑n(G)

j=1 qj pj.

Combining this with Lemma 2, we obtain

q ≥ 1

σn(G)
+

n(G)
∑

j=1

(

n

j

)

1

σn(G)

√
3

8
√

πj

(

27(2σ − 3)

4(2σ − 2)3

)j

≥
√

3

8
√

π n(G)

1

σn(G)

n(G)
∑

j=0

(

n

j

)(

27(2σ − 3)

4(2σ − 2)3

)j

(1)n−j

=

√
3

8
√

π n(G)

1

σn(G)

(

1 +
27(2σ − 3)

4(2σ − 2)3

)n(G)

=

√
3

8
√

π n(G)

(

4(2σ − 2)3 + 27(2σ − 3)

4σ(2σ − 2)3

)n(G)

.

✷

Therefore, if we assume that there exists an injective mapping θ : V(G)
λG,λH−−−−→

V(H), the number of random injective mappings the process tries before find-
ing an occurrence of G in H is a geometric random variable with parame-
ter q. Hence, the expected of random injective mappings tried is q−1, and
for each injective mapping the algorithm uses at most 3n(G) steps. There-
fore, the expected number of steps until a solution is found is bounded by
O(n(G)3/2 f(σ)n(G)). We have thus proved the following.

Proposition 4 Algorithm Rand-Exact-Matching-Colors returns an injective ho-

momorphism θ : V(G)
λG,λH−−−−→ V(H) (if such a mapping exists) in Õ(f(σ)n(G))

time, where f(σ) =
4σ(2σ − 2)3

4(2σ − 2)3 + 27(2σ − 3)
.

4 Hardness results

Recall that the Max–(1, 2)–Matching–Colors problem for bipartite graphs
G and H with ∆(G) = 3 and ∆(H) = 2 (resp. with ∆(G) = 6 and ∆(H) = 5)
is APX-hard and is not approximable within ratio 1.0005 (resp. 1.0014), un-
less P = NP [FRV05]. Therefore, there is a natural interest to investigate

8

the complexity issues of the Max–(ρ, σ)–Matching–Colors problem for re-
stricted graph classes. Unfortunately, as we shall prove here, the Max–(3, 3)–

Matching–Colors (resp. Max–(2, 2)–Matching–Colors) problem is APX-
hard even if both G and H are linear forests (resp. trees with maximum
degree 3).

Proposition 5 The Max–(3, 3)–Matching–Colors problem is APX-hard even
if both G and H are linear forests.

PROOF. We propose a L-reduction from the Max-2-Sat-3 problem (Given
a set X of variables and a boolean formula φ in conjunctive normal form
where clause consists in at most 2 literals and each variable appears in at
most 3 clauses, find a truth assignment for X that satisfies as many clauses
as possible) which is known to be APX-complete [PY91]. We assume that each
negated literal and each positive literal occurs at most twice, since otherwise
a self-reduction would trivially apply. Let φ be an arbitrary input for the
Max-2-Sat-3 problem. Let X = {x1, . . . , xn} denote the set of variables and
C = {c1, . . . , cm} denote the set of clauses. For each j = 1, 2, . . . ,m and each
ℓ = 1, 2, we write cj[ℓ] for the ℓ-th literal of the clause cj. For each variable
xi ∈ X, we let nb occ(xi) stands for the number of occurrences of variable xi in
φ (counting together both positive and negative occurrences); we may clearly
assume here that 2 ≤ nb occ(xi) ≤ 3 for each xi ∈ X (a self-reduction would
trivially apply in case nb occ(xi) = 1). We now describe how to construct the
corresponding instance of the Max–(2, 2)–Matching–Colors problem.

Let us start by considering the associated graph G. We introduce two vertices
xG

i [1] and xG
i [2] for each variable xi ∈ X, and one vertex cG

j for each clause
cj ∈ C. For each xi ∈ X, we introduce the edge {xG

i [1], xG
i [2]}. Also, for each

clause cj and each ℓ ∈ {1, 2}, we introduce the vertex tGi [k] (resp. fG
i [k]) if

the ℓ-th literal of clause ci is the k-th occurrence of positive (resp. negative)
literal xi (resp. xi) together with the edge {cG

j , tGi [k]} (resp. {cG
j , fG

i [k]}).

We now turn to defining the corresponding graph H. For each variable xi ∈ X,
we introduce four vertices tHi [1], tHi [2], fH

i [1] and fH
i [2], and the two edges

{tHi [1], tHi [2]} and {fH
i [1], fH

i [2]}. For each clause cj and each ℓ ∈ {1, 2}, we
introduce the vertex cH

j [ℓ] and the edge {cH
j [ℓ], tHi [k]} (resp. {cH

j [ℓ], fH
i [k]}) if

the ℓ-th literal of clause ci is the k-th occurrence of positive (resp. negative)
literal xi (resp. xi). Also, for each clause cj we introduce one isolated vertex
cH
i [3], and for each xi ∈ X we introduce two isolated vertices yH

i [1] and yH
i [2].

