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Abstract

Let FN be a free group of finite rank N ≥ 2, and let T be an
R-tree with a very small, minimal action of FN with dense orbits.
For any basis A of FN there exists a heart KA ⊂ T (= the metric
completion of T ) which is a compact subtree that has the property
that the dynamical system of partial isometries ai : KA ∩ aiKA →
a
−1
i KA ∩ KA, for each ai ∈ A, defines a tree T(KA,A) which contains

an isometric copy of T as minimal subtree.
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1 Introduction

A point on Thurston’s boundary of Teichmüller space T (Σ) for a surface Σ
can be understood alternatively as a measured geodesic lamination (L, µ)
on Σ, up to rescaling of the transverse measure, or as small action of π1Σ
on some R-tree T , up to π1Σ-equivariant homothety. The correspondence
between these two objects, which are naturally dual to each other, is given
by the fact that points of T are in 1-1 correspondence (or “one-to-finite”

correspondence, for the branchpoints of T ) with the leaves of L̃, i.e. the lift

of L to the universal covering Σ̃. The metric on T is determined by µ, and
vice versa.

Culler-Vogtmann’s Outer space CVN is the analogue of T (Σ), with Out(FN)
replacing the mapping class group. A point of the boundary ∂CVN is given
by a homothety class [T ] of very small isometric actions of the free group
FN on an R-tree T . In general, T will not be dual to a measured lamination
on a surface. However, in [CHL-I, CHL-II] an “abstract” dual lamination
L(T ) has been defined for any such T , which is very much the analogue of
L in the surface case. The dual lamination L(T ) is an algebraic lamina-
tion: it lives in the double Gromov boundary of FN , and the choice of a
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basis A transforms L(T ) into a symbolic dynamical system which is a clas-
sical subshift in A ∪ A−1. The dual lamination L(T ), and variations of it,
have already been proved to be a useful invariant of the tree T , compare
[BFH00, CHL05, HM06, KL07].

In the case of measured laminations on a surface, the standard tool which
allows a transition from geometry to combinatorial dynamics, is given by in-
terval exchange transformations. The combinatorics which occur here are
classically given through coding geodesics on a surface by sequences of sym-
bols, where the symbols correspond to subintervals, and the sequences are
given by the first return map. Conversely, the surface and the lamination (or
rather “foliation”, in this case), can be recovered from the interval exchange
transformation by suspension, i.e. by realizing the map which exchanges the
subintervals by a (foliated) mapping torus.

Taking the basic concept of this classical method one step further and
considering directly the dual tree T rather than the lamination given by
the combinatorial data, one considers for any [T ] ∈ ∂CVN a finite metric
subtree K ⊂ T , and for some basis A of FN the induced finite system of
partial isometries between subtrees of K: Each basis element ai ∈ A defines
a partial isomerty ai : K∩aiK → a−1

i K∩K, and these partial isometries play
the role of the interval exchange transformation. Any such pair K = (K,A)
gives canonically rise to a tree TK together with an FN -equivariant map
j : TK → T . The tree TK is the “unfolding space” of the system K. The class
of R-trees T , with the property that for some such finite K the map j is an
isometry, have been investigated intensely, and they play an important role
in the study of ∂CVN , see [GL95].

Indeed, if K is an interval and if it is simultaneously equal to the union
of domains and the union of ranges of the isometries (and if these unions are
disjoint unions except at the boundary points), then K defines actually an
interval exchange transformation. If one only assumes that K is finite, this
will in general not be true: one only obtains a system of interval translations
(see for instance [BH04]). On the level of R-trees one obtains in the first case
surface tree actions, and in the second case actions that alternatively termed
Levitt, thin or exotic. The union of these two classes are precisely the actions
called geometric in [GL95].

However, both of these types of actions seem to be more the exception
than the rule: Given any point [T ] ∈ ∂CVN , there is in general no reason why
T should be determined by a system of partial isometries based on a finite
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tree K ⊂ T . A possible way to deal with such T is to consider increasing
sequences of finite subtrees and thus to approximate T by the sequence of
ensuing geometric trees TK , in the spirit of the “Rips machine”, which is
an important tool to analyze arbitrary group action on R-trees. The goal
of this paper is to propose a more direct alternative to this approximation
technology:

We replace the condition on the subtree K ⊂ T to be finite by the weaker
condition that K be compact. It turns out that almost all of the classical
machinery developed for the approximation trees TK for finite K carries over
directly to the case of compact K. However, the applications of such TK

concern a much larger class of trees: In particular, every minimal very small
T with dense orbits can be described directly, i.e. circumventing completely
the above approximation, as minimal subtree Tmin

K of the tree TK, for a
properly chosen compact subtree K of the metric completion T of T .

Theorem 1.1. Let T be an R-tree provided with a very small, minimal,
isometric action of the free group FN with dense orbits. Let A be a basis of
FN . Then there exists a unique compact subtree KA ⊂ T (called the “heart”
of T w.r.t. A), such that for any compact subtree K of T one has:

T = Tmin
K ⇐⇒ KA ⊆ K

This is a slightly simplified version of Theorem 5.4 proved in this paper.
The main tool for this proof (and indeed for the definition of the heart KA)
is the dual lamination L(T ). We define in this article (see §3) a second
admissible lamination Ladm(K) associated to the system of partial isometries
K = (K,A). One key ingredient in the equivalence of Theorem 1.1 is to prove
that the two statements given there are equivalent to the equation L(T ) =
Ladm(K). The other key ingredient, developed in §4, is a new understanding
of the crucial map Q : ∂FN → T ∪ ∂T from [LL03], based on the dynamical
system K = (K,A). The proof of Theorem 5.4 uses the full strength of the
duality between trees and laminations, and in particular a transition between
the two, given by the main result of our earlier paper [CHL05].

We would like to emphasize that the main object of this paper, the heart
KA of T with respect to any basis A of FN , is a compact subtree of T that is
determined by algebraic data associated to T , namely by the dual algebraic
lamination L(T ) of T . This system KA = (KA,A) of partial isometries is
entirely determined by the choice of the basis A and it depends on A, but
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important properties of it turn out to be independent of that choice. For ex-
ample, we derive in §6 from the above theorem the following direct character-
ization of geometric trees, and we also give a sharpening of Gaboriau-Levitt’s
approximation result for trees T from ∂CVN :

Corollary 6.1. A very small minimal R-tree T , with isometric FN -action
that has dense orbits, is geometric if and only if, for any basis A of FN , the
heart KA is a finite subtree of T .

Corollary 6.3. For every very small minimal R-tree T , with isometric FN -
action that has dense orbits, there exists a sequence of finite subtrees K(n)
of uniformely bounded diameter, such that:

T = lim
n→∞

TK(n)

In contrast to the case of geometric R-trees, there are trees in ∂CVN

for which the compact heart is far from being finite. Indeed it is proven in
[Cou08] that the compact heart of the repulsive tree TΦ−1 of an iwip outer
automorphism Φ of FN has Hausdorff dimension equal to max(1, ln λΦ

lnλ
Φ−1

),

where λΦ and λΦ−1 are the expansion factors of Φ and Φ−1 respectively.
As these expansion factors are in general not equal, we can assume that
λΦ > λΦ−1 to get a compact heart with Hausdorff dimension strictly bigger
than 1.

Acknowledgments: The authors would like to thank V. Guirardel, P. Hubert
and G. Levitt for helpful comments. The first and the third author would
also like to thank the MSRI at Berkeley for the support received from the
program “Geometric Group Theory” in the fall of 2007.

2 FN-actions on R-trees and their heart

In this section we first recall some well known facts about R-trees T with
isometric action of a free group FN . We also recall algebraic laminations, and
in particular the dual lamination L(T ). We then concentrate on the specific
case of very small trees with dense orbits, and for such trees we define the
limit set and the heart of T with respect to a fixed basis A of FN .

