-trees, dual laminations, and compact systems of partial isometries

Thierry Coulbois, Arnaud Hilion, Martin Lustig

To cite this version:

Thierry Coulbois, Arnaud Hilion, Martin Lustig. -trees, dual laminations, and compact systems of partial isometries. 2007. hal-00198807v1

HAL Id: hal-00198807
https://hal.science/hal-00198807v1

Preprint submitted on 18 Dec 2007 (v1), last revised 1 Apr 2009 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

\mathbb{R}-trees, dual laminations, and compact systems of partial isometries

Thierry Coulbois, Arnaud Hilion and, Martin Lustig

December 18, 2007
Abstract
Let F_{N} be a free group of finite rank $N \geq 2$, and let T be an \mathbb{R}-tree with a very small, minimal action of F_{N} with dense orbits. For any basis \mathcal{A} of F_{N} there exists a heart $K_{\mathcal{A}} \subset \bar{T}$ ($=$ the metric completion of T) which is a compact subtree that has the property that the dynamical system of partial isometries $a_{i}: K_{\mathcal{A}} \cap a_{i} K_{\mathcal{A}} \rightarrow$ $a_{i}^{-1} K_{\mathcal{A}} \cap K_{\mathcal{A}}$, for each $a_{i} \in \mathcal{A}$, defines a tree $T_{\left(K_{\mathcal{A}}, \mathcal{A}\right)}$ which contains an isometric copy of T as minimal subtree.

Contents

1 Introduction 2
$2 F_{N}$-actions on \mathbb{R}-trees and their heart 5
2.1 Background on \mathbb{R}-trees 5
2.2 The observers' topology on T 6
2.3 Algebraic laminations 7
2.4 The dual lamination $L(T)$ 9
2.5 The map \mathcal{Q} 9
2.6 The map \mathcal{Q}^{2} 11
2.7 The limit set and the heart of T 11
3 Systems of isometries on compact \mathbb{R}-trees 12
3.1 Definitions 12
3.2 The \mathbb{R}-tree associated to a system of isometries 13
3.3 Systems of isometries induced by an F_{N}-action on an \mathbb{R}-tree 14
3.4 Basic lemmas 15
3.5 Admissible laminations 19
4 The $\operatorname{map} \mathcal{Q}_{\mathcal{K}}$ for a system of isometries 21
4.1 The map $\mathcal{Q}_{\mathcal{K}}$ for non-eventually admissible words 21
4.2 Independent generators 22
4.3 The $\operatorname{map} \mathcal{Q}_{\mathcal{K}}$ for eventually admissible words 23
4.4 Continuity of the map $\mathcal{Q}_{\mathcal{K}}$ 25
5 Proof of the Main Theorem 25

1 Introduction

A point on Thurston's boundary of Teichmüller space $\mathcal{T}(\Sigma)$ for a surface Σ can be understood alternatively as a measured lamination (\mathfrak{L}, μ) on Σ, up to rescaling of the transverse measure, or as small action of $\pi_{1} \Sigma$ on some \mathbb{R}-tree T, up to $\pi_{1} \Sigma$-equivariant homothety. The correspondence between these two objects, which are naturally dual to each other, is given by the fact that points of T are in 1-1 correspondence (or "one-to-finite" correspondence, for the branchpoints of T) with the leaves of $\widetilde{\mathfrak{L}}$, i.e. the lift of \mathfrak{L} to the universal covering $\widetilde{\Sigma}$. The metric on T is determined by μ, and vice versa.

Culler-Vogtmann's Outer space CV_{N} is the analogue of $\mathcal{T}(\Sigma)$, with $\operatorname{Out}\left(F_{N}\right)$ replacing the mapping class group. A point of the Thurston boundary $\partial \mathrm{CV}_{N}$ is given by a homothety class $[T]$ of very small isometric actions of the free group F_{N} on an \mathbb{R}-tree T. In general, T will not be dual to a measured lamination on a surface. However, in [CHL-I, CHL-II] an "abstract" dual lamination $L(T)$ has been defined for any such T, which is very much the analogue of \mathfrak{L} in the surface case. $L(T)$ is an algebraic lamination: it lives in the double Gromov boundary of F_{N}, and the choice of a basis \mathcal{A} transforms $L(T)$ into a symbolic dynamical system which is a classical subshift in $\mathcal{A} \cup \mathcal{A}^{-1}$. The dual lamination $L(T)$, and variations of it, have already been proved to be a useful invariant of the tree T, compare [BFH00, CHL05, HM06, KL07].

In the case of measured laminations on a surface, the standard tool which allows a transition from geometry to combinatorial dynamics, is given by interval exchange transformations. The combinatorics which occur here are
classically given through coding geodesics on a surface by sequences of symbols, where the symbols correspond to subintervals, and the sequences are given by the first return map. Conversely, the surface and the lamination (or rather "foliation", in this case), can be recovered from the interval exchange transformation by suspension, i.e. by realizing the map which exchanges the subintervals by a (foliated) mapping torus.

Taking the basic concept of this classical method one step further and considering directly the dual tree T rather than the lamination given by the combinatorial data, one considers for any $[T] \in \partial \mathrm{CV}_{N}$ a finite metric subtree $K \subset T$, and for some basis \mathcal{A} of F_{N} the induced finite system of partial isometries between subtrees of K : Each basis element $a_{i} \in \mathcal{A}$ defines a partial isomerty $a_{i}: K \cap a_{i} K \rightarrow a_{i}^{-1} K \cap K$, and these partial isometries play the role of the interval exchange transformation. Any such pair $\mathcal{K}=(K, \mathcal{A})$ gives canonically rise to a tree $T_{\mathcal{K}}$ together with an F_{N}-equivariant map $j: T_{\mathcal{K}} \rightarrow T$. The tree $T_{\mathcal{K}}$ is the "unfolding space" of the system $\mathcal{K} . \mathbb{R}$-trees T where for some such finite K the map j is an isometry have been studied intensely, and they play an important role in the study of $\partial \mathrm{CV}_{N}$, see [GL95].