Let C = {xi[ℓ] : 1 ≤ i ≤ n ∧ 1 ≤ ℓ ≤ 2} ∪ {cj : 1 ≤ j ≤ m} be our set
of colors. Define the mapping λG : V(G) → C by λG(xG

i [1]) = xi[1] for all
xG

i [1] ∈ V(G), λG(xG
i [2]) = xi[2] for all xG

i [2] ∈ V(G), λG(tGi [ℓ]) = xi[k] for
all tGi [k] ∈ V(G), λG(fG

i [ℓ]) = xi[k] for all fG
i [k] ∈ V(G), and λG(cG

i) = cj for

9

all cG
j ∈ V(G). Also, define the mapping λH : V(H) → C by λH(tHi [k]) = xi[k]

for all tHi [k] ∈ V(H), λH(fH
i [k]) = xi[k] for all fH

i [k] ∈ V(H), λH(cH
j [k]) = cj

for all cH
j [k] ∈ V(H), and λH(yH

i [k]) = xi[k] for all yH
i [k] ∈ V(H). It is easily

seen that both G and H are linear forests in which each color occurs at most
three times. An illustration of this construction is given in Figure 1.

Let f be a truth assignment for X. Write A(φ, f) the number of clauses of

φ that are satisfied by f . Define an injective mapping θ : V(G)
λG,λH−−−−→ V(H)

as follows. For each xi ∈ X, if f(xi) = true (resp. f(xi) = false) then
θ(xG

i [k]) = fH
i [k] (resp. θ(xG

i [k]) = tHi [k]). Now, let cj be any clause of φ

and let zG
i [k] and zG

i′ [k
′], z ∈ {t, f}, be the two vertices connected to vertex

cG
j . Suppose first that the clause cj is satisfied by its ℓ-th literal. If ℓ = 1,

then θ(cG
j) = cH

j [ℓ], θ(zG
i [k]) = zH

i [k] and θ(zG
i′ [k

′]) = yH
i′ [k

′]. Otherwise, if
ℓ = 2, then θ(cG

j) = cH
j [ℓ], θ(zG

i [k]) = yH
i [k] and θ(zG

i′ [k
′]) = zH

i′ [k′]. Finally,
if the clause cj is not satisfied by f , set θ(cG

j) = cH
j [3], θ(zG

i [k]) = yH
i [k] and

θ(zG
i′ [k

′]) = yH
i′ [k

′]. The reader is invited to check that the injective mapping
θ preserves n + A(φ, f) edges.

Conversely, let θ : V(G)
λG,λH−−−−→ V(H) be an injective mapping. Write A(θ) the

number of edges that are preserved by θ. Define Θ to be the set of all injective

mappings θ′ : V(G)
λG,λH−−−−→ V(H) that preserved at least A(θ) edges. For each

θ′ ∈ Θ, define S(θ′) = {i : {tHi [1], tHi [2]} or {fH
i [1], fH

i [2]} is matched by θ′}.
We observe that, by construction, any θ′ ∈ Θ cannot match both {tHi [1], tHi [2]}
and {fH

i [1], fH
i [2]}, and hence |S(θ′)| ≤ n for all θ′ ∈ Θ. We claim that there

exists θ′ ∈ Θ such that |S(θ′)| = n. Let θ∗ ∈ Θ be such that |S(θ∗)| ≥ S(θ′) for
all θ′ ∈ Θ. Suppose, for the sake of contradiction, that |S(θ∗)| < n. Then, there
exists one i, 1 ≤ i ≤ n, such that neither {tHi [1], tHi [2]} nor {fH

i [1], fH
i [2]} are

matched by θ∗. We now make the important observation that, by construction,
at least one of the four vertices tHi [1], tHi [2], fH

i [1] and fH
i [2] is not connected

to a vertex cH
j [ℓ] (since each variable xi appears in at most 3 clauses of φ).

Without loss of generality, assume that tHi [1] is not connected to a vertex
cH
j [ℓ]. Therefore, there exists θ′ ∈ Θ such that |S(θ′)| = n, and hence for each

1 ≤ i ≤ n, exactly one of the two edges {tHi [1], tHi [2]} and {fH
i [1], fH

i [2]} of
H are matched by θ′. As an immediate consequence, A(θ) = n + k for some
0 ≤ k ≤ m. Indeed, at most one of the two edges incident to vertex cG

i , Define
now a truth assignment f for X as follows: for each xi ∈ X, f(xi) = true if
and only if the edge {fH

i [1], fH
i [2]} of H is matched by θ′. According to the

above, f satisfies k clauses of φ

Consequently, we have opt(θ) ≤ n + opt(φ) ≤ m + opt(φ) ≤ 2opt(φ) +
opt(φ) = 3opt(φ), where the second inequality comes from the fact that we
can assume that φ contains more clauses than variables and the last inequality
is due to the fact that at least half of the clauses of a boolean formula in
conjunctive normal form are always satisfiable. Finally, observe that for any

