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R-trees, dual laminations, and ompatsystems of partial isometriesThierry Coulbois, Arnaud Hilion and, Martin LustigDeember 18, 2007AbstratLet FN be a free group of �nite rank N ≥ 2, and let T be an
R-tree with a very small, minimal ation of FN with dense orbits.For any basis A of FN there exists a heart KA ⊂ T (= the metriompletion of T ) whih is a ompat subtree that has the propertythat the dynamial system of partial isometries ai : KA ∩ aiKA →
a
−1
i KA ∩ KA, for eah ai ∈ A, de�nes a tree T(KA,A) whih ontainsan isometri opy of T as minimal subtree.Contents1 Introdution 22 FN-ations on R-trees and their heart 52.1 Bakground on R-trees . . . . . . . . . . . . . . . . . . . . . . 52.2 The observers' topology on T . . . . . . . . . . . . . . . . . . 62.3 Algebrai laminations . . . . . . . . . . . . . . . . . . . . . . . 72.4 The dual lamination L(T ) . . . . . . . . . . . . . . . . . . . . 92.5 The map Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.6 The map Q2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.7 The limit set and the heart of T . . . . . . . . . . . . . . . . . 113 Systems of isometries on ompat R-trees 123.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 The R-tree assoiated to a system of isometries . . . . . . . . 131



3.3 Systems of isometries indued by an FN -ation on an R-tree . 143.4 Basi lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.5 Admissible laminations . . . . . . . . . . . . . . . . . . . . . . 194 The map QK for a system of isometries 214.1 The map QK for non-eventually admissible words . . . . . . . 214.2 Independent generators . . . . . . . . . . . . . . . . . . . . . . 224.3 The map QK for eventually admissible words . . . . . . . . . . 234.4 Continuity of the map QK . . . . . . . . . . . . . . . . . . . . 255 Proof of the Main Theorem 251 IntrodutionA point on Thurston's boundary of Teihmüller spae T (Σ) for a surfae Σan be understood alternatively as a measured lamination (L, µ) on Σ, up toresaling of the transverse measure, or as small ation of π1Σ on some R-tree
T , up to π1Σ-equivariant homothety. The orrespondene between these twoobjets, whih are naturally dual to eah other, is given by the fat thatpoints of T are in 1-1 orrespondene (or �one-to-�nite� orrespondene, forthe branhpoints of T ) with the leaves of L̃, i.e. the lift of L to the universalovering Σ̃. The metri on T is determined by µ, and vie versa.Culler-Vogtmann's Outer spae CVN is the analogue of T (Σ), withOut(FN) replaing the mapping lass group. A point of the Thurston bound-ary ∂CVN is given by a homothety lass [T ] of very small isometri ationsof the free group FN on an R-tree T . In general, T will not be dual toa measured lamination on a surfae. However, in [CHL-I, CHL-II℄ an �ab-strat� dual lamination L(T ) has been de�ned for any suh T , whih is verymuh the analogue of L in the surfae ase. L(T ) is an algebrai lamina-tion: it lives in the double Gromov boundary of FN , and the hoie of abasis A transforms L(T ) into a symboli dynamial system whih is a las-sial subshift in A ∪ A−1. The dual lamination L(T ), and variations of it,have already been proved to be a useful invariant of the tree T , ompare[BFH00, CHL05, HM06, KL07℄.In the ase of measured laminations on a surfae, the standard tool whihallows a transition from geometry to ombinatorial dynamis, is given by in-terval exhange transformations. The ombinatoris whih our here are2



lassially given through oding geodesis on a surfae by sequenes of sym-bols, where the symbols orrespond to subintervals, and the sequenes aregiven by the �rst return map. Conversely, the surfae and the lamination (orrather �foliation�, in this ase), an be reovered from the interval exhangetransformation by suspension, i.e. by realizing the map whih exhanges thesubintervals by a (foliated) mapping torus.Taking the basi onept of this lassial method one step further andonsidering diretly the dual tree T rather than the lamination given bythe ombinatorial data, one onsiders for any [T ] ∈ ∂CVN a �nite metrisubtree K ⊂ T , and for some basis A of FN the indued �nite system ofpartial isometries between subtrees of K: Eah basis element ai ∈ A de�nesa partial isomerty ai : K∩aiK → a−1
i K∩K, and these partial isometries playthe role of the interval exhange transformation. Any suh pair K = (K,A)gives anonially rise to a tree TK together with an FN -equivariant map

j : TK → T . The tree TK is the �unfolding spae� of the system K. R-trees
T where for some suh �nite K the map j is an isometry have been studiedintensely, and they play an important role in the study of ∂CVN , see [GL95℄.Indeed, if K is an interval and if it is simultaneously equal to the unionof domains and the union of ranges of the isometries (and if these unions aredisjoint unions exept at the boundary points), then K de�nes atually aninterval exhange transformation. If one only assumes that K is �nite, thiswill in general not be true: one only obtains a system of interval translations(see [BH04℄). On the level of R-trees one obtains in the �rst ase surfaetree ations, and in the seond ase ations that alternatively termed Levitt,thin or exoti. The union of these two lasses are preisely the ations alledgeometri in [GL95℄.However, both of these types of ations seem to be more the exeptionthan the rule: Given any point [T ] ∈ ∂CVN , there is in general no reason why
T should be determined by a system of partial isometries based on a �nitetree K ⊂ T . A possible way to deal with suh T is to onsider inreasingsequenes of �nite subtrees and thus to approximate T by the sequene ofensuing geometri trees TK , in the spirit of the �Rips mahine�, whih isan important tool to analyze arbitrary group ation on R-trees. The goalof this paper is to propose a more diret alternative to this approximationtehnology:We replae the ondition on the subtree K ⊂ T to be �nite by the weakerondition that K be ompat. It turns out that almost all of the lassial3



mahinery developed for the approximation trees TK for �nite K arries overdiretly to the ase of ompat K. However, the appliation of suh TKonern a muh larger lass of trees: In partiular, every minimal very small
T with dense orbits an be desribed diretly, i.e. irumventing ompletelythe above approximation, as minimal subtree Tmin

K of the tree TK, for aproperly hosen ompat subtree K of the metri ompletion T of T .Theorem 1.1. Let T be an R-tree provided with a very small, minimal,isometri ation of the free group FN with dense orbits. Let A be a basis of
FN . Then there exists a ompat subtree KA ⊂ T (alled the �heart� of Tw.r.t. A), suh that for any ompat subtree K of T one has:

T = Tmin
K ⇐⇒ KA ⊆ KThis is a slightly simpli�ed version of Theorem 5.4 proved in this artile.The main tool for this proof (and indeed for the de�nition of the heart KA)is the dual lamination L(T ). We de�ne in this artile (see �3) a seondadmissible lamination Ladm(K) assoiated to the system of partial isometries