Indeed, if K is an interval and if it is simultaneously equal to the union of domains and the union of ranges of the isometries (and if these unions are disjoint unions except at the boundary points), then K defines actually an interval exchange transformation. If one only assumes that K is finite, this will in general not be true: one only obtains a system of interval translations (see [BH04]). On the level of \mathbb{R}-trees one obtains in the first case surface tree actions, and in the second case actions that alternatively termed Levitt, thin or exotic. The union of these two classes are precisely the actions called geometric in [GL95].

However, both of these types of actions seem to be more the exception than the rule: Given any point $[T] \in \partial \mathrm{CV}_{N}$, there is in general no reason why T should be determined by a system of partial isometries based on a finite tree $K \subset T$. A possible way to deal with such T is to consider increasing sequences of finite subtrees and thus to approximate T by the sequence of ensuing geometric trees T_{K}, in the spirit of the "Rips machine", which is an important tool to analyze arbitrary group action on \mathbb{R}-trees. The goal of this paper is to propose a more direct alternative to this approximation technology:

We replace the condition on the subtree $K \subset T$ to be finite by the weaker condition that K be compact. It turns out that almost all of the classical
machinery developed for the approximation trees $T_{\mathcal{K}}$ for finite K carries over directly to the case of compact K. However, the application of such $T_{\mathcal{K}}$ concern a much larger class of trees: In particular, every minimal very small T with dense orbits can be described directly, i.e. circumventing completely the above approximation, as minimal subtree $T_{\mathcal{K}}^{\min }$ of the tree $T_{\mathcal{K}}$, for a properly chosen compact subtree K of the metric completion \bar{T} of T.

Theorem 1.1. Let T be an \mathbb{R}-tree provided with a very small, minimal, isometric action of the free group F_{N} with dense orbits. Let \mathcal{A} be a basis of F_{N}. Then there exists a compact subtree $K_{\mathcal{A}} \subset \bar{T}$ (called the "heart" of T w.r.t. \mathcal{A}), such that for any compact subtree K of \bar{T} one has:

$$
T=T_{\mathcal{K}}^{\min } \Longleftrightarrow K_{\mathcal{A}} \subseteq K
$$

This is a slightly simplified version of Theorem 5.4 proved in this article. The main tool for this proof (and indeed for the definition of the heart $K_{\mathcal{A}}$) is the dual lamination $L(T)$. We define in this article (see §3) a second admissible lamination $L_{\mathrm{adm}}(\mathcal{K})$ associated to the system of partial isometries $\mathcal{K}=(K, \mathcal{A})$. One key ingredient in the equivalence of Theorem 1.1 is to prove that the two statements given there are equivalent to the equation $L(T)=$ $L_{\mathrm{adm}}(\mathcal{K})$. The other key ingredient, developed in $\S 4$, is a new understanding of the crucial map $\mathcal{Q}: \partial F_{N} \rightarrow \bar{T} \cup \partial T$ from [LL03], based on the dynamical system $\mathcal{K}=(K, \mathcal{A})$. The proof of Theorem 5.4 uses the full strength of the duality between trees and laminations, and in particular a transition between the two given by the main result of our earlier paper [CHL05].

We would like to underline that the main object of his paper, the heart $K_{\mathcal{A}}$ of T with respect to any basis \mathcal{A} of F_{N}, is a compact subtree of \bar{T} that is determined by algebraic data associated to T, namely by the dual algebraic lamination $L(T)$ of T. This system $\mathcal{K}_{\mathcal{A}}=\left(K_{\mathcal{A}}, \mathcal{A}\right)$ of partial isometries is entirely determined by the choice of the basis \mathcal{A} and it depends on \mathcal{A}, but important properties of it turn actually out to be independent of that choice. As an example we derive from the above theorem the following direct characterization of geometric trees:

Corollary 1.2. A very small minimal \mathbb{R}-tree T with dense orbits is geometric if and only if, for any basis \mathcal{A} of F_{N}, the heart $K_{\mathcal{A}}$ is a finite subtree of T.

Acknowledgments: The authors would like to thank V. Guirardel, P. Hubert and G. Levitt for helpful comments. The first and the third author would
also like to thank the MSRI at Berkeley for the support received from the program "Geometric Group Theory" in the fall of 2007.

$2 \quad F_{N}$-actions on \mathbb{R}-trees and their heart

In this section we first recall some well known facts about \mathbb{R}-trees T with isometric action of a free group F_{N}. We also recall algebraic laminations, and in particular the dual lamination $L(T)$. We then concentrate on the specific case of very small trees with dense orbits, and for such trees we define the limit set and the heart of T with respect to a fixed basis \mathcal{A} of F_{N}.

In this paper we need some of the machinary developed in our previous articles [CHL-I, CHL-II, CHL05]. We present these tools in this section, but refer to those articles for proofs and for a more complete discussion.

2.1 Background on \mathbb{R}-trees

An \mathbb{R}-tree T is a metric space which is 0 -hyperbolic and geodesic. Alternatively, a metric space T is an \mathbb{R}-tree if and only if any two points $x, y \in T$ are joined by a unique topological arc $[x, y] \subset T$, and this arc (called a segment) is geodesic. For any \mathbb{R}-tree T we denote by \bar{T} the metric completion and by ∂T the Gromov boundary of T. We also write $\widehat{T}=\bar{T} \cup \partial T$.