10

Graph G

x3[1]

c4

x2[2]

tG3 [1]

cG
4

tG2 [2]

x3[1]

c3

x1[2]

fG
3 [1]

cG
3

tG1 [2]

x2[1]

c2

x1[1]

fG
2 [1]

cG
2

fG
1 [1]

x2[1]

c1

x1[1]

tG2 [1]

cG
1

tG1 [1]

x3[1] x3[2]

xG
3 [1] xG

3 [2]

x2[1] x2[2]

xG
2 [1] xG

2 [2]

x1[1] x1[2]

xG
1 [1] xG

1 [2]

Graph H

x3[1]

yH
3 [1]

x3[2]

yH
3 [2]

x2[1]

yH
2 [1]

x2[2]

yH
2 [2]

x1[1]

yH
1 [1]

x1[2]

yH
1 [2]

c3

cH
3 [3]

c4

cH
4 [3]

c1

cH
1 [3]

c2

cH
2 [3]

c3 x3[1] x3[2]

cH
3 [2] fH

3 [1] fH
3 [2]

c4 x3[1] x3[2]

cH
4 [2] tH3 [1] tH3 [2]

c2 x2[1] x2[2]

cH
2 [2] fH

2 [1] fH
2 [2]

c1 x2[1] x2[2] c4

cH
1 [2] tH2 [1] tH2 [2] cH

4 [1]

c2 x1[1] x1[2]

cH
2 [2] fH

1 [1] fH
2 [2]

c1 x1[1] x1[2] c3

cH
1 [1] tH1 [1] tH1 [2] cH

3 [1]

Figure 1. Illustration of the proof of Proposition 5 for the boolean formula
φ = (x1 ∨ x2)∧ (x1 ∨ x2)∧ (x1 ∨ x3)∧ (x2 ∨ x3). For the sake of clarity, the
color of each vertex is given in shaded circle form.

11

injective mapping θ : V(G)
λG,λH−−−−→ V(H), one can find a truth assignment

for φ such that A(φ, f) ≥ A(θ) − n. This implies that opt(φ) − A(φ, f) =
opt(θ)− n−A(φ, f) = opt(θ)−A(θ). It follows that the proposed reduction
is, indeed, a L-reduction – with parameters α = 3 and β = 1 – from the
Max-2-Sat-3 problem to the Max–(3, 3)–Matching–Colors problem where
both G and H are linear forests. ✷

It remains open, however, whether the Max–(ρ, σ)–Matching–Colors prob-
lem for linear forests G and H is polynomial-time solvable in case ρ < 3. The
rationale of this question stems from the following proposition.

Proposition 6 The Max–(2, 2)–Matching–Colors problem is APX-hard even
if both G and H are trees.

PROOF. For the sake of clarity, in the reduction described here below, the
graph G is actually a forest, but it is very easy to make it into a tree by suitable
addition of edges. Furthermore, in the reduction we describe the degree of the
graphs G and H is not bounded, but it is easy to modify the reduction so
that ∆(G), ∆(H) ≤ 3. These details will be discussed at the end of the proof.
The reduction is from the Vertex Cover problem for cubic graphs, which
is known to be APX-hard [PY91,AK00]. Assume thus given a cubic graph W

of order n and size m. We now describe the associated instance of the Max–

(2, 2)–Matching–Colors problem. For ease of exposition, let us first define
P = {(u, e) ∈ V(W) × E(W) : u ∈ e} to be the set of pins of the graph
W . The set of colors C is now defined by C = {c0, c

′
0} ∪ CV ∪ CE ∪ CP , where

CV = {cu : u ∈ V(W)}, CE = {ce : e ∈ E(W)} and CP = {cu,e : (u, e) ∈ P}.

Next, let us specify the forest G. The forest G contains a tree T defined by
V(T) = {rG

0 } ∪ {Tu : u ∈ V(W)} ∪ {Tu,e : (u, e) ∈ P} and E(T) = {{r0, Tu} :
u ∈ V(W)}∪{{Tu, Tu,e} : (u, e) ∈ P}. The mapping λG : V(T) → C is defined
by λG(rG

0) = c0, λG(Tu) = cu, u ∈ V(W) and λG(Tu,e) = cu,e, (u, e) ∈ P .
Besides the tree T , the forest G contains other m connected components.
More precisely, for each edge e = {u, v} ∈ E(W), the forest G contains a
connected component Ce defined by V(Ce) = {Ce

e , C
e
u, C

e
v} and E(Ce) =

{{Ce
e , C

e
u}, {Ce

e , C
e
v}}, i.e., the connected component Ce is nothing but a length

two path in which the vertex Ce
e is adjacent both to Ce

u and to Ce
v . The mapping

λG : V(Ce) → C is defined by λG(Ce
e) = ce, λG(Ce

u) = cu,e and λG(Ce
v) = cv,e.