K = (K,A). One key ingredient in the equivalene of Theorem 1.1 is to provethat the two statements given there are equivalent to the equation L(T ) =
Ladm(K). The other key ingredient, developed in �4, is a new understandingof the ruial map Q : ∂FN → T ∪ ∂T from [LL03℄, based on the dynamialsystem K = (K,A). The proof of Theorem 5.4 uses the full strength of theduality between trees and laminations, and in partiular a transition betweenthe two given by the main result of our earlier paper [CHL05℄.We would like to underline that the main objet of his paper, the heart
KA of T with respet to any basis A of FN , is a ompat subtree of T that isdetermined by algebrai data assoiated to T , namely by the dual algebrailamination L(T ) of T . This system KA = (KA,A) of partial isometriesis entirely determined by the hoie of the basis A and it depends on A,but important properties of it turn atually out to be independent of thathoie. As an example we derive from the above theorem the following diretharaterization of geometri trees:Corollary 1.2. A very small minimal R-tree T with dense orbits is geometriif and only if, for any basis A of FN , the heart KA is a �nite subtree of T .Aknowledgments: The authors would like to thank V. Guirardel, P. Hubertand G. Levitt for helpful omments. The �rst and the third author would4



also like to thank the MSRI at Berkeley for the support reeived from theprogram �Geometri Group Theory� in the fall of 2007.2 FN-ations on R-trees and their heartIn this setion we �rst reall some well known fats about R-trees T withisometri ation of a free group FN . We also reall algebrai laminations, andin partiular the dual lamination L(T ). We then onentrate on the spei�ase of very small trees with dense orbits, and for suh trees we de�ne thelimit set and the heart of T with respet to a �xed basis A of FN .In this paper we need some of the mahinary developed in our previousartiles [CHL-I, CHL-II, CHL05℄. We present these tools in this setion, butrefer to those artiles for proofs and for a more omplete disussion.2.1 Bakground on R-treesAn R-tree T is a metri spae whih is 0-hyperboli and geodesi. Alterna-tively, a metri spae T is an R-tree if and only if any two points x, y ∈ T arejoined by a unique topologial ar [x, y] ⊂ T , and this ar (alled a segment)is geodesi. For any R-tree T we denote by T the metri ompletion and by
∂T the Gromov boundary of T . We also write T̂ = T ∪ ∂T .Most R-trees T onsidered in this paper are provided with an ation byisometries (from the left) of a non-abelian free group FN of �nite rank N ≥ 2.Suh an ation is alled minimal if T agrees with its minimal FN -invariantsubtree. We say that the ation has dense orbits if for some (and hene every)point x ∈ T the orbit FN · x is dense in T . In the ase of dense orbits, thefollowing three onditions are equivalent:

• T has trivial ar stabilizers (i.e. for any distint x, y ∈ T and w ∈ FNthe equality w[x, y] = [x, y] implies w = 1).
• The FN -ation on T is small (see [CM87, CHL-II℄).
• The FN -ation on T is very small (see [CL95, CHL-II℄).As usual, for any w ∈ FN we denote by ‖w‖T (or simply by ‖w‖) thetranslation length of the ation of w on T , i.e. the in�mum of d(x, wx) overall x ∈ T . 5



There are two types of isometries of T : An element w ∈ FN ats as anellipti isometry on T if it �xes a point, whih is equivalent to ‖w‖ = 0.If ‖w‖ > 0, then the ation of w on T is alled hyperboli: There is a wellde�ned axis in T , whih is isometri to R and is w-invariant: the element wtranslates every point on the axis by ‖w‖.A ontinuous map T → T ′ between R-trees is alled a morphism if everysegment is mapped loally injetively exept at �nitely many points.2.2 The observers' topology on TThere are various independent approahes in the literature to de�ne R-treesas topologial spaes without referene to the metri. The following versionhas been studied in [CHL05℄.De�nition 2.1. Let T be an R-tree. A diretion in T̂ is a onneted om-ponent of the omplement of a point of T̂ . A subbasis of open sets for theobservers' topology on T̂ is given by the set of all suh diretions in T̂ .The observers' topology on T̂ (or T ) is weaker than the metri topology:For example, any sequene of points that �turns around� a branh pointonverges to this branh point. We denote by T̂ obs the set T̂ equipped withthe observers' topology. The spae T̂ obs is Hausdor� and ompat.For any sequene of points Pn in T̂ , and for some base point Q ∈ T̂ , thereis a well de�ned inferior limit from Q, whih we denote by:
P = lim inf

n→∞
Q PnIt is given by

[Q, P ] =

∞⋃

m=0

⋂

n≥m

[Q, Pn].The inferior limit P is always ontained in the losure of the onvex hullof the Pn, but its preise loation does in fat depend on the hoie of thebase point Q. However, in [CHL05℄ the following has been shown:Lemma 2.2. If a sequene of points Pn onverges in T̂ obs to some limit point
P ∈ T̂ obs, then for any Q ∈ T̂ one has:

P = lim inf
n→∞

Q Pn6



The observers' topology is very useful, but it is also easy to be deeivedby it. For example, it is not true that any ontinuous map between R-trees
T1 → T2 indues anonially a ontinuous map T̂ obs

1 → T̂ obs
2 , as is illustratedin the following remark.Remark 2.3. Let T1 be the ∞-pod, given by a enter Q and edges [Q, Pk]of length 1, for every k ∈ N. Let T2 be obtained from T1 by gluing theinitial segment of length k−1

k
of eah [Q, Pk], for k ≥ 2, to [Q, P1]. Thenthe anonial map f : T1 → T2 is ontinuous, and even a length dereasingmorphism, but lim Pk = Q, while lim f(Pk) = f(P1) 6= f(Q).We refer the reader to [CHL05℄ for more details about the observers'topology.2.3 Algebrai laminationsFor the free group FN of �nite rank N ≥ 2 we denote by ∂FN the Gromovboundary of FN . We also onsider

∂2FN = ∂FN × ∂FN r ∆ ,where ∆ denotes the diagonal. The spae ∂2FN inherits from ∂FN a left-ation of FN , de�ned by w(X, Y ) = (wX, wY ) and a topology. It also admitsthe �ip map (X, Y ) 7→ (Y, X). An algebrai lamination L2 ⊂ ∂2FN is a non-empty losed subset whih is invariant under the FN -ation and the �ip map.If one hoses a basis A of FN , then every element w ∈ FN an be uniquelywritten as �nite redued word in A±1, so that FN is anonially identi�edwith the set F (A) of suh words. Similarly, a point of the boundary ∂FN anbe written as in�nite redued word X = z1z2 . . ., so that ∂FN is anoniallyidenti�ed with the set ∂F (A) of suh in�nite words.We also onsider redued biin�nite indexed words
Z = . . . z−1z0z1 . . .with all zi ∈ A±1. We say that Z has positive half Z+ = z1z2 . . . and negativehalf Z− = z−1

0 z−1
−1 . . ., whih are two in�nite words

Z+, Z− ∈ ∂F (A)with distint initial letters Z+
1 6= Z−

1 . We write the redued produt Z =
(Z−)−1 · Z+ to mark the letter Z+

1 with index 1.7



For any �xed hoie of a basis A, an algebrai lamination L2 determinesa symboli lamination
LA = {(Z−)−1 · Z+ | (wZ−, wZ+) ∈ L2}as well as a laminary language

LA = {w ∈ F (A) | w is a subword of some Z ∈ LA} .Both, symboli laminations and laminary languages an be haraterizedindependently, and the natural transition from one to the other and bak toan algebrai lamination has been established with are in [CHL-I℄. In ase wedo not want to speify whih of the three equivalent terminologies is meant,we simply speak of a lamination and denote it by L.One of the ruial points of the enounter between symboli dynamis andgeometri group theory, in the subjet treated in this paper, ours preiselyat the transition between algebrai and symboli laminations. Sine the mainthrust of this paper (as presented in �3) an be reinterpreted as translatingthe symboli dynamis viewpoint into the world of R-trees, it seems useful tohighlight this transition in the symboli language, before embroiling it withthe topology of R-trees:Remark 2.4. As before, we �x a basis A of FN , and denote an element Xof the boundary ∂FN = ∂F (A) by the orresponding in�nite redued wordin A±1. We denote by Xn its pre�x of length n.We onsider the unit ylinder C2
A in ∂2FN :