Most \mathbb{R}-trees T considered in this paper are provided with an action by isometries (from the left) of a non-abelian free group F_{N} of finite rank $N \geq 2$. Such an action is called minimal if T agrees with its minimal F_{N}-invariant subtree. We say that the action has dense orbits if for some (and hence every) point $x \in T$ the orbit $F_{N} \cdot x$ is dense in T. In the case of dense orbits, the following three conditions are equivalent:

- T has trivial arc stabilizers (i.e. for any distinct $x, y \in T$ and $w \in F_{N}$ the equality $w[x, y]=[x, y]$ implies $w=1$).
- The F_{N}-action on T is small (see [CM87, CHL-II]).
- The F_{N}-action on T is very small (see [CL95, CHL-II]).

As usual, for any $w \in F_{N}$ we denote by $\|w\|_{T}$ (or simply by $\|w\|$) the translation length of the action of w on T, i.e. the infimum of $d(x, w x)$ over all $x \in T$.

There are two types of isometries of T : An element $w \in F_{N}$ acts as an elliptic isometry on T if it fixes a point, which is equivalent to $\|w\|=0$. If $\|w\|>0$, then the action of w on T is called hyperbolic: There is a well defined axis in T, which is isometric to \mathbb{R} and is w-invariant: the element w translates every point on the axis by $\|w\|$.

A continuous map $T \rightarrow T^{\prime}$ between \mathbb{R}-trees is called a morphism if every segment is mapped locally injectively except at finitely many points.

2.2 The observers' topology on T

There are various independent approaches in the literature to define \mathbb{R}-trees as topological spaces without reference to the metric. The following version has been studied in [CHL05].

Definition 2.1. Let T be an \mathbb{R}-tree. A direction in \widehat{T} is a connected component of the complement of a point of \widehat{T}. A subbasis of open sets for the observers' topology on \widehat{T} is given by the set of all such directions in \widehat{T}.

The observers' topology on \widehat{T} (or T) is weaker than the metric topology: For example, any sequence of points that "turns around" a branch point converges to this branch point. We denote by $\widehat{T}^{\text {obs }}$ the set \widehat{T} equipped with the observers' topology. The space $\widehat{T}^{\text {obs }}$ is Hausdorff and compact.

For any sequence of points P_{n} in \widehat{T}, and for some base point $Q \in \widehat{T}$, there is a well defined inferior limit from Q, which we denote by:

$$
P=\liminf _{n \rightarrow \infty} P_{n}
$$

It is given by

$$
[Q, P]=\overline{\bigcup_{m=0}^{\infty} \bigcap_{n \geq m}\left[Q, P_{n}\right]}
$$

The inferior limit P is always contained in the closure of the convex hull of the P_{n}, but its precise location does in fact depend on the choice of the base point Q. However, in [CHL05] the following has been shown:

Lemma 2.2. If a sequence of points P_{n} converges in $\widehat{T}^{\text {obs }}$ to some limit point $P \in \widehat{T}^{\text {obs }}$, then for any $Q \in \widehat{T}$ one has:

$$
P=\liminf _{n \rightarrow \infty} P_{n}
$$

The observers' topology is very useful, but it is also easy to be deceived by it. For example, it is not true that any continuous map between \mathbb{R}-trees $T_{1} \rightarrow T_{2}$ induces canonically a continuous map $\widehat{T}_{1}^{\text {obs }} \rightarrow \widehat{T}_{2}^{\mathrm{obs}}$, as is illustrated in the following remark.

Remark 2.3. Let T_{1} be the ∞-pod, given by a center Q and edges $\left[Q, P_{k}\right]$ of length 1 , for every $k \in \mathbb{N}$. Let T_{2} be obtained from T_{1} by gluing the initial segment of length $\frac{k-1}{k}$ of each $\left[Q, P_{k}\right]$, for $k \geq 2$, to $\left[Q, P_{1}\right]$. Then the canonical map $f: T_{1} \rightarrow T_{2}$ is continuous, and even a length decreasing morphism, but $\lim P_{k}=Q$, while $\lim f\left(P_{k}\right)=f\left(P_{1}\right) \neq f(Q)$.

We refer the reader to [CHL05] for more details about the observers' topology.

2.3 Algebraic laminations

For the free group F_{N} of finite rank $N \geq 2$ we denote by ∂F_{N} the Gromov boundary of F_{N}. We also consider

$$
\partial^{2} F_{N}=\partial F_{N} \times \partial F_{N} \backslash \Delta,
$$

where Δ denotes the diagonal. The space $\partial^{2} F_{N}$ inherits from ∂F_{N} a leftaction of F_{N}, defined by $w(X, Y)=(w X, w Y)$ and a topology. It also admits the fip map $(X, Y) \mapsto(Y, X)$. An algebraic lamination $L^{2} \subset \partial^{2} F_{N}$ is a nonempty closed subset which is invariant under the F_{N}-action and the flip map.

If one choses a basis \mathcal{A} of F_{N}, then every element $w \in F_{N}$ can be uniquely written as finite reduced word in $\mathcal{A}^{ \pm 1}$, so that F_{N} is canonically identified with the set $F(\mathcal{A})$ of such words. Similarly, a point of the boundary ∂F_{N} can be written as infinite reduced word $X=z_{1} z_{2} \ldots$, so that ∂F_{N} is canonically identified with the set $\partial F(\mathcal{A})$ of such infinite words.