Finally, let us define the tree H by V(H) = {rH
0 , sH

0 }∪{Hu, Hu : u ∈ V(W)}∪
{Hu,e, Hu,e : (u, e) ∈ P} ∪ {H ′

u,e : (u, e) ∈ P} and E(H) = {{rH
0 , sH

0 }} ∪
{{rH

0 , Hu} : u ∈ V(W)} ∪ {{sH
0 , Hu} : u ∈ V(W)} ∪ {{Hu,e, Hu} : (u, e) ∈

P}∪{{Hu,e, Hu} : (u, e) ∈ P}∪{{Hu,e, H
′
u,e} : (u, e) ∈ P}. The mapping λH :

V(H) → C is defined by λH(rH
0) = c0, λH(sH

0) = c′0, λH(Hu) = λH(Hu) = cu,

12

u ∈ V(W), λH(Hu,e) = λH(Hu,e) = cu,e, (u, e) ∈ P , and λH(H ′
u,e) = ce,

(u, e) ∈ P . The description of the reduction is complete. The following two
claims are the key of the APX-hardness proof.

Claim 7 Assume W has a vertex cover X ⊆ V(W), |X| = k. Then the
instance 〈G, H, λG, λH〉 obtained from the original graph W as outlined above

admits a color preserving injective mapping θ : V(G)
λG,λH−−−−→ V(H) such that

|match(G, H, θ)| = 3m + n − k.

PROOF. The solution mapping θ is defined as follows. First, we define θ over
the vertices of the tree T as follows: (i) θ(rR

0) = rH
0 , (ii) for each u ∈ V(W),

θ(Tu) = Hu if u ∈ X and θ(Tu) = Hu otherwise, and (iii) for each (u, e) ∈ P ,
θ(T(u,e)) = H(u,e) if u ∈ X and θ(T(u,e)) = H(u,e) otherwise. Next, for each
edge e = {u, v} ∈ E(W), we define θ over the three vertices of the connected
component Ce of G as follows: (iv) if u ∈ X then θ(Ce

e) = H ′
(u,e), otherwise

θ(Ce
e) = H ′

(v,e), (v) if u ∈ X then θ(Ce
u) = H(u,e), otherwise θ(Ce

u) = H(u,e),
and (vi) if v ∈ X then θ(Ce

v) = H(v,e), otherwise θ(Ce
v) := H(v,e). It is easy to

check out that θ is a color preserving injective mapping that maps precisely
3 m + n − k edges of G into edges of H. ✷

Claim 8 Assume the instance 〈G, H, λG, λH〉 obtained from the original graph

W as outlined above admits a color preserving injective mapping θ : V(G)
λG,λH−−−−→

V(H) that maps t edges of G into edges of H. Then, starting from the knowl-
edge of θ, we can find out in polynomial-time a vertex cover X ⊆ V(W) of
the original graph W with |X| ≥ 3 m + n − t.

PROOF. Notice first that for each edge e = {u, v} ∈ E(W), at most one
of the two edges of the component Ce of G is mapped by θ into an edge of
H. Indeed, the central vertex of the length two path Ce has color ce and the
(two) vertices of H having color ce are leaves of H.

Let us now call the mapping θ reasonable if the following two conditions are
met: (i) for each edge e = {u, v} ∈ E(W), precisely one of the two edges of
the component Ce of G is mapped by θ into an edge of H, and (ii) for each
(u, e) ∈ P , θ(T(u,e)) = H(u,e) if and only if θ(Tu) = Hu. It is indeed easy to
propose a simple pre-processing algorithm which, starting from θ, constructs a
reasonable color preserving injective mapping θ′ which maps at least as many
edges of G as θ does. There is thus no loss of generality in assuming now that
θ is reasonable. At this point, we define a subset X of V(W) as follows. Each
vertex u ∈ V(W) belongs to X if and only if θ(Tu) = Hu. Since θ is reasonable,
it follows that X is indeed a vertex cover of W . Furthermore, if t is the number
of edges of G that θ maps into edges of H, then |X| = 3m + n − t. ✷

13

To make G into a tree it suffices to add the following edges: the vertex rG
0 is

adjacent to the central vertex Ce
e of the component Ce for each e ∈ E(W). It is

quite clear that this simple modification does not affect the validity of the re-
duction and of the two claims. It is also very easy yet technical to rely on trees
G and H of maximum degree 3 by introducing bifurcation points in the paths
from the root T0 to the vertices Tvi

as suitable and paralleling the same trans-
formation also into H. To conclude in showing that the proposed reduction is
an L-reduction, one has to observe that the Vertex Cover problem is APX-
hard even when restricted to instances where a minimum vertex cover takes
at least half of the vertices (as proven e.g. by the famous Trotter-NemHauser
reduction). ✷

5 Approximation algorithms

We proved in Section 4 that the Max–(3, 3)–Matching–Colors problem for
linear forests is APX-hard. In the light of this negative result, we first fo-
cus here on approximating the Max–(ρ, σ)–Matching–colors problem for
bounded degree graphs and give a polynomial-time approximation algorithm
that achieves a performance ratio of 2(∆min + 1), ∆min = min{∆(G), ∆(H)},
for the Max–(ρ, σ)–Matching–colors problem. Next, we propose a random-
ized algorithm with performance ratio 4σ for the Max–(ρ, σ)–Matching–

colors problem. and we give an approximation algorithm that achieves a
performance ratio of 4 in case both G and H are linear forests. Finally, we
prove the Max–(2, 2)–Matching–Colors problem to be approximable within
ratio 1.1442.