C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}Contrary to ∂2FN , the unit ylinder C2

A is a ompat set (in fat, a Cantorset). The unit ylinder C2
A has the property that the anonial map ρA :

(X, Y ) 7→ X−1 · Y (see [CHL-I℄, Remark 4.3) restrits to an injetion on C2
Awith inverse map Z 7→ (Z−, Z+).In symboli dynamis, the natural operator on biin�nite sequenes is theshift map, whih in our notation is given by

σ(X−1 · Y ) = X−1Y1 · (Y
−1
1 Y ) ,i.e. the same symbol sequene as in X−1 ·Y , but with Y1 as letter of index 0.8



On the other hand, there is a system of �partial bijetions� on C2
A, givenfor eah ai ∈ A by:

ai : C2
A ∩ ai

−1C2
A → aiC

2
A ∩ C2

AA partiular feature of this system is that it �ommutes� via the map ρA withthe shift map σ on the set of biin�nite redued words: More preisely, for all
(X, Y ) ∈ C2

A one has:
ρA(Y −1

1 (X, Y )) = σ(ρA(X, Y ))This transition from group ation to the shift (or more preisely, the onversediretion), will be explored in �3 in detail, with the additional feature thatthe topology of ompat trees is added on, in the analogous way as intervalexhange transformations are a lassial tool to interpret ertain symbolidynamial systems topologially.2.4 The dual lamination L(T )In [CHL-II℄ a dual lamination L(T ) for any isometri ation of a free group
FN on an R-tree T has been introdued and investigated. If T is very smalland has dense orbits, three di�erent de�nitions of L(T ) have been given in[CHL-II℄ and shown there to be equivalent. However, as in this paper wean not always assume that T has dense orbits, it is most onvenient to�x a basis A of FN and to give the general de�nition of L(T ) via its duallaminary language LA(T ) (see De�nition 4.1 and Remark 4.2 of [CHL-I℄),whih determines L(T ) and vie versa:

LA(T ) = {v ∈ F (A) | ∀ ε > 0 ∃u, w ∈ F (A) : ‖u · v · w‖T < ε,
u · v · w redued and ylially redued}Remark 2.5. It follows diretly from this de�nition that L(T ) = L(Tmin),where Tmin denotes the minimal FN -invariant subtree of T .2.5 The map QTheorem 2.6 ([LL03, LL04℄). Let T be an R-tree with a very small ationof FN by isometries that has dense orbits. Then there exists a surjetive

FN -equivariant map Q : ∂FN → T̂ whih has the following property:9



For any sequene of elements un of FN whih onverges to X ∈ ∂FN andfor any point P ∈ T , if the sequene of points unP ∈ T onverges (metrially)in T̂ to a point Q, then Q(X) = Q.Using the properties of a metri topology we get the following lemma.Lemma 2.7. Let T be an R-tree with a very small ation of FN by isometriesthat has dense orbits. Let K be a ompat (with respet to the metri topology)subtree of T . Let Q be a point in K and wn a sequene of elements in
FN whih onverge in FN ∪ ∂FN to some X ∈ ∂FN . If for all n one has
w−1

n Q ∈ K, then Q(X) = Q.Proof. As K is ompat, up to passing to a subsequene, we an assume that
w−1

n Q onverges to a point P in K, that is to say limn→∞ d(w−1
n Q, P ) = 0.As the ation is isometri we get that limn→∞ d(Q, wnP ) = 0, i.e. the wnPonverge to Q. Hene Theorem 2.6 gives the desired onlusion Q(X) = Q.

⊔⊓It is ruial for the arguments presented in this paper to remember thatthe map Q is not ontinuous with respet to the metri topology on T̂ , i.e.the topology given by the metri on T . In fat, this has been the reason whyin [CHL05℄ the weaker observers' topology on T̂ has been investigated.Theorem 2.8 (Remark 2.2 and Proposition 2.3 of [CHL05℄). Let Tbe an R-tree with isometri very small ation of FN that has dense orbits.Then the following holds:(1) The map Q de�ned in Theorem 2.6 is ontinuous with respet to theobservers' topology, i.e. it de�nes a ontinuous equivariant surjetion
Q : ∂FN → T̂ obs.(2) For any point P ∈ T the map Q de�nes the ontinuous extension to

FN ∪ ∂FN of the map
QP : FN → T̂ obs, w 7→ wP .Though obvious it is worth noting that the last property determines themap Q uniquely. 10



2.6 The map Q2If the tree T is very small and has dense orbits, the dual lamination L(T )desribed in �2.4 admits an alternative seond de�nition via the above de�nedmap Q as algebrai lamination L2(T ) (ompare �2.3):
L2(T ) = {(X, Y ) ∈ ∂2FN | Q(X) = Q(Y )}It has been proved in [LL03, LL04℄ that the map Q is one-to-one on thepreimage of the Gromov boundary ∂T of T . Hene the map Q indues amap Q2 from L2(T ) to T , given by:

Q2((X, Y )) = Q(X) = Q(Y )In light of the above disussion the following result seems remarkable. It isalso ruial for the de�nition of the heart of T in the next subsetion.Proposition 2.9 (Proposition 8.3 in [CHL-II℄). The FN -equivariantmap
Q2 : L2(T ) → Tis ontinuous, with respet to the metri topology on T .As in [CHL05℄, �2, we onsider the equivalene relation on ∂FN whoselasses are �bers of Q, and we denote by ∂FN/L2(T ) the quotient set. Thequotient topology on ∂FN/L2(T ) is the �nest topology suh that the naturalprojetion π : ∂FN → ∂FN/L2(T ) is ontinuous. The map Q splits over π,thus induing a map ϕ : ∂FN/L2(T ) → T̂ obs with Q = ϕ ◦ π.Theorem 2.10 (Corollary 2.6 of [CHL05℄). The map

ϕ : ∂FN/L2(T ) → T̂ obsis a homeomorphism.2.7 The limit set and the heart of TWe onsider again the unit ylinder C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}in ∂2FN as de�ned in Remark 2.4. The following de�nition is the ruialinnovative tool of this paper: 11



De�nition 2.11. The limit set of T with respet to the basis A is the set
ΩA = Q2(C2

A ∩ L2(T )) ⊂ T .The heart KA of T with respet to the basis A is the onvex hull in T of thelimit set ΩA.It is not hard to see that in any R-tree the onvex hull of a ompat setis again ompat. Thus we obtain from Proposition 2.9 and De�nition 2.11:Corollary 2.12. The limit set ΩA is a ompat subset of T . The heart
KA ⊂ T is a ompat R-tree.Note that, while L2(T ) does not depend on the hoie of the basis A,the unit ylinder C2