In this paper we need some of the machinary developed in our previous
articles [CHL-I, CHL-II, CHL05]. We present these tools in this section, but
refer to those articles for proofs and for a more complete discussion.
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2.1 Background on R-trees

An R-tree T is a metric space which is 0-hyperbolic and geodesic. Alterna-
tively, a metric space T is an R-tree if and only if any two points x, y ∈ T are
joined by a unique topological arc [x, y] ⊂ T , and this arc (called a segment)
is geodesic. For any R-tree T , we denote by T the metric completion and by
∂T the Gromov boundary of T . We also write T̂ = T ∪ ∂T .

Most R-trees T considered in this paper are provided with an action by
isometries (from the left) of a non-abelian free group FN of finite rank N ≥ 2.
Such an action is called minimal if T agrees with its minimal FN -invariant
subtree. We say that the action has dense orbits if for some (and hence every)
point x ∈ T the orbit FN · x is dense in T . In the case of dense orbits, the
following three conditions are equivalent:

• T has trivial arc stabilizers (i.e. for any distinct x, y ∈ T and w ∈ FN

the equality w[x, y] = [x, y] implies w = 1).

• The FN -action on T is small (see [CM87, CHL-II]).

• The FN -action on T is very small (see [CL95, CHL-II]).

As usual, for any w ∈ FN we denote by ‖w‖T (or simply by ‖w‖) the
translation length of the action of w on T , i.e. the infimum of d(x, wx) over
all x ∈ T .

There are two types of isometries of T : An element w ∈ FN acts as an
elliptic isometry on T if it fixes a point, which is equivalent to ‖w‖ = 0.
If ‖w‖ > 0, then the action of w on T is called hyperbolic: There is a well
defined axis in T , which is isometric to R and is w-invariant: the element w
translates every point on the axis by ‖w‖.

A continuous map T → T ′ between R-trees is called a morphism if every
segment is mapped locally injectively except at finitely many points.

2.2 The observers’ topology on T

There are various independent approaches in the literature to define R-trees
as topological spaces without reference to the metric. The following version
has been studied in [CHL05].

Definition 2.1. Let T be an R-tree. A direction in T̂ is a connected com-
ponent of the complement of a point of T̂ . A subbasis of open sets for the
observers’ topology on T̂ is given by the set of all such directions in T̂ .
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The observers’ topology on T̂ (or T ) is weaker than the metric topology:
For example, any sequence of points that “turns around” a branch point
converges to this branch point. We denote by T̂ obs the set T̂ equipped with
the observers’ topology. The space T̂ obs is Hausdorff and compact.

For any sequence of points Pn in T̂ , and for some base point Q ∈ T̂ , there
is a well defined inferior limit from Q, which we denote by:

P = lim inf
n→∞

Q Pn

It is given by

[Q, P ] =
∞⋃

m=0

⋂

n≥m

[Q, Pn].

The inferior limit P is always contained in the closure of the convex hull
of the Pn, but its precise location does in fact depend on the choice of the
base point Q. However, in [CHL05] the following has been shown:

Lemma 2.2. If a sequence of points Pn converges in T̂ obs to some limit point
P ∈ T̂ obs, then for any Q ∈ T̂ one has:

P = lim inf
n→∞

Q Pn

The observers’ topology is very useful, but it is also easy to be deceived
by it. For example, it is not true that any continuous map between R-trees
T1 → T2 induces canonically a continuous map T̂ obs

1 → T̂ obs
2 , as is illustrated

in the following remark.

Remark 2.3. Let T1 be the ∞-pod, given by a center Q and edges [Q, Pk]
of length 1, for every k ∈ N. Let T2 be obtained from T1 by gluing the
initial segment of length k−1

k
of each [Q, Pk], for k ≥ 2, to [Q, P1]. Then

the canonical map f : T1 → T2 is continuous, and even a length decreasing
morphism, but lim Pk = Q, while lim f(Pk) = f(P1) 6= f(Q).

We refer the reader to [CHL05] for more details about the observers’
topology.
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2.3 Algebraic laminations

For the free group FN of finite rank N ≥ 2, we denote by ∂FN the Gromov
boundary of FN . We also consider

∂2FN = ∂FN × ∂FN r ∆ ,

where ∆ denotes the diagonal. The space ∂2FN inherits from ∂FN a left-
action of FN , defined by w(X, Y ) = (wX, wY ) and a topology. It also admits
the flip map (X, Y ) 7→ (Y, X). An algebraic lamination L2 ⊂ ∂2FN is a non-
empty closed subset which is invariant under the FN -action and the flip map.

If one choses a basis A of FN , then every element w ∈ FN can be uniquely
written as a finite reduced word in A±1, so that FN is canonically identified
with the set F (A) of such words. Similarly, a point of the boundary ∂FN

can be written as an infinite reduced word X = z1z2 . . ., so that ∂FN is
canonically identified with the set ∂F (A) of such infinite words.

We also consider reduced biinfinite indexed words

Z = . . . z−1z0z1 . . .

with all zi ∈ A±1. We say that Z has positive half Z+ = z1z2 . . . and negative
half Z− = z−1

0 z−1
−1 . . ., which are two infinite words

Z+, Z− ∈ ∂F (A)

with distinct initial letters Z+
1 6= Z−

1 . We write the reduced product Z =
(Z−)−1 · Z+ to mark the letter Z+

1 with index 1.
For any fixed choice of a basis A, an algebraic lamination L2 determines

a symbolic lamination

LA = {(Z−)−1 · Z+ | (wZ−, wZ+) ∈ L2}

as well as a laminary language

LA = {w ∈ F (A) | w is a subword of some Z ∈ LA} .

Both, symbolic laminations and laminary languages can be characterized
independently, and the natural transition from one to the other and back to
an algebraic lamination has been established with care in [CHL-I]. In case we
do not want to specify which of the three equivalent terminologies is meant,
we simply speak of a lamination and denote it by L.
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One of the crucial points of the encounter between symbolic dynamics and
geometric group theory, in the subject treated in this paper, occurs precisely
at the transition between algebraic and symbolic laminations. Since the main
thrust of this paper (as presented in §3) can be reinterpreted as translating
the symbolic dynamics viewpoint into the world of R-trees, it seems useful to
highlight this transition in the symbolic language, before embroiling it with
the topology of R-trees:

Remark 2.4. As before, we fix a basis A of FN , and denote an element X
of the boundary ∂FN = ∂F (A) by the corresponding infinite reduced word
in A±1. We denote by Xn its prefix of length n.

We consider the unit cylinder C2
A in ∂2FN :

C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}

Contrary to ∂2FN , the unit cylinder C2
A is a compact set (in fact, a Cantor

set). The unit cylinder C2
A has the property that the canonical map ρA :

(X, Y ) 7→ X−1 · Y (see [CHL-I], Remark 4.3) restricts to an injection on C2
A

with inverse map Z 7→ (Z−, Z+).

In symbolic dynamics, the natural operator on biinfinite sequences is the
shift map, which in our notation is given by

σ(X−1 · Y ) = X−1Y1 · (Y
−1
1 Y ) ,

i.e. the same symbol sequence as in X−1 ·Y , but with Y1 as letter of index 0.

On the other hand, there is a system of “partial bijections” on C2
A, given

for each ai ∈ A by:

ai : C2
A ∩ ai

−1C2
A → aiC

2
A ∩ C2

A

A particular feature of this system is that it “commutes” via the map ρA

with the shift map σ on the set of biinfinite reduced words: More precisely,
for all (X, Y ) ∈ C2

A one has:

ρA(Y −1
1 (X, Y )) = σ(ρA(X, Y ))

This transition from group action to the shift (or more precisely, the converse
direction), will be explored in §3 in detail, with the additional feature that
the topology of compact trees is added on, in the analogous way as interval
exchange transformations are a classical tool to interpret certain symbolic
dynamical systems topologically.
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2.4 The dual lamination L(T )

In [CHL-II] a dual lamination L(T ) for any isometric action of a free group
FN on an R-tree T has been introduced and investigated. If T is very small
and has dense orbits, three different definitions of L(T ) have been given in
[CHL-II] and shown there to be equivalent. However, as in this paper we
can not always assume that T has dense orbits, it is most convenient to
fix a basis A of FN and to give the general definition of L(T ) via its dual
laminary language LA(T ) (see Definition 4.1 and Remark 4.2 of [CHL-I]),
which determines L(T ) and vice versa:

LA(T ) = {v ∈ F (A) | ∀ ε > 0 ∃u, w ∈ F (A) : ‖u · v · w‖T < ε,
u · v · w reduced and cyclically reduced}

Remark 2.5. It follows directly from this definition that L(T ) = L(Tmin),
where Tmin denotes the minimal FN -invariant subtree of T .