5.1 Bounded degree graphs

We first consider bounded degree graphs. Let C = {c1, c2, . . . , cm} be a set
of colors and G be a graph whose vertices are colored with colors taken
from C. Also, let A = [ai,j] be a symmetric matrix of order m whose entries
are natural integers. Consider the problem, referred hereafter as the Max-

Matching-with-Color-Constraints (MMwCC) problem, of finding in G a
maximum cardinality matching M ⊆ E(G) subject to the constraint that, for
1 ≤ i ≤ j ≤ m, the number of edges in M having one end-vertex colored
ci and one end-vertex colored cj is at most ai,j. It is clear that a straightfor-
ward greedy algorithm delivers a 2-approximation algorithm for the MMwCC

problem.

Lemma 9 The MMwCC problem is approximable within ratio 2.

14

Recall that an edge coloring of a graph G is proper if no two adjacent edges
are assigned the same color. A proper edge coloring with k colors is called a
proper k-edge-coloring and is equivalent to the problem of partitioning the
edge set into k matchings. The smallest number of colors needed in a proper
edge coloring of a graph G is the chromatic index χ′(G) [Die00]. Vizing’s
Theorem [Viz64] states that χ′(G) ≤ ∆(G)+1 and that such an edge coloring
can be found in polynomial-time.

Proposition 10 For any ρ and σ, the Max–(ρ, σ)–Matching–colors prob-
lem is approximable within ratio 2(∆min+1), where ∆min = min{∆(G), ∆(H)}.

PROOF. Let 〈G, H, λG, λH〉 be an arbitrary trim instance of the Max–(ρ, σ)–

Matching–colors problem. Assume first ∆min = ∆(H). According to Viz-
ing’s Theorem, H admits a proper edge coloring with at most ∆(H)+1 colors,
say {c′1, c′2, . . . , c′∆(H)+1}. For 1 ≤ i ≤ ∆(H) + 1, let Hi be the graph obtained
from H by deleting all edges but those colored with color c′i. Notice that Hi is
certainly a matching, and hence by resorting to Lemma 9, we can easily obtain
a 2-approximation algorithm for the Max–(ρ, σ)–Matching–colors problem
for the new instance (G, Hi, C, λG, λH). Furthermore, returning the best one
these ∆(H)+1 mappings yields an approximation algorithm with performance
ratio 2(∆(H) + 1). If ∆min = ∆(G), we apply the same above arguments to
G to obtain an approximation algorithm with performance ratio 2(∆(G)+1),
which completes the proof. ✷

5.2 A randomized algorithm

We give here a randomized approximation algorithm which achieves a perfor-
mance ratio of 4 σ for the Max–(ρ, σ)–Matching–colors problem, for any ρ

and σ. Let C be a set of colors and G be a graph whose vertices are colored with
colors taken from C. Define a legal (ℓ1, ℓ2)-labeling of G to be an assignment
to labels {ℓ1, ℓ2} to the vertices of G such that, for each color ci ∈ C, either
⌊

|CG(ci)|
2

⌋

or
⌈

|CG(ci)|
2

⌉

vertices in CG(ci) are labeled ℓ1. Of particular importance

here is the fact that it is easy to choose at random a legal (ℓ1, ℓ2)-labeling of
G. Define the cut induced by a legal (ℓ1, ℓ2)-labeling to be the set of edges that
have one end-vertex with label ℓ1 and one end-vertex with label ℓ2.

Consider now an arbitrary trim instance 〈G, H, λG, λH〉 of the Max–(ρ, σ)–

Matching–colors problem and let θopt : V(G)
λG,λH−−−−→ V(H) be an optimal

solution. Now, let L be a random legal (ℓ1, ℓ2)-labeling of G and CL ⊆ E(G)
be the cut induced by L. Finally, let E ′ = CL ∩ match(G, H, θopt). Clearly
Exp[|E ′|] ≥ 1

2
|match(G, H, θopt)|. Combining this with a weighted bipartite

matching algorithm yields the following result.

15

Proposition 11 There exists a randomized algorithm for the Max–(ρ, σ)–

Matching–Colors problem with expected performance ratio 4 σ.