We also consider reduced biinfinite indexed words

$$
Z=\ldots z_{-1} z_{0} z_{1} \ldots
$$

with all $z_{i} \in \mathcal{A}^{ \pm 1}$. We say that Z has positive half $Z^{+}=z_{1} z_{2} \ldots$ and negative half $Z^{-}=z_{0}^{-1} z_{-1}^{-1} \ldots$, which are two infinite words

$$
Z^{+}, Z^{-} \in \partial F(\mathcal{A})
$$

with distinct initial letters $Z_{1}^{+} \neq Z_{1}^{-}$. We write the reduced product $Z=$ $\left(Z^{-}\right)^{-1} \cdot Z^{+}$to mark the letter Z_{1}^{+}with index 1.

For any fixed choice of a basis \mathcal{A}, an algebraic lamination L^{2} determines a symbolic lamination

$$
L_{\mathcal{A}}=\left\{\left(Z^{-}\right)^{-1} \cdot Z^{+} \mid\left(w Z^{-}, w Z^{+}\right) \in L^{2}\right\}
$$

as well as a laminary language

$$
\mathcal{L}_{\mathcal{A}}=\left\{w \in F(\mathcal{A}) \mid w \text { is a subword of some } Z \in L_{\mathcal{A}}\right\} .
$$

Both, symbolic laminations and laminary languages can be characterized independently, and the natural transition from one to the other and back to an algebraic lamination has been established with care in [CHL-I]. In case we do not want to specify which of the three equivalent terminologies is meant, we simply speak of a lamination and denote it by L.

One of the crucial points of the encounter between symbolic dynamics and geometric group theory, in the subject treated in this paper, occurs precisely at the transition between algebraic and symbolic laminations. Since the main thrust of this paper (as presented in $\S 3$) can be reinterpreted as translating the symbolic dynamics viewpoint into the world of \mathbb{R}-trees, it seems useful to highlight this transition in the symbolic language, before embroiling it with the topology of \mathbb{R}-trees:

Remark 2.4. As before, we fix a basis \mathcal{A} of F_{N}, and denote an element X of the boundary $\partial F_{N}=\partial F(\mathcal{A})$ by the corresponding infinite reduced word in $\mathcal{A}^{ \pm 1}$. We denote by X_{n} its prefix of length n.

We consider the unit cylinder $C_{\mathcal{A}}^{2}$ in $\partial^{2} F_{N}$:

$$
C_{\mathcal{A}}^{2}=\left\{(X, Y) \in \partial^{2} F_{N} \mid X_{1} \neq Y_{1}\right\}
$$

Contrary to $\partial^{2} F_{N}$, the unit cylinder $C_{\mathcal{A}}^{2}$ is a compact set (in fact, a Cantor set). The unit cylinder $C_{\mathcal{A}}^{2}$ has the property that the canonical map $\rho_{\mathcal{A}}$: $(X, Y) \mapsto X^{-1} \cdot Y$ (see [CHL-I], Remark 4.3) restricts to an injection on $C_{\mathcal{A}}^{2}$ with inverse map $Z \mapsto\left(Z^{-}, Z^{+}\right)$.

In symbolic dynamics, the natural operator on biinfinite sequences is the shift map, which in our notation is given by

$$
\sigma\left(X^{-1} \cdot Y\right)=X^{-1} Y_{1} \cdot\left(Y_{1}^{-1} Y\right)
$$

i.e. the same symbol sequence as in $X^{-1} \cdot Y$, but with Y_{1} as letter of index 0 .

On the other hand, there is a system of "partial bijections" on $C_{\mathcal{A}}^{2}$, given for each $a_{i} \in \mathcal{A}$ by:

$$
a_{i}: C_{\mathcal{A}}^{2} \cap a_{i}{ }^{-1} C_{\mathcal{A}}^{2} \rightarrow a_{i} C_{\mathcal{A}}^{2} \cap C_{\mathcal{A}}^{2}
$$

A particular feature of this system is that it "commutes" via the map $\rho_{\mathcal{A}}$ with the shift map σ on the set of biinfinite reduced words: More precisely, for all $(X, Y) \in C_{\mathcal{A}}^{2}$ one has:

$$
\rho_{\mathcal{A}}\left(Y_{1}^{-1}(X, Y)\right)=\sigma\left(\rho_{\mathcal{A}}(X, Y)\right)
$$

This transition from group action to the shift (or more precisely, the converse direction), will be explored in $\S 3$ in detail, with the additional feature that the topology of compact trees is added on, in the analogous way as interval exchange transformations are a classical tool to interpret certain symbolic dynamical systems topologically.

2.4 The dual lamination $L(T)$

In [CHL-II] a dual lamination $L(T)$ for any isometric action of a free group F_{N} on an \mathbb{R}-tree T has been introduced and investigated. If T is very small and has dense orbits, three different definitions of $L(T)$ have been given in [CHL-II] and shown there to be equivalent. However, as in this paper we can not always assume that T has dense orbits, it is most convenient to fix a basis \mathcal{A} of F_{N} and to give the general definition of $L(T)$ via its dual laminary language $\mathcal{L}_{\mathcal{A}}(T)$ (see Definition 4.1 and Remark 4.2 of [CHL-I]), which determines $L(T)$ and vice versa:

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{A}}(T)=\{v \in F(\mathcal{A}) \mid \forall \varepsilon>0 \exists u, w \in F(\mathcal{A}):\|u \cdot v \cdot w\|_{T}<\varepsilon, \\
&u \cdot v \cdot w \text { reduced and cyclically reduced }\}
\end{aligned}
$$

Remark 2.5. It follows directly from this definition that $L(T)=L\left(T^{\text {min }}\right)$, where $T^{\text {min }}$ denotes the minimal F_{N}-invariant subtree of T.