A and thus the limit set and the heart of T do ruiallydepend on the hoie of A.3 Systems of isometries on ompat R-treesIn this setion we review the basi onstrution that assoiates an R-tree toa system of isometries. This goes bak to the seminal papers of D. Gaboriauand G. Levitt [GL95℄, G. Levitt and F. Paulin [LP97℄, and before them tothe study of surfae trees and the work of J. Morgan and P. Shalen [MS91℄,R. Skora [Sko96℄, and of ourse to the fundamental work E. Rips.3.1 De�nitionsDe�nition 3.1. (a) Let K be a ompat R-tree. A partial isometry of K isan isometry between two losed subtrees of K. It is said to be non-empty ifits domain is non-empty.(b) A system of isometries K = (K,A) onsists of a ompat R-tree K and a�nite set A of non-empty partial isometries of K. This de�nes a pseudo-groupof partial isometries of K by admitting inverses and omposition.We note that in the literature mentioned above it is usually required that
K is a �nite tree, i.e. K is a metri realisation of a �nite simpliial tree, or,equivalently, K is the onvex hull of �nitely many points. The novelty hereis that we only require K to be ompat. Reall that a ompat R-tree Kmay well have in�nitely many branh points, possibly with in�nite valene,12



and that K may well ontain �nite trees of unbounded volume (but of ourse
K has �nite diameter).Any element of the free group FN over the basis A, given as reduedword w = z1 . . . zn ∈ F (A), de�nes a (possibly empty) partial isometry,also denoted by w, whih is de�ned as the omposition of partial isometries
z1 ◦ z2 ◦ . . . ◦ zn. We write this pseudo-ation of F (A) on K on the right, i.e.

x(u ◦ v) = (xu)vfor all x ∈ K and u, v ∈ F (A). For any points x, y ∈ K and any w ∈ F (A)we obtain
xw = yif and only if x is in the domain dom(w) of w and is sent by w to y.A redued word w ∈ F (A) is alled admissible if it is non-empty as apartial isometry of K.3.2 The R-tree assoiated to a system of isometriesA system of isometries K = (K,A) de�nes an R-tree TK, provided with anation of the free group FN = F (A) by isometries. The onstrution is thesame as in the ase where K is a �nite tree and will be realled now.As in [GL95℄ the tree TK an be desribed using a foliated band-omplex,but for non-�nite K one would not get a CW-omplex. We use the followingequivalent onstrution in ombinatorial terms.The tree TK is obtained by gluing ountably many opies of K along thepartial isometries, one for eah element of FN . On the topologial spae

FN × K these identi�ations are made formal by de�ning
TK = FN × K/ ∼where the equivalene relation ∼ is de�ned by:

(u, x) ∼ (v, y) ⇐⇒ x(u−1v) = yThe free group FN ats on TK, from the left: this ation is simply givenby left-multipliation on the �rst oordinate of eah pair (u, x) ∈ FN × K:
w(u, x) = (wu, x)for all u, w ∈ FN , x ∈ K. 13



Sine FN is free over A, eah opy {u}×K of K embeds anonially into
TK. Thus we an identify K with the image of {1} ×K in TK, so that every
{u} × K maps bijetively onto uK. Using these bijetions, the metri on
K de�nes anonially a pseudo-metri on TK. Again, by the freeness of FNover A, this pseudo-metri is a metri. The arguments given in the proof ofTheorem I.1. of [GL95℄ extend diretly from the ase of �nite K to ompat
K, to show:Theorem 3.2. Given a system of isometries K = (K,A) on a ompat R-tree K, there exists a unique R-tree TK, provided with a left-ation of F (A)by isometries, whih satis�es:(1) TK ontains K (as an isometrially embedded subtree).(2) If x ∈ K is in the domain of a ∈ A, then a−1x = xa.(3) Every orbit of the F (A)-ation on TK meets K. Indeed, every segmentof TK is ontained in a �nite union of translates wiK, for suitable

wi ∈ F (A).(4) If T is another R-tree with an ation of F (A) by isometries satisfying(1) and (2), then there exists a unique F (A)-equivariant morphism
j : TK → T suh that j(x) = x for all x ∈ K. ⊔⊓3.3 Systems of isometries indued by an FN -ation onan R-treeFrequent and important examples of systems of isometries our in the fol-lowing ontext:Let T be any R-tree with an F (A)-ation by isometries. Then any om-pat subtree K ⊂ T , whih is su�iently large so that it intersets for any

ai ∈ A the translate aiK, de�nes anonially a system of isometries givenby:
ai : aiK ∩ K → K ∩ a−1

i K
x 7→ xai = a−1

i xSine K embeds into T , Theorem 3.2 gives a map
j : TK → T.14



The map j fails in general to be injetive. A lassial tehnique for thestudy of an ation on an R-tree T is to view TK as an approximation of T ,and to onsider a sequene of inreasing K. As K inreases to exhaust T ,the onvergene of the sequene of TK to T is well understood. Moreover, if
K is a �nite subtree of T , then TK is alled geometri and the full strengthof the Rips mahine an be used to study itIn this artile, we propose a new approah to study T , namely we provethat there exists a ompat subtree K of T suh that j is an isometry. Thisgives the possibility to extend the results proved for geometri trees (i.e.when K is �nite) to the ase where K is only assumed to be ompat.3.4 Basi lemmasWe now present some basi lemmas about the ation on TK, for admissibleand non-admissible words in the given system of isometries. We �rst observe:Remark 3.3. (a) Let K and K ′ be two losed disjoint subtrees of T . Thenthere exists a unique segment [x, x′] whih joins K to K ′, i.e. one has K ∩
[x, x′] = {x} and K ′ ∩ [x, x′] = {x′}. For any further points y ∈ K, y′ ∈ K ′the segment [y, y′] ontains both segments [x, y′] and [x′, y], and both ontain
[x, x′].(b) As a shorthand, we use in the situation given above the following notation:

[K, K ′] := [x, x′], [y, K ′] := [y, x′], [K, y′] := [x, y′]() If y ∈ K, then we set [y, K] = [K, y] = {y}, i.e. the segment of length 0with y as initial and terminal point.The following is a spei�ation of statement (3) of Theorem 3.2:Lemma 3.4. For any non-admissible word w ∈ F (A) one has
[K, wK] ⊂

|w|⋃

i=0

wiK ,where wi is the pre�x of w with length |wi| = i.Proof. It su�es to show that for the redued word w = z1 . . . zn the union
n⋃

i =0

wiK is onneted. This follows diretly from the fat that for all i =15



1, . . . , n the union wi−1K ∪ wiK = wi−1(K ∪ w−1
i−1wiK) is onneted, sine

w−1
i−1wi = zi ∈ A±1, and all partial isometries from A are assumed to benon-empty. ⊔⊓Lemma 3.5. Let K = (K,A), TK and F (A) be as above.(1) For all w ∈ F (A) one hasdom(w) = K ∩ wK .(2) A word w ∈ F (A) is admissible if and only if K ∩ wK 6= ∅.(3) If x ∈ dom(w), then

w−1x = xw .Proof. Let w ∈ F (A) and x ∈ TK. If x ∈ dom(w) ⊂ K, then the de�nitionof TK gives (1, x) ∼ (w, xw), or equivalently (ompare Theorem 3.2)
w−1x = xw .Therefore x is ontained in both, K and wK. This shows:dom(w) ⊂ K ∩ wKConversely, let x be in K ∩ wK. Then (1, x) ∼ (w, y) for some point

y ∈ K, and by de�nition of ∼ the point x lies in the domain of w, with
xw = y. Thus w is admissible, and

K ∩ wK ⊂ dom(w) .