2.5 The map Q

Theorem 2.6 ([LL03, LL08]). Let T be an R-tree with a very small action
of FN by isometries that has dense orbits. Then there exists a surjective
FN -equivariant map Q : ∂FN → T̂ which has the following property:

For any sequence of elements un of FN which converges to X ∈ ∂FN and
for any point P ∈ T , if the sequence of points unP ∈ T converges (metrically)

in T̂ to a point Q, then Q(X) = Q.

Using the properties of a metric topology, we get the following lemma.

Lemma 2.7. Let T be an R-tree with a very small action of FN by isometries
that has dense orbits. Let K be a compact (with respect to the metric topology)
subtree of T . Let Q be a point in K and wn a sequence of elements in
FN which converge in FN ∪ ∂FN to some X ∈ ∂FN . If for all n one has
w−1

n Q ∈ K, then Q(X) = Q.

Proof. As K is compact, up to passing to a subsequence, we can assume that
w−1

n Q converges to a point P in K, that is to say limn→∞ d(w−1
n Q, P ) = 0.

As the action is isometric, we get that limn→∞ d(Q, wnP ) = 0, i.e. the wnP
converge to Q. Hence Theorem 2.6 gives the desired conclusion Q(X) = Q.

⊔⊓
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It is crucial for the arguments presented in this paper to remember that
the map Q is not continuous with respect to the metric topology on T̂ , i.e.
the topology given by the metric on T . In fact, this has been the reason why
in [CHL05] the weaker observers’ topology on T̂ has been investigated.

Theorem 2.8 (Remark 2.2 and Proposition 2.3 of [CHL05]). Let T
be an R-tree with isometric very small action of FN that has dense orbits.
Then the following holds:

(1) The map Q defined in Theorem 2.6 is continuous with respect to the
observers’ topology, i.e. it defines a continuous equivariant surjection

Q : ∂FN → T̂ obs.

(2) For any point P ∈ T the map Q defines the continuous extension to
FN ∪ ∂FN of the map

QP : FN → T̂ obs, w 7→ wP .

Though obvious it is worth noting that the last property determines the
map Q uniquely.

2.6 The map Q2

If the tree T is very small and has dense orbits, the dual lamination L(T )
described in §2.4 admits an alternative second definition via the above defined
map Q as algebraic lamination L2(T ) (compare §2.3):

L2(T ) = {(X, Y ) ∈ ∂2FN | Q(X) = Q(Y )}

It has been proved in [LL03, LL08] that the map Q is one-to-one on the
preimage of the Gromov boundary ∂T of T . Hence the map Q induces a
map Q2 from L2(T ) to T , given by:

Q2((X, Y )) = Q(X) = Q(Y )

In light of the above discussion the following result seems remarkable. It is
also crucial for the definition of the heart of T in the next subsection.
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Proposition 2.9 (Proposition 8.3 in [CHL-II]). The FN -equivariant
map

Q2 : L2(T ) → T

is continuous, with respect to the metric topology on T .

As in [CHL05], §2, we consider the equivalence relation on ∂FN whose
classes are fibers of Q, and we denote by ∂FN/L2(T ) the quotient set. The
quotient topology on ∂FN/L2(T ) is the finest topology such that the natural
projection π : ∂FN → ∂FN/L2(T ) is continuous. The map Q splits over π,

thus inducing a map ϕ : ∂FN/L2(T ) → T̂ obs with Q = ϕ ◦ π.

Theorem 2.10 (Corollary 2.6 of [CHL05]). The map

ϕ : ∂FN/L2(T ) → T̂ obs

is a homeomorphism.

2.7 The limit set and the heart of T

We consider again the unit cylinder C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}

in ∂2FN as defined in Remark 2.4. The following definition is the crucial
innovative tool of this paper:

Definition 2.11. The limit set of T with respect to the basis A is the set

ΩA = Q2(C2
A ∩ L2(T )) ⊂ T .

The heart KA of T with respect to the basis A is the convex hull in T of the
limit set ΩA.

It is not hard to see that in any R-tree the convex hull of a compact set
is again compact. Thus we obtain from Proposition 2.9 and Definition 2.11:

Corollary 2.12. The limit set ΩA is a compact subset of T . The heart
KA ⊂ T is a compact R-tree.

Note that, while L2(T ) does not depend on the choice of the basis A,
the unit cylinder C2

A and thus the limit set and the heart of T do crucially
depend on the choice of A.
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3 Systems of isometries on compact R-trees

In this section we review the basic construction that associates an R-tree to
a system of isometries. This goes back to the seminal papers of D. Gaboriau,
G. Levitt, and F. Paulin [GLP94] and M. Bestvina and M. Feighn [BF95],
and before them to the study of surface trees and the work of J. Morgan and
P. Shalen [MS91], R. Skora [Sko96], and of course to the fundamental work
E. Rips.

3.1 Definitions

Definition 3.1. (a) Let K be a compact R-tree. A partial isometry of K is
an isometry between two closed subtrees of K. It is said to be non-empty if
its domain is non-empty.

(b) A system of isometries K = (K,A) consists of a compact R-tree K and a
finite set A of non-empty partial isometries of K. This defines a pseudo-group
of partial isometries of K by admitting inverses and composition.

We note that in the literature mentioned above it is usually required that
K is a finite tree, i.e. K is a metric realisation of a finite simplicial tree, or,
equivalently, K is the convex hull of finitely many points. The novelty here
is that we only require K to be compact. Recall that a compact R-tree K
may well have infinitely many branch points, possibly with infinite valence,
and that K may well contain finite trees of unbounded volume (but of course
K has finite diameter). In the context of this paper, however, all trees have
a countable number of branch points, which makes compact trees slightly
more tractable.

Any element of the free group FN over the basis A, given as reduced
word w = z1 . . . zn ∈ F (A), defines a (possibly empty) partial isometry,
also denoted by w, which is defined as the composition of partial isometries
z1 ◦ z2 ◦ . . . ◦ zn. We write this pseudo-action of F (A) on K on the right, i.e.

x(u ◦ v) = (xu)v

for all x ∈ K and u, v ∈ F (A). For any points x, y ∈ K and any w ∈ F (A)
we obtain

xw = y

if and only if x is in the domain dom(w) of w and is sent by w to y.
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A reduced word w ∈ F (A) is called admissible if it is non-empty as a
partial isometry of K.

3.2 The R-tree associated to a system of isometries

A system of isometries K = (K,A) defines an R-tree TK, provided with an
action of the free group FN = F (A) by isometries. The construction is the
same as in the case where K is a finite tree and will be recalled now.

As in [GL95] the tree TK can be described using a foliated band-complex,
but for non-finite K one would not get a CW-complex. We use the following
equivalent construction in combinatorial terms.

The tree TK is obtained by gluing countably many copies of K along the
partial isometries, one for each element of FN . On the topological space
FN × K these identifications are made formal by defining

TK = FN × K/ ∼

where the equivalence relation ∼ is defined by:

(u, x) ∼ (v, y) ⇐⇒ x(u−1v) = y

The free group FN acts on TK, from the left: this action is simply given
by left-multiplication on the first coordinate of each pair (u, x) ∈ FN × K:

w(u, x) = (wu, x)

for all u, w ∈ FN , x ∈ K.
Since FN is free over A, each copy {u}×K of K embeds canonically into

TK. Thus we can identify K with the image of {1} ×K in TK, so that every
{u} × K maps bijectively onto uK. Using these bijections, the metric on
K defines canonically a pseudo-metric on TK. Again, by the freeness of FN

over A, this pseudo-metric is a metric. The arguments given in the proof of
Theorem I.1. of [GL95] extend directly from the case of finite K to compact
K, to show:

Theorem 3.2. Given a system of isometries K = (K,A) on a compact R-
tree K, there exists a unique R-tree TK, provided with a left-action of F (A)
by isometries, which satisfies:

(1) TK contains K (as an isometrically embedded subtree).
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(2) If x ∈ K is in the domain of a ∈ A, then a−1x = xa.