2.5 The map \mathcal{Q}

Theorem 2.6 ([LL03, LL04]). Let T be an \mathbb{R}-tree with a very small action of F_{N} by isometries that has dense orbits. Then there exists a surjective F_{N}-equivariant map $\mathcal{Q}: \partial F_{N} \rightarrow \widehat{T}$ which has the following property:

For any sequence of elements u_{n} of F_{N} which converges to $X \in \partial F_{N}$ and for any point $P \in T$, if the sequence of points $u_{n} P \in T$ converges (metrically) in \widehat{T} to a point Q, then $\mathcal{Q}(X)=Q$.

Using the properties of a metric topology we get the following lemma.
Lemma 2.7. Let T be an \mathbb{R}-tree with a very small action of F_{N} by isometries that has dense orbits. Let K be a compact (with respect to the metric topology) subtree of \bar{T}. Let Q be a point in K and w_{n} a sequence of elements in F_{N} which converge in $F_{N} \cup \partial F_{N}$ to some $X \in \partial F_{N}$. If for all n one has $w_{n}^{-1} Q \in K$, then $Q(X)=Q$.

Proof. As K is compact, up to passing to a subsequence, we can assume that $w_{n}^{-1} Q$ converges to a point P in K, that is to say $\lim _{n \rightarrow \infty} d\left(w_{n}^{-1} Q, P\right)=0$. As the action is isometric we get that $\lim _{n \rightarrow \infty} d\left(Q, w_{n} P\right)=0$, i.e. the $w_{n} P$ converge to Q. Hence Theorem 2.6 gives the desired conclusion $Q(X)=Q$.

It is crucial for the arguments presented in this paper to remember that the map \mathcal{Q} is not continuous with respect to the metric topology on \widehat{T}, i.e. the topology given by the metric on T. In fact, this has been the reason why in [CHL05] the weaker observers' topology on \widehat{T} has been investigated.

Theorem 2.8 (Remark 2.2 and Proposition 2.3 of [CHL05]). Let T be an \mathbb{R}-tree with isometric very small action of F_{N} that has dense orbits. Then the following holds:
(1) The map \mathcal{Q} defined in Theorem 2.6 is continuous with respect to the observers' topology, i.e. it defines a continuous equivariant surjection

$$
\mathcal{Q}: \partial F_{N} \rightarrow \widehat{T}^{o b s} .
$$

(2) For any point $P \in T$ the map \mathcal{Q} defines the continuous extension to $F_{N} \cup \partial F_{N}$ of the map

$$
\mathcal{Q}_{P}: F_{N} \rightarrow \widehat{T}^{o b s}, w \mapsto w P
$$

Though obvious it is worth noting that the last property determines the map \mathcal{Q} uniquely.

2.6 The map \mathcal{Q}^{2}

If the tree T is very small and has dense orbits, the dual lamination $L(T)$ described in $\S 2.4$ admits an alternative second definition via the above defined map \mathcal{Q} as algebraic lamination $L^{2}(T)$ (compare $\S 2.3$):

$$
L^{2}(T)=\left\{(X, Y) \in \partial^{2} F_{N} \mid \mathcal{Q}(X)=\mathcal{Q}(Y)\right\}
$$

It has been proved in [LL03, LL04] that the map \mathcal{Q} is one-to-one on the preimage of the Gromov boundary ∂T of T. Hence the map \mathcal{Q} induces a map \mathcal{Q}^{2} from $L^{2}(T)$ to \bar{T}, given by:

$$
\mathcal{Q}^{2}((X, Y))=\mathcal{Q}(X)=\mathcal{Q}(Y)
$$

In light of the above discussion the following result seems remarkable. It is also crucial for the definition of the heart of T in the next subsection.

Proposition 2.9 (Proposition 8.3 in [CHL-II]). The F_{N}-equivariant map

$$
\mathcal{Q}^{2}: L^{2}(T) \rightarrow \bar{T}
$$

is continuous, with respect to the metric topology on \bar{T}.
As in [CHL05], §2, we consider the equivalence relation on ∂F_{N} whose classes are fibers of \mathcal{Q}, and we denote by $\partial F_{N} / L^{2}(T)$ the quotient set. The quotient topology on $\partial F_{N} / L^{2}(T)$ is the finest topology such that the natural projection $\pi: \partial F_{N} \rightarrow \partial F_{N} / L^{2}(T)$ is continuous. The map \mathcal{Q} splits over π, thus inducing a $\operatorname{map} \varphi: \partial F_{N} / L^{2}(T) \rightarrow \widehat{T}^{\text {obs }}$ with $\mathcal{Q}=\varphi \circ \pi$.

Theorem 2.10 (Corollary 2.6 of [CHL05]). The map

$$
\varphi: \partial F_{N} / L^{2}(T) \rightarrow \widehat{T}^{o b s}
$$

is a homeomorphism.

2.7 The limit set and the heart of T

We consider again the unit cylinder $C_{\mathcal{A}}^{2}=\left\{(X, Y) \in \partial^{2} F_{N} \mid X_{1} \neq Y_{1}\right\}$ in $\partial^{2} F_{N}$ as defined in Remark 2.4. The following definition is the crucial innovative tool of this paper:

Definition 2.11. The limit set of T with respect to the basis \mathcal{A} is the set

$$
\Omega_{\mathcal{A}}=\mathcal{Q}^{2}\left(C_{\mathcal{A}}^{2} \cap L^{2}(T)\right) \subset \bar{T} .
$$

The heart $K_{\mathcal{A}}$ of T with respect to the basis \mathcal{A} is the convex hull in \bar{T} of the limit set $\Omega_{\mathcal{A}}$.