⊔⊓Lemma 3.6. For all w ∈ F (A) the following holds, where wk denotes thepre�x of w of length k:(1) dom(w) ⊂ dom(wk) for all k ≤ |w|.(2) dom(w) =
|w|⋂

k = 0

wkKProof. Assertion (1) follows diretly from the de�nition of dom(w). Assertion(2) follows from assertion (1) and Lemma 3.5 (1). ⊔⊓16



Remark 3.7. We would like to emphasize that it is important to keep the
F (A)-ation on TK apart from the F (A)-pseudo-ation on K. This is thereason why we de�ne the ation on TK from the left, whereas we de�ne thepseudo-ation by partial isometries on K from the right.This setting is also onvenient to keep trak of the two ations: a point
x ∈ K lies in the domain of the partial isometry assoiated to w ∈ F (A) ifand only if x is ontained in wK (Lemma 3.5 (1)). More to the point, thesequene of partial isometries given by the word w = z1 . . . zn de�nes points
xz1 . . . zi whih lie all inside of K if and only if the sequene of isometriesof T given by the pre�xes of w moves K within T in suh a way that x isontained in eah of the translates z1 . . . ziK (see Lemma 3.6 (2)).Lemma 3.8. (a) For any non-admissible word w ∈ F (A) and any disjointlosed subtrees K and wK, the ar [K, wK] intersets all wiK, where wi isa pre�x of w.(b) For any point Q ∈ K and any (possibly admissible) word w ∈ F (A), thear [Q, wK] intersets all wiK.Proof. (a) We prove part (a) by indution on the length of w.Let u be the longest admissible pre�x of w. Thus u 6= 1, as all partialisometries in A±1 are non-empty. Hene we an assume by indution that
u−1w is either admissible or satis�es the property stated in part (a).Let a be the next letter of w after the pre�x u. We write w as reduedprodut w = u · a · v. Aording to Lemma 3.5 (2) one has:(i) uK ∩ K = dom(u) 6= ∅(ii) uK ∩ uaK = u dom(a) 6= ∅, and(iii) K ∩ ua K = ∅By (iii) there is a non-trivial segment β = [K, uaK] ⊂ TK that intersets Kand uaK only in its endpoints. By (i) and (ii) the segment β is ontained inthe subtree uK: there are points x, y ∈ K suh that β = [ux, uy]. Sine uxbelongs to K ∩ uK = dom(u), it follows from Lemma 3.6 (2) that ux alsobelongs to every u′K, for any pre�x u′ of u.Moreover, for any pre�x v′ of v one has, by Lemma 3.5 (1) and Lemma3.6 (1):

uav′K ∩ uK = u dom(av′) ⊂ u dom(a) = uaK ∩ uK17



From this we dedue that
uav′K ∩ [ux, uy] ⊂ uav′K ∩ [ux, uy] ∩ uK

⊂ [ux, uy]∩ uaK ∩ uK
⊂ [ux, uy]∩ uaK = {uy} .Sine the segment α = [K, wK] is by Lemma 3.4 ontained in the union

|w|⋃

i=0

wiKit follows from the above derived inlusion uav′K ∩ [ux, uy] ⊂ {uy} that α isthe union of β = [ux, uy] and of the segment γ = [uy, wK], with β∩γ = {uy}.If av is admissible, then the endpoint of γ is ontained in the intersetionof all uav′K, by Lemma 3.6 (2). If av is non-admisible, we apply the indutionhypothesis to u−1w = av and obtain that every av′K meets the ar γ′ =
[K, avK]. But uγ′ is a subar of γ, so that the ar [ux, uy] ∪ γ meets infatall wiK, as laimed.(b) In ase that w is non-admissible, there is a largest index i suh that
K ∩ wiK 6= ∅. We an now apply statement (a) to w−1

i K and w−1
i w to getthe desired onlusion.If w is admissible, then dom(w) = K ∩ wK (by Lemma 3.5 (1)). Henethe ar [Q, wK] is ontained in K, and by Lemma 3.6 (2) its endpoint isontained in any wiK. ⊔⊓Lemma 3.9. Let w, w′ ∈ F (A) with maximal ommon pre�x u ∈ F (A).Then for any triplet of points Q ∈ K, R ∈ wK and R′ ∈ w′K the ars [Q, R]and [Q, R′] interset in an ar [Q, P ] with endpoint P ∈ uK.Proof. Let [Q, Q1] the ar whih joins K to uK. It follows diretly fromLemma 3.8 (b) that Q1 lies on both, [Q, R] and [Q, R′]. Similarly, let [R, R1]and [R′, R′

1] be the ars that join R to uK and R′ to uK respetively. Afterapplying w−1 or w′−1 we obtain in the same way that R1 lies on both, [Q, R]and [R, R′], and that R′
1 lies on both, [Q, R′] and [R, R′]. Hene the geodesitriangle in TK with endpoints Q, R, R′ ontains the geodesi triangle withendpoints Q1, R1 and R′
1, and the enter of the latter is equal to the enter

P of the former. But Q1, R1 and R′
1 are all three ontained in uK, so that

P is ontained in uK. ⊔⊓18



In the following statement and its proof we use the standard terminologyfor group elements ating on trees, as realled in �2.1 above.Proposition 3.10. Let w ∈ F (A) is any ylially redued word. If theation of w on TK is hyperboli, then the axis of w intersets K. If theation of w on TK is ellipti, then w has a �xed point in K.Proof. If w is not admissible, let [x, wy] be the segment that joins K to wK:these two translates are disjoint by Lemma 3.5 (2). As w ats as an isometry,
[wx, w2y] is the segment that joins wK to w2K. Moreover, sine w is assumedto be ylially redued, the segment that joins K to w2K intersets wK, byLemma 3.8.Any two onseutive segments among [x, wy], [wy, wx], [wx, w2y] and
[w2y, w2x] have preisely one point in ommon, by Remark 3.3, and henetheir union is a segment. This proves that wx belongs to [x, w2x], and that
x is ontained in the axis of w.If w is admissible, then either there exists n ≥ 0 suh that wn is notadmissible, in whih ase we an fall bak on the above treated ase, as wand wn have the same axis. Otherwise, for arbitrary large n there exists apoint x ∈ K suh that wnx ∈ K, by Lemma 3.5 (2). But K is ompatand hene has �nite diameter. This implies that the ation of w on T is nothyperboli, and hene it is ellipti: w �xes a point of T . Some suh �xedpoint lies on [x, wx] (namely its enter), and hene in the subtree K. ⊔⊓3.5 Admissible laminationsIn this subsetion we use the onepts of algebrai lamination, symboli lam-ination and laminary language as de�ned in [CHL-I℄, and the equivalenebetween these three points of view shown there. The de�nitions and thenotation have been reviewed in �2.3 above.For any system of isometries K = (K,A) denote by Adm(K) ⊂ F (A) theset of admissible words. The set Adm(K) is stable with respet to passageto subwords, but it is not laminary (see [CHL-I℄, De�nition 5.2): not everyadmissible word w is neessarily equal, for all k ∈ N, to the word v†k obtainedfrom some larger v ∈ Adm(K) by �hopping o�� the two boundary subwordsof length k. As does any in�nite subset of F (A), the set Adm(K) generates alaminary language, denoted Ladm(K), whih is the largest laminary languagemade of admissible words:

Ladm(K) = {w ∈ F (A) | ∀k ∈ N ∃v ∈ Adm(K) : w = v†k}19



Clearly one has Ladm(K) ⊂ Adm(K), but the onverse is in general false.As explained in �2.3, any laminary language determines an algebrai lam-ination (i.e. a losed FN -invariant and �ip-invarinat subset of ∂2FN ), andonversely. The algebrai lamination determined by Ladm(K) is alled ad-missible lamination, and denoted by Ladm(K).An in�nite word X ∈ ∂F (A) is admissible if all of its pre�xes Xn areadmissible. The set of admissible in�nite words is denoted by L1adm(K). It isa losed subset of ∂F (A) but it is not invariant under the ation of F (A).For any in�nite admissible X the domain dom(X) of X is de�ned to bethe intersetion of all domains dom(Xn). Sine K is ompat, one hasdom(X) 6= ∅for all X ∈ L1adm(K).A biin�nite indexed redued word Z = . . . z−1z0z1 . . ., with zi ∈ A±,is alled admissible, if its two halves Z+ = z1z2 . . . and Z− = z−1
0 z−1

−1 . . . areadmissible, and if the intersetion of the domains of Z+ and Z− is non-empty.The domain of Z is de�ned to be this intersetion:dom(Z) = dom(Z+) ∩ dom(Z−)We observe that Z is admissible if and only if all its subwords are admissible.The set of biin�nite admissible words is alled the admissible symbolilamination of the system of isometries K = (K,A).We use now the notion of the dual lamination of an R-tree with isometri
FN -ation as introdued in [CHL-II℄ and reviewed above in �2.4.Proposition 3.11. For any system of isometries K one has

L(TK) ⊆ Ladm(K).Proof. Let u ∈ F (A) be a non-admissible word, and let ε = d(K, uK). ByLemma 3.5 (2) one has ε > 0. Let w be a ylially redued word thatontains u as a subword: we write w = u1 · u · u2 as a redued produt. ByProposition 3.10, the axis of w passes through K. But if x is any point in
K, the segment [x, wx] ontains the segment that joins the disjoint subtrees
u1K and u1uK, by Lemma 3.8, and hene the translation length of w, whihis realized on its axis, is bigger than ε. This proves that u is not in L(TK)(see �2.4) .As the laminary language of Ladm(K) is the largest laminary languagemade of admissible words, this onludes the proof. ⊔⊓20



4 The map QK for a system of isometriesIn this setion we de�ne the map QK and we prove that it is the equivalentof the map Q from �2.5, for systems of isometries K. For this de�nition wedistinguish two ases: If X ∈ ∂F (A) is not eventually admissible we de�ne
QK(X) in �4.1. If X is eventually admissible, the de�nition of QK(X) isgiven in �4.3, and in this ase we need the hypothesis that the system ofisometries has independent generators. Both ases are olleted together in�4.4 to obtain a ontinuous equivariant map QK.4.1 The map QK for non-eventually admissible wordsAs in �3, let K = (K,A) be a system of isometries on a ompat R-tree K,and let TK be the assoiated R-tree, provided with an ation of the free group
F (A) by isometries. Let X ∈ ∂F (A) be an in�nite redued word and denoteas before by Xi the pre�x of X of length i ≥ 0.De�nition 4.1. An in�nite word X ∈ ∂F (A) is eventually admissible ifthere exists an index i suh that the su�x Xi

−1X of X is admissible.Note that an in�nite word X ∈ ∂F (A) is not eventually admissible if forevery index i ≥ 0 there is an index j > i suh that the subword X[i+1,j] =
X−1

i Xj of X between the indies i + 1 and j is not admissible.Let X ∈ ∂F (A) be not eventually admissible, and let i0 > 0 be suhthat the pre�x Xi0 of X of length i0 is not admissible. Then for any i ≥ i0,the pre�x Xi is not admissible, and thus, by Lemma 3.5, K and XiK aredisjoint. By Lemmas 3.8 and 3.9, for any j ≥ i ≥ i0 the segment [K, XiK]and [K, XjK] are nested and have the same initial point Q ∈ K. Let Qi bethe terminal point of [K, XiK]:
[Q, Qi] = [K, XiK]The sequene of Qi onverges in T̂K with respet to both, the metri and theobservers' topology.De�nition 4.2. For any X ∈ ∂F (A) whih is not eventually admissible wede�ne:
QK(X) = lim

i→∞
Qi21



Proposition 4.3. Let K = (K,A) be a system of isometries on a ompat
R-tree K. Let X ∈ ∂F (A) be not eventually admissible.Let wn ∈ F (A) be a sequene of words whih onverge in F (A) ∪ ∂F (A)to X, and let Pn ∈ wnK. Then the sequene of points Pn onverges in T̂ obs

Kto QK(X), and QK(X) belongs to T̂ obs
K r TK.Proof. We use the above notations. For every index i ≥ 0, let [Qi, Ri] be theintersetion of [Q,QK(X)] with XiK. Hene for i ≥ i0 the point Qi is, asbefore, the terminal point of the segment [K, XiK]. The segments [Q, Qi] areinreasingly nested, the segments [Ri,QK(X)] are dereasingly nested, Qi isa point of [Q, Ri] and Ri is a point of [Qi,QK(X)].As X is not eventually admissible, for every index i ≥ 0 there is an index

j > i suh that the subword X[i+1,j] of X between the indies i + 1 and j isnot admissible. By Lemma 3.5 the segments [Qi, Ri] and [Qj , Rj] are disjoint.For any n, let i(n) be the length of the maximal ommon pre�x of wnand X. By Lemma 3.9, the maximal ommon segment [Q, P ′
n] of [Q, Pn] and

[Q,QK(X)] has its terminal point P ′
n in [Qi(n), Ri(n)]. As X is not eventuallyadmissible, for m big enough the subword X[i(n)+1,i(m)] of X between theindies i(n)+1 and i(m) is not admissible and the segments [Qi(n), Ri(n)] and

[Qi(m), Ri(m)] are disjoint. Therefore the maximal ommon segment of [Q, Pn]and [Q, Pm] is also the maximal ommon segment of [Q, Pn] and [Q,QK(X)],and hene it is equal to [Q, P ′
n].The points P ′

n onverge to QK(X), as any sequene of points in
[Qi(n), Ri(n)] does, and this proves that

lim inf QPn = QK(X).By Lemma 2.2 any subsequene of Pn, whih onverges in T̂ obs
K , neessarilyonverges to QK(X). Hene by ompatness of T̂ obs

K , the sequene of all ofthe points Pn onverges to QK(X) with respet to the observers' topology.If P is a point in uK for some u in FN , then the maximal ommon segment
[Q, P ′] of [Q, P ] and [Q,QK(X)] has its endpoint P ′ in [Qi, Ri], where Xi isthe maximal ommon pre�x of u and X. Thus P ′ 6= QK(X), and hene
QK(X) is not ontained in TK. ⊔⊓4.2 Independent generatorsThe following onept is due to Gaboriau [Gab97℄, in the ase of �nite K,and we extend it here to the ompat ase.22