(3) Every orbit of the F (A)-action on TK meets K. Indeed, every segment
of TK is contained in a finite union of translates wiK, for suitable
wi ∈ F (A).

(4) If T is another R-tree with an action of F (A) by isometries satisfying
(1) and (2), then there exists a unique F (A)-equivariant morphism
j : TK → T such that j(x) = x for all x ∈ K. ⊔⊓

3.3 Systems of isometries induced by an FN-action on

an R-tree

Frequent and important examples of systems of isometries occur in the fol-
lowing context:

Let T be any R-tree with an F (A)-action by isometries. Then any com-
pact subtree K ⊂ T , which is sufficiently large so that it intersects for any
ai ∈ A the translate aiK, defines canonically a system of isometries given
by:

ai : aiK ∩ K → K ∩ a−1
i K

x 7→ xai = a−1
i x

Since K embeds into T , Theorem 3.2 gives a map

j : TK → T.

The map j fails in general to be injective. A classical technique for the
study of an action on an R-tree T is to view TK as an approximation of T ,
and to consider a sequence of increasing K. As K increases to exhaust T ,
the convergence of the sequence of TK to T is well understood. Moreover, if
K is a finite subtree of T , then TK is called geometric and the full strength
of the Rips machine can be used to study it

In this article, we propose a new approach to study T , namely we prove
that there exists a compact subtree K of T such that j is an isometry. This
gives the possibility to extend the results proved for geometric trees (i.e.
when K is finite) to the case where K is only assumed to be compact.

15



3.4 Basic lemmas

We now present some basic lemmas about the action on TK, for admissible
and non-admissible words in the given system of isometries. We first observe:

Remark 3.3. (a) Let K and K ′ be two closed disjoint subtrees of T . Then
there exists a unique segment [x, x′] which joins K to K ′, i.e. one has K ∩
[x, x′] = {x} and K ′ ∩ [x, x′] = {x′}. For any further points y ∈ K, y′ ∈ K ′

the segment [y, y′] contains both segments [x, y′] and [x′, y], and both contain
[x, x′].

(b) As a shorthand, we use in the situation given above the following notation:

[K, K ′] := [x, x′], [y, K ′] := [y, x′], [K, y′] := [x, y′]

(c) If y ∈ K, then we set [y, K] = [K, y] = {y}, i.e. the segment of length 0
with y as initial and terminal point.

The following is a specification of statement (3) of Theorem 3.2:

Lemma 3.4. For any non-admissible word w ∈ F (A) one has

[K, wK] ⊂

|w|⋃

i=0

wiK ,

where wi is the prefix of w with length |wi| = i.

Proof. It suffices to show that for the reduced word w = z1 . . . zn the union
n⋃

i =0

wiK is connected. This follows directly from the fact that for all i =

1, . . . , n the union wi−1K ∪ wiK = wi−1(K ∪ w−1
i−1wiK) is connected, since

w−1
i−1wi = zi ∈ A±1, and all partial isometries from A are assumed to be

non-empty. ⊔⊓

Lemma 3.5. Let K = (K,A), TK and F (A) be as above.

(1) For all w ∈ F (A) one has

dom(w) = K ∩ wK .

(2) A word w ∈ F (A) is admissible if and only if K ∩ wK 6= ∅.
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(3) If x ∈ dom(w), then
w−1x = xw .

Proof. Let w ∈ F (A) and x ∈ TK. If x ∈ dom(w) ⊂ K, then the definition
of TK gives (1, x) ∼ (w, xw), or equivalently (compare Theorem 3.2)

w−1x = xw .

Therefore x is contained in both K and wK. This shows:

dom(w) ⊂ K ∩ wK

Conversely, let x be in K ∩ wK. Then (1, x) ∼ (w, y) for some point
y ∈ K, and by definition of ∼ the point x lies in the domain of w, with
xw = y. Thus w is admissible, and

K ∩ wK ⊂ dom(w) .

⊔⊓

Lemma 3.6. For all w ∈ F (A) the following holds, where wk denotes the
prefix of w of length k:

(1) dom(w) ⊂ dom(wk) for all k ≤ |w|.

(2) dom(w) =
|w|⋂

k = 0

wkK

Proof. Assertion (1) follows directly from the definition of dom(w). Assertion
(2) follows from assertion (1) and Lemma 3.5 (1). ⊔⊓

Remark 3.7. We would like to emphasize that it is important to keep the
F (A)-action on TK apart from the F (A)-pseudo-action on K. This is the
reason why we define the action on TK from the left, whereas we define the
pseudo-action by partial isometries on K from the right.

This setting is also convenient to keep track of the two actions: a point
x ∈ K lies in the domain of the partial isometry associated to w ∈ F (A) if
and only if x is contained in wK (Lemma 3.5 (1)). More to the point, the
sequence of partial isometries given by the word w = z1 . . . zn defines points
xz1 . . . zi which lie all inside of K if and only if the sequence of isometries
of T given by the prefixes of w moves K within T in such a way that x is
contained in each of the translates z1 . . . ziK (see Lemma 3.6 (2)).
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Lemma 3.8. (a) For any non-admissible word w ∈ F (A) and any disjoint
closed subtrees K and wK, the arc [K, wK] intersects all wiK, where wi is
a prefix of w.

(b) For any point Q ∈ K and any (possibly admissible) word w ∈ F (A), the
arc [Q, wK] intersects all wiK.

Proof. (a) We prove part (a) by induction on the length of w.
Let u be the longest admissible prefix of w. Thus u 6= 1, as all partial

isometries in A±1 are non-empty. Hence we can assume by induction that
u−1w is either admissible or satisfies the property stated in part (a).

Let a be the next letter of w after the prefix u. We write w as reduced
product w = u · a · v. According to Lemma 3.5 (2) one has:

(i) uK ∩ K = dom(u) 6= ∅

(ii) uK ∩ uaK = u dom(a) 6= ∅, and

(iii) K ∩ ua K = ∅

By (iii) there is a non-trivial segment β = [K, uaK] ⊂ TK that intersects K
and uaK only in its endpoints. By (i) and (ii) the segment β is contained in
the subtree uK: there are points x, y ∈ K such that β = [ux, uy]. Since ux
belongs to K ∩ uK = dom(u), it follows from Lemma 3.6 (2) that ux also
belongs to every u′K, for any prefix u′ of u.

Moreover, for any prefix v′ of v one has, by Lemma 3.5 (1) and Lemma 3.6 (1):

uav′K ∩ uK = u dom(av′) ⊂ u dom(a) = uaK ∩ uK

From this we deduce that

uav′K ∩ [ux, uy] ⊂ uav′K ∩ [ux, uy] ∩ uK
⊂ [ux, uy]∩ uaK ∩ uK
⊂ [ux, uy]∩ uaK = {uy} .

Since the segment α = [K, wK] is by Lemma 3.4 contained in the union

|w|⋃

i=0

wiK

it follows from the above derived inclusion uav′K ∩ [ux, uy] ⊂ {uy} that α is
the union of β = [ux, uy] and of the segment γ = [uy, wK], with β∩γ = {uy}.
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If av is admissible, then the endpoint of γ is contained in the intersection
of all uav′K, by Lemma 3.6 (2). If av is non-admisible, we apply the induction
hypothesis to u−1w = av and obtain that every av′K meets the arc γ′ =
[K, avK]. But uγ′ is a subarc of γ, so that the arc [ux, uy] ∪ γ meets infact
all wiK, as claimed.

(b) In case that w is non-admissible, there is a largest index i such that
K ∩ wiK 6= ∅. We can now apply statement (a) to w−1

i K and w−1
i w to get

the desired conclusion.
If w is admissible, then dom(w) = K ∩ wK (by Lemma 3.5 (1)). Hence

the arc [Q, wK] is contained in K, and by Lemma 3.6 (2) its endpoint is
contained in any wiK. ⊔⊓

Lemma 3.9. Let w, w′ ∈ F (A) with maximal common prefix u ∈ F (A).
Then for any triplet of points Q ∈ K, R ∈ wK and R′ ∈ w′K the arcs [Q, R]
and [Q, R′] intersect in an arc [Q, P ] with endpoint P ∈ uK.