PROOF. Let θopt : V(G)
λG,λH−−−−→ V(H) be an optimal solution. Fix any

random legal (ℓ1, ℓ2)-labeling L of G and let V1 ⊆ V(G) (resp. V2 ⊆ V(G))
the set of vertices having label ℓ1 (resp. ℓ2). Assign at random the vertices in
V1 to vertices in V(H), with respect to λG and λH . We denote by θ this partial
assignment. We claim that the three following conditions hold true for at least
(4 σ)−1 of the edges e = {u, v} in match(G, H, θopt): (i) one of the end-vertex
of e, say u, has label ℓ1 and is correctly assigned, i.e., θopt(u) = θ(u), (ii) one
of the end-vertex of e, say v, has label ℓ2 (and hence is not yet assigned), and
(iii) θopt(v) is still free, i.e., no vertex of G with label ℓ1 has been assigned

to it in the first step. Indeed, for any ci ∈ C, since at most
⌈

|CG(ci)|
2

⌉

of the

vertices in CG(ci) have been randomly assigned to the at least |CH(ci)| vertices
of H, then it follows that the probability that a vertex of H is the image of a
wrong vertex (according to θopt) is at most 1

2
. To complete the proof, we notice

that the problem of assigning the vertices of V2 to the remaining vertices in
H in such a way to maximize the number of edges in the cut induced by the
labeling L that are matched in H according to θ can be solved to optimality in
polynomial-time by a natural reduction to weighted bipartite matching. ✷

5.3 Linear forests

We proved in Section 4 that the Max–(3, 3)–Matching–Colors problem is
APX-hard even if both G and H are linear forests. Furthermore, according to
Proposition 10, the Max–(ρ, σ)–Matching–Colors problem for linear forests
is approximable within ratio 2(∆min + 1) = 6. We strengthen this result here
by giving an algorithm that achieves a performance ratio of 4 for the Max–

(ρ, σ)–Matching–Colors problem for linear forests. Interestingly enough, the
proof make use of weighted 2-intervals sets. More precisely, our approach is
based on the 2-Interval–Pattern problem [Via04,CHL+06]. This problem,
initially motivated by RNA secondary structure prediction, asks to find a max-
imum cardinality subset of a 2-interval set with respect to some prespecified
geometric constraints.

We need some additional definitions. A 2-interval [TH79,BYHN+02,Via04]. is
the union of two disjoint intervals and is denoted by D = (I, J) where I and
J are two (closed) intervals such that I is completely to the left of J . Two
2-intervals D1 = (I1, J1) and D2 = (I2, J2) are disjoint, if both 2-intervals
share no common point. A 2-interval D = (I, J) is said to be balanced if
|I| = |J |, i.e., both intervals have the same length. By abuse of notation, a set
of balanced 2-interval is also said to be balanced. Let D be a set 2-intervals. If

16

we associate to each 2-interval D ∈ D a weight ω(D), the weight of D, denoted
ω(D), is defined to be the sum of the weights of all the 2-intervals in D.

Let 〈G, H, λG, λH〉 be a trim instance of the Max–(ρ, σ)–Matching–Colors

problem where both G and H are linear forests. Let PG
1 , PG

2 , . . . , PG
k (resp.

PH
1 , PH

2 , . . . , PH
ℓ) be the collection of all paths of G (resp. H). First, we ar-

range the paths PG
1 , PG

2 , . . . , PG
k and next the paths PH

1 , PH
2 , . . . , PH

ℓ along
an horizontal line, arbitrarily. According to this arrangement, we define the
label (resp. reversal label) of any subpath of a path to be string obtained by
concatenating the colors (view as letters) of the vertices of the path reading
from left to right (resp. right to left). Second, we construct a corresponding
set of weighted 2-intervals D[G, H] as follows. For each pair (QG

i , QH
j), where

QG
i is a subpath of length at least one of a path in {PG

1 , PG
2 , . . . , PG

k } and
QH

j is a subpath of length at least one of a path in {PH
1 , PH

2 , . . . , PH
ℓ }, Qi

G

and QH
j having the same length, if the label of QG

i is identical to the label
of QH

j or to the reversal label of QH
j , we add to D[G, H] a 2-interval whose

left interval covers all the vertices (and only those vertices) of the subpath QG
i

and whose right interval covers all the vertices (and only those vertices) of the
subpath QH

j . The weight of this 2-interval is merely defined to be the length
of the subpath QG

i (which also the length of the subpath QH
j). Without loss

of generality, we may assume that each 2-interval in D[G, H] is balanced and
that two 2-intervals that correspond to two vertex-disjoint pairs of subpaths
are disjoint. See Figure 2 for an illustration of this construction.

Lemma 12 There exists a pairwise disjoint subset D′ ⊆ D[G, H] of weight

ω(D′) if and only if there exists an injective mapping θ : V(G)
λG,λH−−−−→ V(H)

such that |match(G, H, θ)| ≥ ω(D′).

According to Lemma 12 it is thus enough to focus on finding a maximum
weighted subset of D[G, H] of disjoint 2-intervals, which is exactly the 2-

Interval–Pattern problem. In [CHL+06], an algorithm with performance
ratio 4 is proposed for finding a subset of disjoint 2-intervals in a balanced
2-intervals set. We have thus proved the following.

Corollary 13 For any ρ and σ, the Max–(ρ, σ)–Matching–Colors problem
is approximable within ratio 4 in case both G and H are linear forests.