It is not hard to see that in any \mathbb{R}-tree the convex hull of a compact set is again compact. Thus we obtain from Proposition 2.9 and Definition 2.11:

Corollary 2.12. The limit set $\Omega_{\mathcal{A}}$ is a compact subset of \bar{T}. The heart $K_{\mathcal{A}} \subset \bar{T}$ is a compact \mathbb{R}-tree.

Note that, while $L^{2}(T)$ does not depend on the choice of the basis \mathcal{A}, the unit cylinder $C_{\mathcal{A}}^{2}$ and thus the limit set and the heart of T do crucially depend on the choice of \mathcal{A}.

3 Systems of isometries on compact \mathbb{R}-trees

In this section we review the basic construction that associates an \mathbb{R}-tree to a system of isometries. This goes back to the seminal papers of D. Gaboriau and G. Levitt [GL95], G. Levitt and F. Paulin [LP97], and before them to the study of surface trees and the work of J. Morgan and P. Shalen [MS91], R. Skora [Sko96], and of course to the fundamental work E. Rips.

3.1 Definitions

Definition 3.1. (a) Let K be a compact \mathbb{R}-tree. A partial isometry of K is an isometry between two closed subtrees of K. It is said to be non-empty if its domain is non-empty.
(b) A system of isometries $\mathcal{K}=(K, \mathcal{A})$ consists of a compact \mathbb{R}-tree K and a finite set \mathcal{A} of non-empty partial isometries of K. This defines a pseudo-group of partial isometries of K by admitting inverses and composition.

We note that in the literature mentioned above it is usually required that K is a finite tree, i.e. K is a metric realisation of a finite simplicial tree, or, equivalently, K is the convex hull of finitely many points. The novelty here is that we only require K to be compact. Recall that a compact \mathbb{R}-tree K may well have infinitely many branch points, possibly with infinite valence,
and that K may well contain finite trees of unbounded volume (but of course K has finite diameter).

Any element of the free group F_{N} over the basis \mathcal{A}, given as reduced word $w=z_{1} \ldots z_{n} \in F(\mathcal{A})$, defines a (possibly empty) partial isometry, also denoted by w, which is defined as the composition of partial isometries $z_{1} \circ z_{2} \circ \ldots \circ z_{n}$. We write this pseudo-action of $F(\mathcal{A})$ on K on the right, i.e.

$$
x(u \circ v)=(x u) v
$$

for all $x \in K$ and $u, v \in F(\mathcal{A})$. For any points $x, y \in K$ and any $w \in F(\mathcal{A})$ we obtain

$$
x w=y
$$

if and only if x is in the domain $\operatorname{dom}(w)$ of w and is sent by w to y.
A reduced word $w \in F(\mathcal{A})$ is called admissible if it is non-empty as a partial isometry of K.

3.2 The \mathbb{R}-tree associated to a system of isometries

A system of isometries $\mathcal{K}=(K, \mathcal{A})$ defines an \mathbb{R}-tree $T_{\mathcal{K}}$, provided with an action of the free group $F_{N}=F(\mathcal{A})$ by isometries. The construction is the same as in the case where K is a finite tree and will be recalled now.

As in [GL95] the tree $T_{\mathcal{K}}$ can be described using a foliated band-complex, but for non-finite K one would not get a CW-complex. We use the following equivalent construction in combinatorial terms.

The tree $T_{\mathcal{K}}$ is obtained by gluing countably many copies of K along the partial isometries, one for each element of F_{N}. On the topological space $F_{N} \times K$ these identifications are made formal by defining

$$
T_{\mathcal{K}}=F_{N} \times K / \sim
$$

where the equivalence relation \sim is defined by:

$$
(u, x) \sim(v, y) \Longleftrightarrow x\left(u^{-1} v\right)=y
$$

The free group F_{N} acts on $T_{\mathcal{K}}$, from the left: this action is simply given by left-multiplication on the first coordinate of each pair $(u, x) \in F_{N} \times K$:

$$
w(u, x)=(w u, x)
$$

for all $u, w \in F_{N}, x \in K$.

Since F_{N} is free over \mathcal{A}, each copy $\{u\} \times K$ of K embeds canonically into $T_{\mathcal{K}}$. Thus we can identify K with the image of $\{1\} \times K$ in $T_{\mathcal{K}}$, so that every $\{u\} \times K$ maps bijectively onto $u K$. Using these bijections, the metric on K defines canonically a pseudo-metric on $T_{\mathcal{K}}$. Again, by the freeness of F_{N} over \mathcal{A}, this pseudo-metric is a metric. The arguments given in the proof of Theorem I.1. of [GL95] extend directly from the case of finite K to compact K, to show:

Theorem 3.2. Given a system of isometries $\mathcal{K}=(K, \mathcal{A})$ on a compact \mathbb{R} tree K, there exists a unique \mathbb{R}-tree $T_{\mathcal{K}}$, provided with a left-action of $F(\mathcal{A})$ by isometries, which satisfies:
(1) $T_{\mathcal{K}}$ contains K (as an isometrically embedded subtree).
(2) If $x \in K$ is in the domain of $a \in \mathcal{A}$, then $a^{-1} x=x a$.
(3) Every orbit of the $F(\mathcal{A})$-action on T_{K} meets K. Indeed, every segment of $T_{\mathcal{K}}$ is contained in a finite union of translates $w_{i} K$, for suitable $w_{i} \in F(\mathcal{A})$.
(4) If T is another \mathbb{R}-tree with an action of $F(\mathcal{A})$ by isometries satisfying (1) and (2), then there exists a unique $F(\mathcal{A})$-equivariant morphism $j: T_{\mathcal{K}} \rightarrow T$ such that $j(x)=x$ for all $x \in K$.