Proof. Let [Q, Q1] the arc which joins K to uK. It follows directly from
Lemma 3.8 (b) that Q1 lies on both [Q, R] and [Q, R′]. Similarly, let [R, R1]
and [R′, R′

1] be the arcs that join R to uK and R′ to uK respectively. After
applying w−1 or w′−1 we obtain in the same way that R1 lies on both [Q, R]
and [R, R′], and that R′

1 lies on both [Q, R′] and [R, R′]. Hence the geodesic
triangle in TK with endpoints Q, R, R′ contains the geodesic triangle with
endpoints Q1, R1 and R′

1, and the center of the latter is equal to the center
P of the former. But Q1, R1 and R′

1 are all three contained in uK, so that
P is contained in uK. ⊔⊓

In the following statement and its proof we use the standard terminology
for group elements acting on trees, as recalled in §2.1 above.

Proposition 3.10. Let w ∈ F (A) is any cyclically reduced word. If the
action of w on TK is hyperbolic, then the axis of w intersects K. If the
action of w on TK is elliptic, then w has a fixed point in K.

Proof. If w is not admissible, let [x, wy] be the segment that joins K to wK:
these two translates are disjoint by Lemma 3.5 (2). As w acts as an isometry,
[wx, w2y] is the segment that joins wK to w2K. Moreover, since w is assumed
to be cyclically reduced, the segment that joins K to w2K intersects wK, by
Lemma 3.8.

Any two consecutive segments among [x, wy], [wy, wx], [wx, w2y] and
[w2y, w2x] have precisely one point in common, by Remark 3.3, and hence
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their union is a segment. This proves that wx belongs to [x, w2x], and that
x is contained in the axis of w.

If w is admissible, then either there exists n ≥ 0 such that wn is not
admissible, in which case we can fall back on the above treated case, as w
and wn have the same axis. Otherwise, for arbitrary large n there exists a
point x ∈ K such that wnx ∈ K, by Lemma 3.5 (2). But K is compact
and hence has finite diameter. This implies that the action of w on T is not
hyperbolic, and hence it is elliptic: w fixes a point of T . Some such fixed
point lies on [x, wx] (namely its center), and hence in the subtree K. ⊔⊓

3.5 Admissible laminations

In this subsection we use the concepts of algebraic lamination, symbolic lam-
ination and laminary language as defined in [CHL-I], and the equivalence
between these three points of view shown there. The definitions and the
notation have been reviewed in §2.3 above.

For any system of isometries K = (K,A) denote by Adm(K) ⊂ F (A) the
set of admissible words. The set Adm(K) is stable with respect to passage
to subwords, but it is not laminary (see [CHL-I], Definition 5.2): not every
admissible word w is necessarily equal, for all k ∈ N, to the word v†k obtained
from some larger v ∈ Adm(K) by “chopping off” the two boundary subwords
of length k. As does any infinite subset of F (A), the set Adm(K) generates a
laminary language, denoted Ladm(K), which is the largest laminary language
made of admissible words:

Ladm(K) = {w ∈ F (A) | ∀k ∈ N ∃v ∈ Adm(K) : w = v†k}

Clearly one has Ladm(K) ⊂ Adm(K), but the converse is in general false.
As explained in §2.3, any laminary language determines an algebraic lam-

ination (i.e. a closed FN -invariant and flip-invarinat subset of ∂2FN ), and
conversely. The algebraic lamination determined by Ladm(K) is called ad-
missible lamination, and denoted by Ladm(K).

An infinite word X ∈ ∂F (A) is admissible if all of its prefixes Xn are
admissible. The set of admissible infinite words is denoted by L1

adm(K). It is
a closed subset of ∂F (A) but it is not invariant under the action of F (A).

For any infinite admissible X the domain dom(X) of X is defined to be
the intersection of all domains dom(Xn). Since K is compact, one has

dom(X) 6= ∅
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for all X ∈ L1
adm(K).

A biinfinite indexed reduced word Z = . . . z−1z0z1 . . ., with zi ∈ A±,
is called admissible, if its two halves Z+ = z1z2 . . . and Z− = z−1

0 z−1
−1 . . . are

admissible, and if the intersection of the domains of Z+ and Z− is non-empty.
The domain of Z is defined to be this intersection:

dom(Z) = dom(Z+) ∩ dom(Z−)

We observe that Z is admissible if and only if all its subwords are admissible.
The set of biinfinite admissible words is called the admissible symbolic

lamination of the system of isometries K = (K,A).

We use now the notion of the dual lamination of an R-tree with isometric
FN -action as introduced in [CHL-II] and reviewed above in §2.4.

Proposition 3.11. For any system of isometries K one has

L(TK) ⊆ Ladm(K).

Proof. Let u ∈ F (A) be a non-admissible word, and let ε = d(K, uK). By
Lemma 3.5 (2) one has ε > 0. Let w be a cyclically reduced word that
contains u as a subword: we write w = u1 · u · u2 as a reduced product. By
Proposition 3.10, the axis of w passes through K. But if x is any point in
K, the segment [x, wx] contains the segment that joins the disjoint subtrees
u1K and u1uK, by Lemma 3.8, and hence the translation length of w, which
is realized on its axis, is bigger than ε. This proves that u is not in L(TK)
(see §2.4) .

As the laminary language of Ladm(K) is the largest laminary language
made of admissible words, this concludes the proof. ⊔⊓

4 The map QK for a system of isometries

In this section we define the map QK and we prove that it is the equivalent
of the map Q from §2.5, for systems of isometries K. For this definition we
distinguish two cases: If X ∈ ∂F (A) is not eventually admissible we define
QK(X) in §4.1. If X is eventually admissible, the definition of QK(X) is
given in §4.3, and in this case we need the hypothesis that the system of
isometries has independent generators. Both cases are collected together in
§4.4 to obtain a continuous equivariant map QK.
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4.1 The map QK for non-eventually admissible words

As in §3, let K = (K,A) be a system of isometries on a compact R-tree K,
and let TK be the associated R-tree, provided with an action of the free group
F (A) by isometries. Let X ∈ ∂F (A) be an infinite reduced word and denote
as before by Xi the prefix of X of length i ≥ 0.

Definition 4.1. An infinite word X ∈ ∂F (A) is eventually admissible if
there exists an index i such that the suffix Xi

−1X of X is admissible.

Note that an infinite word X ∈ ∂F (A) is not eventually admissible if for
every index i ≥ 0 there is an index j > i such that the subword X[i+1,j] =
X−1

i Xj of X between the indices i + 1 and j is not admissible.
Let X ∈ ∂F (A) be not eventually admissible, and let i0 > 0 be such

that the prefix Xi0 of X of length i0 is not admissible. Then for any i ≥ i0,
the prefix Xi is not admissible, and thus, by Lemma 3.5, K and XiK are
disjoint. By Lemmas 3.8 and 3.9, for any j ≥ i ≥ i0 the segment [K, XiK]
and [K, XjK] are nested and have the same initial point Q ∈ K. Let Qi be
the terminal point of [K, XiK]:

[Q, Qi] = [K, XiK]

The sequence of Qi converges in T̂K with respect to both the metric and the
observers’ topology. Moreover, the two limits are the same.

Definition 4.2. For any X ∈ ∂F (A) which is not eventually admissible, we
define:

QK(X) = lim
i→∞

Qi

Proposition 4.3. Let K = (K,A) be a system of isometries on a compact
R-tree K. Let X ∈ ∂F (A) be not eventually admissible.

Let wn ∈ F (A) be a sequence of words which converge in F (A) ∪ ∂F (A)

to X, and let Pn ∈ wnK. Then the sequence of points Pn converges in T̂ obs

K

to QK(X), and QK(X) belongs to T̂ obs

K r TK.