De�nition 4.4. Let K = (K,A) be a system of isometries on a ompat
R-tree K. Then K is said to have independant generators if, for any in�niteadmissible word X ∈ ∂F (A), the non-empty domain of X onsists of exatlyone point.The same arguments as in [Gab97℄ show the following equivalenes. How-ever, they will not be used in the sequel.Remark 4.5. Let K = (K,A) be a system of isometries on a ompat R-tree
K. The following are equivalent:(1) K has independant generators.(2) Every non-trivial admissible word �xes at most one point of K.(3) The ation of F (A) on the assoiated tree TK has trivial ar stabilizers.Note that Gaboriau [Gab97℄ used originally property (2) as de�nition,but in our ontext this seems less natural.4.3 The map QK for eventually admissible wordsLet K = (K,A) be a system of isometries on a ompat R-tree K. Considerthe set L1adm(K) ⊂ ∂F (A) of in�nite admissible words as de�ned in �3.5.De�nition 4.6. Let K be a system of isometries whih has independentgenerators. Then for any in�nite admissible word X ∈ L1adm(K) there existsexatly one element of K in the domain of X, whih will be alled QK(X).Lemma 4.7. Identify K with the image of {1} × K in T̂K as in �3, and let
X ∈ L1adm(K).(1) Denoting as before by Xi the pre�x of X of length i ≥ 1, we obtain:

{QK(X)} =
⋂

i≥ 1

XiK(2) For every i ≥ 1 we have:
QK(X−1

i X) = X−1
i QK(X)23



Proof. Assertion (1) follows diretly from Lemma 3.6 (2) and the above def-inition of the map QK. Assertion (2) follows diretly from (1). ⊔⊓Reall from De�nition 4.1 that an in�nite words X ∈ ∂F (A) is eventuallyadmissible if it has a pre�x Xi suh that the in�nite remainder X ′
i = X−1

i Xis admissible. We observe that for all integers j ≥ i the word X−1
i Xj isadmissible, so that Lemma 4.7 (2) gives:

XiQK(X ′
i) = XiQK(X−1

i XjX
′
j) = Xi(X

−1
i Xj)QK(X ′

j) = XjQK(X ′
j)Hene the following de�nition does not depend on the hoie of the index i.De�nition 4.8. For any eventually admissible word X ∈ ∂F (A) we de�ne

QK(X) = XiQK(X ′
i).We note that for any element u ∈ F (A) and any eventually admissibleword X ∈ ∂F (A) one has:

QK(uX) = uQK(X)Proposition 4.9. Let K = (K,A) be a system of isometries on a ompat
R-tree K with indenpendent generators. Let X ∈ ∂F (A) be an eventuallyadmissible word.For any element P in TK, and any sequene wn of elements of FN thatonverge to X, the sequene of points wnP onverges to QK(X), with respetto the observers' topology on TK.Proof. Up to multiplying by the inverse of a pre�x we an assume that Xis admissible and QK(X) ∈ K. By ompatness of T̂ obs

K we an assume that
wnP onverges to some point Q∞. By ontradition assume that Q∞ 6=
QK(X), and let M be a point in the open interval (Q∞,QK(X)). FromLemma 2.2 we dedue

Q∞ = lim inf QK(X)wnP.Thus, for n and m big enough, the maximal ommon segment [QK(X), Pm,n]of [QK(X), wnP ] and [QK(X), wmP ] ontains M . As wn onverges to X,for n �xed and for m su�iently large, the maximal ommon pre�x of wnand wm is a pre�x Xi of X. By Lemma 3.9, Pm,n is ontained in XiK. ByLemma 4.7, QK(X) is also ontained XiK, and hene, so is M . As m and
n grow larger, the index i goes to in�nity (sine wn → X), whih provesthat M is ontained in the intersetion of all the XiK. Sine we assumed
M 6= QK(X), this ontradits the independent generators' hypothesis. ⊔⊓24



4.4 Continuity of the map QKAs any element of ∂F (A) is either eventually admissible or not, from De�-nitions 4.2 and 4.8 we ollet a map QK.Corollary 4.10. Let K = (K,A) be a system of isometries on a ompat
R-tree K with independent generators. The map QK : ∂FN → T̂ obs

K is equiv-ariant and ontinuous.For any point P in TK, the map QK de�nes the ontinuous extension to
FN ∪ ∂FN of the map

QP : FN → T̂ obs
K

w 7→ wPProof. Equivariane and ontinuity of QK follow from the seond part of theProposition, whih is proved in Propositions 4.3 and 4.9, blended with asmall dose of Bourbaki extrat. ⊔⊓5 Proof of the Main TheoremThroughout this setion let T be an R-tree provided with a minimal, verysmall ation of FN by isometries whih has dense orbits. Hene we obtainfrom Theorem 2.6 an equivariant and ontinuous map Q, whih we denotehere by QT : ∂FN → T̂ obs.Let A be a basis of of FN , and let K be a ompat subtree of T . Let
K = (K,A) be the indued system of isometries ai : K ∩ aiK → a−1

i K ∩
K, x 7→ xai = a−1

i x, as disussed in �3.3. We assume that K is hosen largeenough so that for eah ai ∈ A the intersetion K∩aiK and hene the partialisometry ai ∈ A is non-empty. As a onsequene (see �3), there exists an
R-tree TK with isometri ation by FN , and by Theorem 3.2 there exists aunique ontinuous FN -equivariant map

j : TK → Twhih indues the identity map TK ⊃ K
j
→ K ⊂ T .Lemma 5.1. The system of isometries K = (K,A) has independent gener-ators. 25



Proof. Let Q be a point in the domain of an in�nite admissible word X,ompare �3.5. Then for any pre�x Xn of X, the point QXn = Xn
−1Q is alsoontained in K (reall that we write the ation of F (A) on TK on the left,and the pseudo-ation of partial isometries of K on the right).By Theorem 3.2, j restrits to an isometry between K ⊂ TK and K ⊂ T .Therefore, for any n ≥ 0, Xn

−1j(Q) lies in K ⊂ T . By Lemma 2.7, we get
QT (X) = j(Q).This proves that the domain of X onsists of at most the point
j−1(QT (X)). Hene K has independent generators. ⊔⊓As a onsequene of Lemma 5.1, we an apply Corollary 4.10 to obtainan equivariant and ontinuous map QK : ∂FN → T̂ obs

K .Lemma 5.2. For any X ∈ ∂FN suh that QK(X) is ontained in TK, onehas
j(QK(X)) = QT (X).Proof. By Proposition 4.3, X is eventually admissible and by equivarianeof QK, QT and j, we an assume that X is admissible and that QK(X) is in

K. By De�nition 4.6, for any i ≥ 0, QK(X) · Xi = Xi
−1QK(X) lies in K.By Theorem 3.2, j restrits to an isometry between K ⊂ TK and K ⊂ T .Therefore for any i ≥ 0, the point Xi

−1j(QK(X)) lies in K ⊂ T . Thus wean apply Lemma 2.7 to get QT (X) = j(QK(X)). ⊔⊓Lemma 5.3. The admissible lamination of K is ontained in the dual lami-nation of T :
Ladm(K) ⊂ L(T )Proof. The admissible lamination Ladm(K) (see �3.5) is de�ned by all biin�-nite words Z in A± suh the two half-words Z+ and Z− have non-empty do-main, and the two domains interset non-trivially. Thus QK(Z+) = QK(Z−)is a point in K. Thus by Lemma 5.2 one has QT (Z+) = QT (Z−). The latterimplies (and is equivalent to) that Z belongs to L(T ). ⊔⊓
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We sumarize the above disussion in the following ommutative diagram:
∂FN