3.3 Systems of isometries induced by an F_{N}-action on an \mathbb{R}-tree

Frequent and important examples of systems of isometries occur in the following context:

Let T be any \mathbb{R}-tree with an $F(\mathcal{A})$-action by isometries. Then any compact subtree $K \subset T$, which is sufficiently large so that it intersects for any $a_{i} \in \mathcal{A}$ the translate $a_{i} K$, defines canonically a system of isometries given by:

$$
\begin{aligned}
a_{i}: \quad a_{i} K \cap K & \rightarrow K \cap a_{i}^{-1} K \\
x & \mapsto x a_{i}=a_{i}^{-1} x
\end{aligned}
$$

Since K embeds into T, Theorem 3.2 gives a map

$$
j: T_{\mathcal{K}} \rightarrow T .
$$

The map j fails in general to be injective. A classical technique for the study of an action on an \mathbb{R}-tree T is to view $T_{\mathcal{K}}$ as an approximation of T, and to consider a sequence of increasing K. As K increases to exhaust T, the convergence of the sequence of $T_{\mathcal{K}}$ to T is well understood. Moreover, if K is a finite subtree of T, then $T_{\mathcal{K}}$ is called geometric and the full strength of the Rips machine can be used to study it

In this article, we propose a new approach to study T, namely we prove that there exists a compact subtree K of \bar{T} such that j is an isometry. This gives the possibility to extend the results proved for geometric trees (i.e. when K is finite) to the case where K is only assumed to be compact.

3.4 Basic lemmas

We now present some basic lemmas about the action on $T_{\mathcal{K}}$, for admissible and non-admissible words in the given system of isometries. We first observe:

Remark 3.3. (a) Let K and K^{\prime} be two closed disjoint subtrees of T. Then there exists a unique segment $\left[x, x^{\prime}\right]$ which joins K to K^{\prime}, i.e. one has $K \cap$ $\left[x, x^{\prime}\right]=\{x\}$ and $K^{\prime} \cap\left[x, x^{\prime}\right]=\left\{x^{\prime}\right\}$. For any further points $y \in K, y^{\prime} \in K^{\prime}$ the segment $\left[y, y^{\prime}\right]$ contains both segments $\left[x, y^{\prime}\right]$ and $\left[x^{\prime}, y\right]$, and both contain $\left[x, x^{\prime}\right]$.
(b) As a shorthand, we use in the situation given above the following notation:

$$
\left[K, K^{\prime}\right]:=\left[x, x^{\prime}\right], \quad\left[y, K^{\prime}\right]:=\left[y, x^{\prime}\right], \quad\left[K, y^{\prime}\right]:=\left[x, y^{\prime}\right]
$$

(c) If $y \in K$, then we set $[y, K]=[K, y]=\{y\}$, i.e. the segment of length 0 with y as initial and terminal point.

The following is a specification of statement (3) of Theorem 3.2:
Lemma 3.4. For any non-admissible word $w \in F(\mathcal{A})$ one has

$$
[K, w K] \subset \bigcup_{i=0}^{|w|} w_{i} K
$$

where w_{i} is the prefix of w with length $\left|w_{i}\right|=i$.
Proof. It suffices to show that for the reduced word $w=z_{1} \ldots z_{n}$ the union $\bigcup_{i=0}^{n} w_{i} K$ is connected. This follows directly from the fact that for all $i=$
$1, \ldots, n$ the union $w_{i-1} K \cup w_{i} K=w_{i-1}\left(K \cup w_{i-1}^{-1} w_{i} K\right)$ is connected, since $w_{i-1}^{-1} w_{i}=z_{i} \in \mathcal{A}^{ \pm 1}$, and all partial isometries from \mathcal{A} are assumed to be non-empty.

Lemma 3.5. Let $\mathcal{K}=(K, \mathcal{A}), T_{\mathcal{K}}$ and $F(\mathcal{A})$ be as above.
(1) For all $w \in F(\mathcal{A})$ one has

$$
\operatorname{dom}(w)=K \cap w K
$$

(2) A word $w \in F(\mathcal{A})$ is admissible if and only if $K \cap w K \neq \emptyset$.
(3) If $x \in \operatorname{dom}(w)$, then

$$
w^{-1} x=x w .
$$

Proof. Let $w \in F(\mathcal{A})$ and $x \in T_{\mathcal{K}}$. If $x \in \operatorname{dom}(w) \subset K$, then the definition of $T_{\mathcal{K}}$ gives $(1, x) \sim(w, x w)$, or equivalently (compare Theorem 3.2)

$$
w^{-1} x=x w .
$$

Therefore x is contained in both, K and $w K$. This shows:

$$
\operatorname{dom}(w) \subset K \cap w K
$$

Conversely, let x be in $K \cap w K$. Then $(1, x) \sim(w, y)$ for some point $y \in K$, and by definition of \sim the point x lies in the domain of w, with $x w=y$. Thus w is admissible, and

$$
K \cap w K \subset \operatorname{dom}(w)
$$

Lemma 3.6. For all $w \in F(\mathcal{A})$ the following holds, where w_{k} denotes the prefix of w of length k :
(1) $\quad \operatorname{dom}(w) \subset \operatorname{dom}\left(w_{k}\right) \quad$ for all $k \leq|w|$.
(2) $\operatorname{dom}(w)=\bigcap_{k=0}^{|w|} w_{k} K$

Proof. Assertion (1) follows directly from the definition of dom (w). Assertion (2) follows from assertion (1) and Lemma 3.5 (1).