Proof. We use the above notations. For every index i ≥ 0, let [Qi, Ri] be the
intersection of [Q,QK(X)] with XiK. Hence for i ≥ i0 the point Qi is, as
before, the terminal point of the segment [K, XiK]. The segments [Q, Qi] are
increasingly nested, the segments [Ri,QK(X)] are decreasingly nested, Qi is
a point of [Q, Ri] and Ri is a point of [Qi,QK(X)].
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As X is not eventually admissible, for every index i ≥ 0 there is an index
j > i such that the subword X[i+1,j] of X between the indices i + 1 and j is
not admissible. By Lemma 3.5 the segments [Qi, Ri] and [Qj , Rj] are disjoint.

For any n, let i(n) be the length of the maximal common prefix of wn

and X. By Lemma 3.9, the maximal common segment [Q, P ′
n] of [Q, Pn] and

[Q,QK(X)] has its terminal point P ′
n in [Qi(n), Ri(n)]. As X is not eventually

admissible, for m big enough the subword X[i(n)+1,i(m)] of X between the
indices i(n)+1 and i(m) is not admissible and the segments [Qi(n), Ri(n)] and
[Qi(m), Ri(m)] are disjoint. Therefore the maximal common segment of [Q, Pn]
and [Q, Pm] is also the maximal common segment of [Q, Pn] and [Q,QK(X)],
and hence it is equal to [Q, P ′

n].
The points P ′

n converge to QK(X), as any sequence of points in [Qi(n), Ri(n)]
does, and this proves that

lim inf QPn = QK(X).

By Lemma 2.2 any subsequence of Pn, which converges in T̂ obs
K , necessarily

converges to QK(X). Hence by compactness of T̂ obs
K , the sequence of all of

the points Pn converges to QK(X) with respect to the observers’ topology.
If P is a point in uK for some u in FN , then the maximal common segment

[Q, P ′] of [Q, P ] and [Q,QK(X)] has its endpoint P ′ in [Qi, Ri], where Xi is
the maximal common prefix of u and X. Thus P ′ 6= QK(X), and hence
QK(X) is not contained in TK. ⊔⊓

4.2 Independent generators

The following concept is due to Gaboriau [Gab97], in the case of finite K,
and we extend it here to the compact case.

Definition 4.4. Let K = (K,A) be a system of isometries on a compact
R-tree K. Then K is said to have independant generators if, for any infinite
admissible word X ∈ ∂F (A), the non-empty domain of X consists of exactly
one point.

The same arguments as in [Gab97] show the following equivalences. How-
ever, they will not be used in the sequel.

Remark 4.5. Let K = (K,A) be a system of isometries on a compact R-tree
K. The following are equivalent:
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(1) K has independant generators.

(2) Every non-trivial admissible word fixes at most one point of K.

(3) The action of F (A) on the associated tree TK has trivial arc stabilizers.

Note that Gaboriau [Gab97] used originally property (2) as definition,
but in our context this seems less natural.

4.3 The map QK for eventually admissible words

Let K = (K,A) be a system of isometries on a compact R-tree K. Consider
the set L1

adm(K) ⊂ ∂F (A) of infinite admissible words as defined in §3.5.

Definition 4.6. Let K be a system of isometries which has independent
generators. Then for any infinite admissible word X ∈ L1

adm(K) there exists
exactly one element of K in the domain of X, which will be called QK(X).

Lemma 4.7. Identify K with the image of {1} × K in T̂K as in §3, and let
X ∈ L1

adm
(K).

(1) Denoting as before by Xi the prefix of X of length i ≥ 1, we obtain:

{QK(X)} =
⋂

i≥ 1

XiK

(2) For every i ≥ 1 we have:

QK(X−1
i X) = X−1

i QK(X)

Proof. Assertion (1) follows directly from Lemma 3.6 (2) and the above def-
inition of the map QK. Assertion (2) follows directly from (1). ⊔⊓

Recall from Definition 4.1 that an infinite words X ∈ ∂F (A) is eventually
admissible if it has a prefix Xi such that the infinite remainder X ′

i = X−1
i X

is admissible. We observe that for all integers j ≥ i the word X−1
i Xj is

admissible, so that Lemma 4.7 (2) gives:

XiQK(X ′
i) = XiQK(X−1

i XjX
′
j) = Xi(X

−1
i Xj)QK(X ′

j) = XjQK(X ′
j)

Hence the following definition does not depend on the choice of the index i.
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Definition 4.8. For any eventually admissible word X ∈ ∂F (A) we define

QK(X) = XiQK(X ′
i).

We note that for any element u ∈ F (A) and any eventually admissible
word X ∈ ∂F (A) one has:

QK(uX) = uQK(X)

Proposition 4.9. Let K = (K,A) be a system of isometries on a compact
R-tree K with indenpendent generators. Let X ∈ ∂F (A) be an eventually
admissible word.

For any element P in TK, and any sequence wn of elements of FN that
converge to X, the sequence of points wnP converges to QK(X), with respect
to the observers’ topology on TK.

Proof. Up to multiplying by the inverse of a prefix we can assume that X
is admissible and QK(X) ∈ K. By compactness of T̂ obs

K we can assume that
wnP converges to some point Q∞. By contradiction assume that Q∞ 6=
QK(X), and let M be a point in the open interval (Q∞,QK(X)). From
Lemma 2.2 we deduce

Q∞ = lim inf QK(X)wnP.

Thus, for n and m big enough, the maximal common segment [QK(X), Pm,n]
of [QK(X), wnP ] and [QK(X), wmP ] contains M . As wn converges to X,
for n fixed and for m sufficiently large, the maximal common prefix of wn

and wm is a prefix Xi of X. By Lemma 3.9, Pm,n is contained in XiK. By
Lemma 4.7, QK(X) is also contained XiK, and hence, so is M . As m and
n grow larger, the index i goes to infinity (since wn → X), which proves
that M is contained in the intersection of all the XiK. Since we assumed
M 6= QK(X), this contradicts the independent generators’ hypothesis. ⊔⊓

4.4 Continuity of the map QK

As any element of ∂F (A) is either eventually admissible or not, from Defi-
nitions 4.2 and 4.8 we collect a map QK.

Corollary 4.10. Let K = (K,A) be a system of isometries on a compact

R-tree K with independent generators. The map QK : ∂FN → T̂ obs

K is equiv-
ariant and continuous.
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For any point P in TK, the map QK defines the continuous extension to
FN ∪ ∂FN of the map

QP : FN → T̂ obs

K

w 7→ wP

Proof. Equivariance and continuity of QK follow from the second part of the
statement, which is proved in Propositions 4.3 and 4.9. ⊔⊓

5 Proof of the Main Theorem

Throughout this section let T be an R-tree provided with a minimal, very
small action of FN by isometries which has dense orbits. Hence we obtain
from Theorem 2.6 an equivariant and continuous map Q, which we denote
here by QT : ∂FN → T̂ obs.

Let A be a basis of of FN , and let K be a compact subtree of T . Let
K = (K,A) be the induced system of isometries ai : K ∩ aiK → a−1

i K ∩
K, x 7→ xai = a−1

i x, as discussed in §3.3. We assume that K is chosen large
enough so that for each ai ∈ A the intersection K∩aiK and hence the partial
isometry ai ∈ A is non-empty. As a consequence (see §3), there exists an
R-tree TK with isometric action by FN , and by Theorem 3.2 there exists a
unique continuous FN -equivariant map

j : TK → T

which induces the identity map TK ⊃ K
j
→ K ⊂ T .

Lemma 5.1. The system of isometries K = (K,A) has independent gener-
ators.

Proof. Let Q be a point in the domain of an infinite admissible word X,
compare §3.5. Then for any prefix Xn of X, the point QXn = Xn

−1Q is also
contained in K (recall that we write the action of F (A) on TK on the left,
and the pseudo-action of partial isometries of K on the right).

By Theorem 3.2, j restricts to an isometry between K ⊂ TK and K ⊂ T .
Therefore, for any n ≥ 0, Xn

−1j(Q) lies in K ⊂ T . By Lemma 2.7, we get
QT (X) = j(Q).

This proves that the domain of X consists of at most the point j−1(QT (X)).
Hence K has independent generators. ⊔⊓
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As a consequence of Lemma 5.1, we can apply Corollary 4.10 to obtain
an equivariant and continuous map QK : ∂FN → T̂ obs

K .