QK

||yy
yy

yy
yy QT

"" ""EE
EE

EE
EE

E

T̂ obs
K T̂ obs
TK

?�

OO

j //
T
?�

OO

All the maps in the diagram are equivariant and ontinuous, where the topol-ogy onsidered on the bottom line is the metri topology.We an now prove the main result of this paper. Reall from �2.7 thatfor any basis A of FN and T as above the set ΩA ⊂ T denotes the ore of Twith respet to A.Theorem 5.4. Let T be an R-tree with very small minimal FN -ation byisometries, and with dense orbits. Let A be a basis of FN , and let K ⊂ Tbe a ompat subtree whih satis�es K ∩ aiK 6= ∅ for all ai ∈ A. Then thefollowing are equivalent:(1) The restrition of the anonial map j : TK → T to the minimal FN -invariant subtree Tmin
K of TK de�nes an isometry jmin : Tmin

K → T .(2) L(T ) ⊂ Ladm(K) (⇐⇒ L(T ) = Ladm(K) , by Lemma 5.3)(3) ΩA ⊂ KProof. (1) =⇒ (2): By the assumption on j the minimal subtree Tmin
K ⊂ TKis isometri to T . Hene the dual laminations satisfy L(T ) = L(Tmin
K ), andby Remark 2.5 one has L(Tmin

K ) = L(TK). We now apply Proposition 3.11 toget L(TK) ⊂ Ladm(K).(2) =⇒ (3): By De�nition 2.11, a point Q ∈ T belongs to the limit set ΩA ifand only if there is a pair of in�nite words (X, Y ) ∈ L2(T ) ⊂ ∂2F (A), withinitial letters X1 6= Y1, whih satisfy QT (X) = QT (Y ) = Q. By assumption,
L(T ) is a subset of Ladm(K), so that the redued words X, Y and X−1 · Yare admissible for the system of isometries K. By De�nition 4.6, {QK(X)}is the domain of X and Y , and thus is ontained in K. We dedue fromLemma 5.2 that j(QK(X)) = QT (X) = Q, and Q lies in K.27



(3) =⇒ (2): Let Z be a biin�nite indexed redued word in the symbolilamination LA(T ) de�ned by the dual lamination L(T ) of T (see �2.3). Thatis to say, Z = (Z−)−1 · Z+, written as a redued produt, and QT (Z−) =
QT (Z+) is a point Q ∈ ΩA. For any n ∈ Z, we onsider the shift σn(Z) of
Z as in Remark 2.4. If u is the pre�x of Z+ of length n (or, if n < 0, thepre�x of Z− of length −n), then σn(Z) = (Z−)−1u·u−1Z+ and QT (u−1Z+) =
QT (u−1Z−) = u−1Q, and this is again a point of ΩA and thus ontained in K,by hypothesis. Therefore both, Z+ and Z− are admissible, and dom(Z+) =dom(Z−) = {Q}. Thus Z is an admissible biin�nite word of the system ofisometries K = (K,A), whih shows L(T ) ⊂ Ladm(K).(2) =⇒ (1): Sine the dual lamination L(T ) is a subset of the admissiblelamination Ladm(K), for any pair of distint in�nite words X, Y ∈ ∂F (A)the equality QT (X) = QT (Y ) implies that X−1Y is admissible, and fromDe�nition 4.6 we dedue QK(X) = QK(Y ). Thus the map QK : ∂FN → T̂ obs

Kfators over the quotient map π : ∂FN → ∂FN/L2(T ) (see �2.6) to de�ne anequivariant map s : ∂FN/L2(T ) → T̂ obs
K .
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T̂ obs
K T̂ obs
TK

?�

OO

j //
T
?�

OO

Tmin
K

?�

OO

jmin
//
T
?�

OO

As the topology on ∂FN/L2(T ) is the quotient topology (see �2.6) andas QK is ontinuous (see Corollary 4.10), the map s is ontinuous. Sine
ϕ : ∂FN/L2(T ) → T̂ obs is a homeomorphism (see Theorem 2.10), we deduethat the image of s is an FN -invariant onneted subtree of T̂ obs

K . Thereforethe image of s ontains the minimal subtree Tmin
K of TK.As a onsequene, for any point P in Tmin

K there exists an element X ∈
∂FN suh that s(π(X)) = QK(X) = P . From Lemma 5.2 we obtain that28



jmin(P ) = j(QK(X)) = QT (X). By de�nition of the homeomorphism ϕ, onehas ϕ−1(jmin(P )) = π(X) and s(ϕ−1(jmin(P ))) = P . This proves that jmin isinjetive.Sine j is ontinuous with respet to the metri topology, sine j maps
K isometrially, and sine TK = FNK, this implies that jmin is an isometry.

⊔⊓Reall from �2.7 that the heart KA ⊂ T denotes the onvex hull of thelimit set ΩA of T with respet to the basis A. We denote by KA = (KA,A)the assoiated system of partial isometries.We remark that, in the above theorem, the map QK may fail to be sur-jetive onto TK if K is too large. And hene, j may fail to be injetive evenif the limit set ΩA is ontained in K. This is the reason why we onsideredthe minimal subtree Tmin
K of TK. However if K is exatly equal to the heart

KA we get the following orollary.Corollary 5.5. Let T be an R-tree with very small minimal FN -ation byisometries, and with dense orbits. Let A be a basis of FN , with heart KA.The map j : TKA
→ T is isometri and its image ontains T .Proof. By de�nition, for K = KA the three equivalent onditions of Theo-rem 5.4 are satis�ed.In the proof of impliation (2)⇒(3) of Theorem 5.4, we proved that ΩAis in the image of QK. In the proof of impliation (2)⇒(1), we proved thatthe image of QK is onneted and that j is injetive on the image of QK.Therefore KA is in the image of QK, and the map j : TKA

→ T isinjetive. From the last paragraph of the proof of Theorem 5.4 we deduethat j is isometri. Finally, from the minimality of T we dedue that theimage of j ontains T . ⊔⊓We will now give an appliation of our main result to a speial lass ofgroup ations on R-trees whih play an important role in what is often alledthe �Rips mahine�: A minimal R-tree T is alled geometri if there exists a�nite subtree K ⊂ T and a basis A of FN suh that the map j : TK → Tis an isometry. It is proved in [GL95℄ that in this ase for any basis A onean �nd suh a �nite subtree K. For more information about geometri treesregarding the ontext of this paper see [GL95℄.29



Reall from �2.7 that the heart KA ⊂ T denotes the onvex hull of thelimit set ΩA of T with respet to the basis A. We denote by KA = (KA,A)the assoiated system of partial isometries.Corollary 5.6. A very small minimal R-tree T with dense orbits is geometriif and only if, for any basis A of FN , KA is a �nite subtree of T .Proof. If T is geometri, then by de�nition there is a �nite tree K ⊂ T suhthat the map j : TK → T is an isometry. Thus ondition (1) of Theorem 5.4is satis�ed, and hene ondition (3) implies that KA is a subtree of K, andthus it is �nite.Conversely, if KA lies in T , the image of the map j de�ned on TKA
isontained in T ⊂ T , giving a map j : TKA

→ T whih by Corollary 5.5 isisometri. By minimality of T , the map j is onto. ⊔⊓Referenes[BF95℄ M. Bestvina, and M. Feighn. Stable ations of groups on realtrees. Invent. Math., 121(2):287�321, 1995.[BFH00℄ M. Bestvina, M. Feighn, and M. Handel. The Tits alternative for
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