5.4 Approximating the Max–(2, 2)–Matching–Colors problem

This last part is devoted to the NP-hard Max–(2, 2)–Matching–Colors prob-
lem. We prove this special case to be approximable within ratio 1.1442. The
basic idea is to transform any instance of the Max–(2, 2)–Matching–Colors

problem into an instance of the the Max–2–CSP problem. An instance of

17

PG
2

c1 c2 c1

PG
1

c1 c2 c1

Graph G

c3 c2 c1 c1 c2 c1 c1 c2 c3 c1 c1 c2 c1 c2

PG
1 PG

2

PH
3

c1 c2

PH
2

c1 c1 c2

PH
1

c1 c2 c3

Graph H

PH
1 PH

2 PH
3

1
1
1
1

1
1
1

1
1
1

2

Figure 2. Constructing a weighted 2-intervals set from an instance
〈G, H, λG, λH〉 of the Max–(ρ, σ)–Matching–Colors problem where
both G and H are linear forests. The weights of all the 2-intervals in the
set D[G, H] are given in the left part of the figure.

the (boolean) MAX–CSP problem consists of a set of boolean variables and
a collection of constraints which are applied to certain specified subsets of
these variables; the goal is to find values for the variables which maximize
the number of simultaneously satisfied constraints. For analyzing purposes it
is useful to consider restricted subclasses of the MAX–CSP problem. Most
importantly, MAX–k–CSP is the maximum constraint satisfaction problem
where each constraint depends on at most k variables.

Let 〈G, H, λG, λH〉 be an arbitrary instance of the the Max–(2, 2)–Matching–

Colors problem. For the sake of simplification, by adding dummy isolated
vertices if needed, we assume that each color occurs exactly twice in both G

and H. Let X be a set of boolean variables defined by X = {xc : c ∈ C},
and write X ∪ X the set of literals over X. Furthermore, define a partial
function f : V(G) × V(H) → X ∪ X as follows. For each color c ∈ C, write
u and u′ the two vertices of G with color c, and v and v′ the two vertices
of H with color c, and define f(u, v) = xc and f(u′, v′) = xc, the choice
is arbitrary. We now turn to defining the corresponding set of constraints
F(G, H). Let e = {u, v} ∈ E(G), and write λG(u) = ci and λG(v) = cj.
We only need to consider the case where ci 6= cj (the case ci = cj is indeed
trivial if ρ = 2 and σ = 2). Thus, let u′ and u′′ be the two vertices of H with
color ci, and v′ and v′′ be the two vertices of H with color cj. Without loss of
generality, assume in addition f(u, u′) = xci

= xi and f(v, v′) = xcj
= xj (and

hence f(u, u′′) = xci
= xi and f(v, v′′) = xcj

= xj). We add to F(G, H) the

18

(xi) ∧ (xj) (xi)

(xi ∨ xj)(xk)

(xi) ∧ (xj) (xj) (xi ∨ xj) ∧ (xi ∨ xj) (xi ∨ xk)

(xi) (xi ∨ xj)(xi ∨ xj)

(xi) ∧ (xj) (xi ∨ xj) ∧ (xi ∨ xj)

u′ u′′ u′ u′′

v′ v′′ v′ v′′

(xi) ∧ (xj)

u′

u′u′u′u′

u′ u′ u′ u′

u′′

u′′u′′u′′u′′

u′′ u′′ u′′u′′

v′v′v′v′

v′ v′ v′ v′

v′ v′′

v′′v′′v′′v′′

v′′ v′′ v′′ v′′

u′ u′
u′u′′ u′′

u′′

v′′v′′v′′v′ v′ v′

Figure 3. Construction of the constraints in F(G, H).

constraint fe defined accordingly to Figure 3. Clearly, there exists an injective

mapping θ : V(G)
λG,λH−−−−→ V(H) that matches k edges of G if and only if k

constraints of the constraint set F(G, H) are simultaneously satisfied. But,
each constraint fe ∈ F(G, H) is involved in at most 2 variables, and hence
F(G, H) is an instance of the Max–2–CSP problem. Combining this with the
fact that the Max–2–CSP problem is approximable with ratio 1.1442 [LLZ02],
we obtain the following proposition.

Proposition 14 The Max–(2, 2)–Matching–Colors problem is approximable
within ratio 1.1442.

6 Conclusion

In the context of comparative analysis of protein-protein interaction graphs,
we considered the problem of finding an occurrence of a given complex in
the protein-protein interaction graph of another species. We gave an efficient
randomized algorithm in case the mapping is required to be an injective ho-
momorphism. Also, we proved the Max–(3, 3)–Matching–Colors problem for
linear forests to be APX-hard and we gave an approximation algorithm that
achieves a performance ratio of 2(∆min + 1), a randomized algorithm with ap-
proximation ratio 4σ and a simple approximation algorithm with performance
ratio 4 in case both G and H are linear forests.

We mention here some possible directions for future works. First, is it possi-

19

ble to improve the approximation ratio for bounded degree graphs presented
in Proposition 10? Second, due to biological constraints, improving Proposi-
tion 11 is of particular interest. In particular, does a deterministic or random-
ized approximation algorithm with performance ratio σ exist for the Max–

(ρ, σ)–Matching–Colors problem?