Lemma 5.2. For any X ∈ ∂FN such that QK(X) is contained in TK, one
has

j(QK(X)) = QT (X).

Proof. By Proposition 4.3, X is eventually admissible and by equivariance
of QK, QT and j, we can assume that X is admissible and that QK(X) is in
K. By Definition 4.6, for any i ≥ 0, QK(X) · Xi = Xi

−1QK(X) lies in K.
By Theorem 3.2, j restricts to an isometry between K ⊂ TK and K ⊂ T .

Therefore for any i ≥ 0, the point Xi
−1j(QK(X)) lies in K ⊂ T . Thus we

can apply Lemma 2.7 to get QT (X) = j(QK(X)). ⊔⊓

Lemma 5.3. The admissible lamination of K is contained in the dual lami-
nation of T :

Ladm(K) ⊂ L(T )

Proof. The admissible lamination Ladm(K) (see §3.5) is defined by all biinfi-
nite words Z in A± such the two half-words Z+ and Z− have non-empty do-
main, and the two domains intersect non-trivially. Thus QK(Z+) = QK(Z−)
is a point in K. Thus by Lemma 5.2 one has QT (Z+) = QT (Z−). The latter
implies (and is equivalent to) that Z belongs to L(T ). ⊔⊓

We sumarize the above discussion in the following commutative diagram:

∂FN

QK

||yy
yy

yy
yy QT

"" ""EE
EE

EE
EE

E

T̂ obs
K T̂ obs

TK

?�

OO

j //
T
?�

OO

All the maps in the diagram are equivariant and continuous, where the topol-
ogy considered on the bottom line is the metric topology.

We can now prove the main result of this paper. Recall from §2.7 that
for any basis A of FN and T as above the set ΩA ⊂ T denotes the core of T
with respect to A.
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Theorem 5.4. Let T be an R-tree with very small minimal FN -action by
isometries, and with dense orbits. Let A be a basis of FN , and let K ⊂ T
be a compact subtree which satisfies K ∩ aiK 6= ∅ for all ai ∈ A. Then the
following are equivalent:

(1) The restriction of the canonical map j : TK → T to the minimal FN -
invariant subtree Tmin

K of TK defines an isometry jmin : Tmin
K → T .

(2) L(T ) ⊂ Ladm(K) (⇐⇒ L(T ) = Ladm(K) , by Lemma 5.3)

(3) ΩA ⊂ K

Proof. (1) =⇒ (2): By the assumption on j the minimal subtree Tmin
K ⊂ TK

is isometric to T . Hence the dual laminations satisfy L(T ) = L(Tmin
K ), and

by Remark 2.5 one has L(Tmin
K ) = L(TK). We now apply Proposition 3.11

to get L(TK) ⊂ Ladm(K).

(2) =⇒ (3): By Definition 2.11, a point Q ∈ T belongs to the limit set ΩA if

and only if there is a pair of infinite words (X, Y ) ∈ L2(T ) ⊂ ∂2F (A), with
initial letters X1 6= Y1, which satisfy QT (X) = QT (Y ) = Q. By assumption,
L(T ) is a subset of Ladm(K), so that the reduced words X, Y and X−1 · Y
are admissible for the system of isometries K. By Definition 4.6, {QK(X)}
is the domain of X and Y , and thus is contained in K. We deduce from
Lemma 5.2 that j(QK(X)) = QT (X) = Q, and Q lies in K.

(3) =⇒ (2): Let Z be a biinfinite indexed reduced word in the symbolic
lamination LA(T ) defined by the dual lamination L(T ) of T (see §2.3). That
is to say, Z = (Z−)−1 · Z+, written as a reduced product, and QT (Z−) =
QT (Z+) is a point Q ∈ ΩA. For any n ∈ Z, we consider the shift σn(Z) of
Z as in Remark 2.4. If u is the prefix of Z+ of length n (or, if n < 0, the
prefix of Z− of length −n), then σn(Z) = (Z−)−1u·u−1Z+ and QT (u−1Z+) =
QT (u−1Z−) = u−1Q, and this is again a point of ΩA and thus contained in K,
by hypothesis. Therefore, both Z+ and Z− are admissible, and dom(Z+) =
dom(Z−) = {Q}. Thus Z is an admissible biinfinite word of the system of
isometries K = (K,A), which shows L(T ) ⊂ Ladm(K).

(2) =⇒ (1): Since the dual lamination L(T ) is a subset of the admissible
lamination Ladm(K), for any pair of distinct infinite words X, Y ∈ ∂F (A)
the equality QT (X) = QT (Y ) implies that X−1Y is admissible, and from

Definition 4.6 we deduce QK(X) = QK(Y ). Thus the map QK : ∂FN → T̂ obs
K
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factors over the quotient map π : ∂FN → ∂FN/L2(T ) (see §2.6) to define an

equivariant map s : ∂FN/L2(T ) → T̂ obs
K .

∂FN

QK

����
��

��
��

��
��

��
��

��

QT

�� ��9
99

99
99

99
99

99
99

99
9

π
����

∂FN/L2(T )

s

yyssssssssss
ϕ

≃
%%KKKKKKKKKK

T̂ obs
K T̂ obs

TK

?�

OO

j //
T
?�

OO

Tmin
K

?�

OO

jmin
//
T
?�

OO

As the topology on ∂FN/L2(T ) is the quotient topology (see §2.6) and
as QK is continuous (see Corollary 4.10), the map s is continuous. Since

ϕ : ∂FN/L2(T ) → T̂ obs is a homeomorphism (see Theorem 2.10), we deduce

that the image of s is an FN -invariant connected subtree of T̂ obs
K . Therefore

the image of s contains the minimal subtree Tmin
K of TK.

As a consequence, for any point P in Tmin
K there exists an element X ∈

∂FN such that s(π(X)) = QK(X) = P . From Lemma 5.2 we obtain jmin(P ) =
j(QK(X)) = QT (X). By definition of the homeomorphism ϕ, one has
ϕ−1(jmin(P )) = π(X) and s(ϕ−1(jmin(P ))) = P . This proves that jmin is
injective.

Since j is continuous with respect to the metric topology, since j maps
K isometrically, and since TK = FNK, this implies that jmin is an isometry.

⊔⊓

Recall from §2.7 that the heart KA ⊂ T denotes the convex hull of the
limit set ΩA of T with respect to the basis A. We denote by KA = (KA,A)
the associated system of partial isometries.

We remark that, in the above theorem, the map QK may fail to be sur-
jective onto TK if K is too large. And hence, j may fail to be injective even
if the limit set ΩA is contained in K. This is the reason why we considered
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the minimal subtree Tmin
K of TK. However if K is exactly equal to the heart

KA we get the following corollary.

Corollary 5.5. Let T be an R-tree with very small minimal FN -action by
isometries, and with dense orbits. Let A be a basis of FN , with heart KA.
The map j : TKA

→ T is isometric and its image contains T .

Proof. By definition, for K = KA the three equivalent conditions of Theo-
rem 5.4 are satisfied.

In the proof of implication (2)⇒(3) of Theorem 5.4, we proved that ΩA

is in the image of QK. In the proof of implication (2)⇒(1), we proved that
the image of QK is connected and that j is injective on the image of QK.

Therefore KA is in the image of QK, and the map j : TKA
→ T is

injective. From the last paragraph of the proof of Theorem 5.4 we deduce
that j is isometric. Finally, from the minimality of T we deduce that the
image of j contains T . ⊔⊓

6 Applications to geometric trees and limits

In this section we will present some first applications of the main result of
this paper, Theorem 5.4, to questions which in part date back to the work
of Gaboriau-Levitt [GL95]. It should also be noted that Theorem 5.4 is the
basis for the forthcoming papers [Cou08] and [CH08].

Recall that Outer space CVN is the space of projectivized minimal free
simplicial actions of FN on R-trees. It comes with a natural action by
Out(FN), and it is in many ways the analogue of Teichmüller space, equipped
with its action of the mapping class group. In particular, CVN has a nat-
ural “Thurston boundary” ∂CVN , which defines a compactification CVN =
CVN ∪ ∂CVN of CVN . Its preimage cvN , obtained through unprojectiviza-
tion, consists precisely of all R-trees T with non-trivial minimal very small
action of FN by isometries.