References

[AK00] P. Alimonti and V. Kann, Some apx-completeness results for cubic
graphs, Theoretical Computer Science 237 (2000), no. 1-2, 123–134.

[BYHN+02] R. Bar-Yehuda, M.M. Halldorsson, J. Naor, H. Shachnai, and
I. Shapira, Scheduling split intervals, Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002, pp. 732–741.

[CHL+06] M. Crochemore, D. Hermelin, G. Landau, D. Rawitz, and S. Vialette,
Approximating the 2-interval pattern problem, Theoretical Computer
Science (special issue for Alberto Apostolico) (2006), To appear.

[Die00] R. Diestel, Graph theory, second ed., Graduate texts in Mathematics,
no. 173, Springer-Verlag, 2000.

[FLV04] I. Fagnot, G. Lelandais, and S. Vialette, Bounded list injective
homomorphism for comparative analysis of protein-protein interaction
graphs, Proc. 1st Algorithms and Computational Methods for
Biochemical and Evolutionary Networks (CompBioNets), KCL
publications, 2004, pp. 45–70.

[FRV05] G. Fertin, R. Rizzi, and S. Vialette, Finding exact and maximum
occurrences of protein complexes in protein-protein interaction graphs,
Proc. 30th International Symposium on Mathematical Foundations of
Computer Science (MFCS), Lecture Notes in Computer Science, vol.
3618, 2005, pp. 328–339.

[GB+02] A.C. Gavin, M. Boshe, et al., Functional organization of the yeast
proteome by systematic analysis of protein complexes, Nature 414

(2002), no. 6868, 141–147.

[HG+02] Y. Ho, A. Gruhler, et al., Systematic identification of protein complexes
in Saccharomyces cerevisae by mass spectrometry, Nature 415 (2002),
no. 6868, 180–183.

[KSK+03] B.P. Kelley, R. Sharan, R.M. Karp, T. Sittler, D. E. Root, B.R.
Stockwell, and T. Ideker, Conserved pathways within bacteria and yeast
as revealed by global protein network alignment, PNAS 100 (2003),
no. 20, 11394–11399.

20

[LLZ02] M. Lewin, D. Livnat, and U. Zwick, Improved rounding techniques
for the max 2-sat and max di-cut problems, Proc. 9th International
Conference on Integer Programming and Combinatorial Optimization
(IPCO), Lecture Notes in Computer Science, vol. 2337, 2002, pp. 67–82.

[MU05] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized
algorithms and probabilistic analysis, Cambridge University Press,
2005.

[PLEO04] J.B. Pereira-Leal, A.J. Enright, and C.A. Ouzounis, Detection of
functional modules from protein interaction networks, Proteins 54

(2004), no. 1, 49–57.

[PMT+99] M. Pellegrini, E.M. Marcotte, M.J. Thompson, D. Eisenberg, and T.O.
Yeates, Assigning protein functions by comparative genome analysis:
protein phylogenetic profiles, PNAS 96 (1999), no. 8, 4285–4288.

[PY91] C.H. Papadimitriou and M. Yannakakis, Optimization, approximation
and complexity classes, J. of Computer and System Sciences 43 (1991),
425–440.

[RSS01] M. Remm, C.E.V. Storm, and E.L.L. Sonnhammer,
Automatic clustering of orhologs and in-paralogs from pairwise species
comparisons, Journal of Molecular Biology 314 (2001), 1041–1052.

[SIK+04] R. Sharan, T. Ideker, B. Kelley, R. Shamir, and R.M. Karp,
Identification of protein complexes by comparative analysis of yeast
and bacterial protein interaction data, Proc. 8th annual international
conference on Computational molecular biology (RECOMB), ACM
Press, 2004, pp. 282–289.

[SSK+04] R. Sharan, S. Suthram, R.M. Kelley, T. Kuhn, S. McCuin, P. Uetz,
T. Sittler, R. Karp, and T. Ideker, Conserved patterns of protein
interaction in multiple species, PNAS 102 (2004), no. 6, 1974–1979.

[TH79] W.T. Trotter and F. Harary, On double and multiple interval graphs,
J. Graph Theory 3 (1979), 205–211.

[TKL97] R.L. Tatusov, E.V. Koonin, and D.J. Lipman, A genomic perspective
on protein families, Science 278 (1997), no. 5338, 631–637.

[TSU04] B. Titz, M. Schlesner, and P. Uetz, What do we learn from high-
throughput protein interaction data?, Expert Review of Anticancer
Therapy 1 (2004), no. 1, 111–121.

[UG+00] P. Uetz, L. Giot, et al., A comprehensive analysis of protein-protein
interactions in Saccharomyces cerevisae, Nature 403 (2000), no. 6770,
623–627.

[Via04] S. Vialette, On the computational complexity of 2-interval pattern
matching, Theoretical Computer Science 312 (2004), no. 2-3, 223–249.

[Viz64] V.G. Vizing, On an estimate of the chromatic class of a p-graph,
Diskret. Analiz 3 (1964), 23–30, (in Russian).

21