6.1 Geometric trees

There is a special class of group actions on R-trees which play an important
role in what is often called the “Rips machine”: A minimal R-tree T is called
geometric if there exists a finite subtree K ⊂ T and a basis A of FN such that
the map j : TK → T is an isometry. It is proved in [GL95] that in this case
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for any basis A one can find such a finite subtree K. For more information
about geometric trees regarding the context of this paper see [GL95].

Recall from §2.7 that the heart KA ⊂ T denotes the convex hull of the
limit set ΩA of T with respect to the basis A. We denote by KA = (KA,A)
the associated system of partial isometries.

Corollary 6.1. A very small minimal R-tree T , with isometric FN -action
that has dense orbits, is geometric if and only if, for any basis A of FN , the
heart KA is a finite subtree of T .

Proof. If T is geometric, then by definition there is a finite tree K ⊂ T such
that the map j : TK → T is an isometry. Thus condition (1) of Theorem 5.4
is satisfied, and hence condition (3) implies that KA is a subtree of K, and
thus it is finite.

Conversely, if KA lies in T , the image of the map j defined on TKA
is

contained in T ⊂ T , giving a map j : TKA
→ T which by Corollary 5.5 is

isometric. By minimality of T , the map j is onto. ⊔⊓

6.2 Increasing systems of isometries

Let T be a minimal R-tree with a very small action of FN by isometries,
which has dense orbits. As in §5, let A be a basis of FN , and for any n ∈ N

let K(n) be a compact subtree of the metric completion T of T , with non-
empty intersections K(n) ∩ aiK(n) for all ai of A. One obtains systems of
partial isometries K(n) = (K(n),A) as in the previous sections.

We will consider sequences K(n) which are increasing, i.e. for all n ≤ m
we assume

K(n) ⊂ K(m) .

We can apply Theorem 3.2 to the case K = K(n) and the tree TK(m), to
obtain canonical FN -equivariant maps

jm,n : TK(n) → TK(m)

which satisfy jk,m ◦ jm,n = jk,n, for any natural numbers n ≤ m ≤ k.
The maps jm,n are length decreasing morphisms, so that the trees TK(n)

converge in the equivariant Gromov-Hausdorff topology (see [Pau88]) to an
R-tree T∞, equipped with an action of FN by isometries. Alternatively, one
can pass to the direct limit space defined by the system of maps jm,n, which
inherits from the TK(n) a canonical pseudo-metric as well as an action of FN
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by (pseudo-)isometries. One then defines T∞ as the canonically associated
metric quotient space. Both, arc-connectedness and 0-hyperbolicity carry
over in those transitions, so that T∞ is indeed an R-tree with isometric FN -
action.

The minimal FN -invariant subtrees Tmin
K(n) ⊂ TK(n) and Tmin

∞ ⊂ T∞ de-

fine points in the closure cvN of unprojectivized Outer space cvN (compare
[CHL-II] and the references given there). The sequence of trees Tmin

K(n) con-

verges in cvN to the tree Tmin
∞ .

The maps jm,n also converge to FN -equivariant maps j∞,n : TK(n) → T∞

that satisfy j∞,m ◦ jm,n = j∞,n.

We consider the increasing union of the K(n), and we define K(∞) to be
its closure in T ,

K(∞) =
⋃

n∈N

K(n) ,

provided with the induced system K(∞) = (K(∞),A) of partial isometries.
We always assume that K(∞) is compact.

Using that K(n) ⊂ K(∞), we can apply again Theorem 3.2 to get FN -
equivariant, length decreasing morphisms:

j0,n : TK(n) → TK(∞)

These maps converge to an FN -equivariant length decreasing map j0,∞ :
T∞ → TK(∞). This map continuously extends to the metric completions
0,∞ : T∞ → TK(∞).

For each n ∈ N, the map j0,n restricts to an isometry on K(n), and thus
j0,∞ restricts to an isometry on the union of the K(n), which extends to an
isometry from K(∞) ⊂ T∞ onto its image in TK(∞). Applying Theorem 3.2
again, to the inverse of this isometry, we get an FN -equivariant length de-
creasing morphism j∞,0 : TK(∞) → T∞.

By construction, the restrictions of the maps j0,∞ and j∞,0 to each of
the K(n) are isometries which are inverses of one another. Thus the map
0,∞ ◦ j∞,0 is length decreasing and restricts to the identity on

⋃
n∈N

K(n) and

thus on K(∞). Using Theorem 3.2, we see that it is an isometry on all of
TK(∞). This shows

lim
n→+∞

TK(n) = T∞ ⊂ TK(∞)
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and thus
lim

n→+∞
Tmin
K(n) = Tmin

K(∞) .

As a direct consequence of Theorem 5.4 one now derives:

Corollary 6.2. Let T be a minimal R-tree with a very small action of FN

by isometries, which has dense orbits. Let A be a basis of FN . For any
n ∈ N, let K(n) be a compact subtree of T with non-empty intersections
K(n)∩aiK(n), for all ai of A. Let K(n) = (K(n),A) be the induced systems
of isometries. Let K(∞) be the closure of the increasing union of the K(n),
and assume that K(∞) is compact.

Then the minimal trees Tmin

K(n) converge in cvN to T if and only if K(∞)
contains ΩA. ⊔⊓

An application of this corollary is the following sharpening of a classical
result of Gaboriau-Levitt [GL95], who showed that every T ∈ cvN can be
approximated by a sequence of geometric TK(n), i.e. each K(n) is a finite
subtree of T .

Corollary 6.3. For every very small minimal R-tree T , with isometric FN -
action that has dense orbits, there exists a sequence of finite subtrees K(n)
of uniformely bounded diameter, such that:

T = lim
n→∞

TK(n)

Proof. It is well known [GL95] that the number of branch points in T is a
countable set P that is dense in every segment of T . It suffices to consider
the countable subfamily (Pn)n∈N = P ∩ KA and to define K(n) as convex
hull of the set {P1, . . . , Pn}. Since the heart KA is the convex hull of the
limit set ΩA, the claim is a direct consequence of Corollary 6.2. ⊔⊓

6.3 Approximations by simplicial trees

An algebraic lamination L is said to be closed by diagonal leaves, if for any
leaves (X, X ′) and (X ′, X ′′) in L one either has X = X ′′, or (X, X ′′) is again
a leaf in L. We remark that, if T is an R-tree with a minimal action of FN by
isometries that has dense orbits, it follows from §2.6 that the dual lamination
L(T ) of T is closed by diagonal leaves. Also, for a system of isometries K with
independant generators, we deduce from §3.5 and §4.2 that the admissible
lamination Ladm(K) is closed by diagonal leaves.
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An algebraic lamination L is said to be minimal up to diagonal leaves
if it does not contain a proper non-trivial sublamination that is closed by
diagonal leaves.

Corollary 6.4. Let T be an R-tree with a minimal, very small action of
FN that has dense orbits. Let A be a basis of FN . If a compact subtree
K ⊂ T does not contain ΩA, and if the dual lamination L(T ) is minimal up
to diagonal leaves, then the approximation tree Tmin

K is free simplicial (i.e.
it belongs to the unprojectivized Outer space cvN rather than to its boundary
∂cvN ).

Proof. From Proposition 3.11 we know that the dual lamination L(TK) of TK

is a sublamination of the admissible lamination Ladm(K). The lamination
Ladm(K) is closed by diagonal leaves and is a sublamination of L(T ), by
Lemma 5.3. Since ΩA is not a subset of K, Theorem 5.4 implies that the
admissible lamination Ladm(K) is a strict sublamination of L(T ).

From the minimality of L(T ) up to diagonal leaves we deduce that Ladm(K)
and L(TK) are empty, so that (compare §2.4) the action of FN on Tmin

K is free
and discrete. ⊔⊓

This corollary indicates that the resolution of an arbitrary R-tree with
isometric G-action, for more general groups G, via systems of partial isome-
tries on a finite tree, as promoted by the Rips machine, may yield directly a
simplicial tree, i.e. without having to go through further iterations in Rips’
procedure.
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