Remark 3.7. We would like to emphasize that it is important to keep the $F(\mathcal{A})$-action on $T_{\mathcal{K}}$ apart from the $F(\mathcal{A})$-pseudo-action on K. This is the reason why we define the action on $T_{\mathcal{K}}$ from the left, whereas we define the pseudo-action by partial isometries on K from the right.

This setting is also convenient to keep track of the two actions: a point $x \in K$ lies in the domain of the partial isometry associated to $w \in F(\mathcal{A})$ if and only if x is contained in $w K$ (Lemma $3.5(1))$. More to the point, the sequence of partial isometries given by the word $w=z_{1} \ldots z_{n}$ defines points $x z_{1} \ldots z_{i}$ which lie all inside of K if and only if the sequence of isometries of T given by the prefixes of w moves K within T in such a way that x is contained in each of the translates $z_{1} \ldots z_{i} K$ (see Lemma 3.6 (2)).

Lemma 3.8. (a) For any non-admissible word $w \in F(\mathcal{A})$ and any disjoint closed subtrees K and $w K$, the arc $[K, w K]$ intersects all $w_{i} K$, where w_{i} is a prefix of w.
(b) For any point $Q \in K$ and any (possibly admissible) word $w \in F(\mathcal{A})$, the arc $[Q, w K]$ intersects all $w_{i} K$.

Proof. (a) We prove part (a) by induction on the length of w.
Let u be the longest admissible prefix of w. Thus $u \neq 1$, as all partial isometries in $\mathcal{A}^{ \pm 1}$ are non-empty. Hence we can assume by induction that $u^{-1} w$ is either admissible or satisfies the property stated in part (a).

Let a be the next letter of w after the prefix u. We write w as reduced product $w=u \cdot a \cdot v$. According to Lemma 3.5 (2) one has:
(i) $u K \cap K=\operatorname{dom}(u) \neq \emptyset$
(ii) $u K \cap u a K=u \operatorname{dom}(a) \neq \emptyset$, and
(iii) $K \cap u a K=\emptyset$

By (iii) there is a non-trivial segment $\beta=[K, u a K] \subset T_{\mathcal{K}}$ that intersects K and $u a K$ only in its endpoints. By (i) and (ii) the segment β is contained in the subtree $u K$: there are points $x, y \in K$ such that $\beta=[u x, u y]$. Since $u x$ belongs to $K \cap u K=\operatorname{dom}(u)$, it follows from Lemma 3.6 (2) that $u x$ also belongs to every $u^{\prime} K$, for any prefix u^{\prime} of u.

Moreover, for any prefix v^{\prime} of v one has, by Lemma 3.5 (1) and Lemma 3.6 (1):

$$
u a v^{\prime} K \cap u K=u \operatorname{dom}\left(a v^{\prime}\right) \subset u \operatorname{dom}(a)=u a K \cap u K
$$

From this we deduce that

$$
\begin{aligned}
u a v^{\prime} K \cap[u x, u y] & \subset u a v^{\prime} K \cap[u x, u y] \cap u K \\
& \subset[u x, u y] \cap u a K \cap u K \\
& \subset[u x, u y] \cap u a K
\end{aligned}
$$

Since the segment $\alpha=[K, w K]$ is by Lemma 3.4 contained in the union

$$
\bigcup_{i=0}^{|w|} w_{i} K
$$

it follows from the above derived inclusion $u a v^{\prime} K \cap[u x, u y] \subset\{u y\}$ that α is the union of $\beta=[u x, u y]$ and of the segment $\gamma=[u y, w K]$, with $\beta \cap \gamma=\{u y\}$.

If $a v$ is admissible, then the endpoint of γ is contained in the intersection of all $u a v^{\prime} K$, by Lemma 3.6 (2). If $a v$ is non-admisible, we apply the induction hypothesis to $u^{-1} w=a v$ and obtain that every $a v^{\prime} K$ meets the arc $\gamma^{\prime}=$ $[K, a v K]$. But $u \gamma^{\prime}$ is a subarc of γ, so that the arc $[u x, u y] \cup \gamma$ meets infact all $w_{i} K$, as claimed.
(b) In case that w is non-admissible, there is a largest index i such that $K \cap w_{i} K \neq \emptyset$. We can now apply statement (a) to $w_{i}^{-1} K$ and $w_{i}^{-1} w$ to get the desired conclusion.

If w is admissible, then $\operatorname{dom}(w)=K \cap w K$ (by Lemma 3.5 (1)). Hence the arc $[Q, w K]$ is contained in K, and by Lemma 3.6 (2) its endpoint is contained in any $w_{i} K$.

Lemma 3.9. Let $w, w^{\prime} \in F(\mathcal{A})$ with maximal common prefix $u \in F(\mathcal{A})$. Then for any triplet of points $Q \in K, R \in w K$ and $R^{\prime} \in w^{\prime} K$ the arcs $[Q, R]$ and $\left[Q, R^{\prime}\right]$ intersect in an arc $[Q, P]$ with endpoint $P \in u K$.

Proof. Let $\left[Q, Q_{1}\right]$ the arc which joins K to $u K$. It follows directly from Lemma 3.8 (b) that Q_{1} lies on both, $[Q, R]$ and $\left[Q, R^{\prime}\right]$. Similarly, let $\left[R, R_{1}\right]$ and $\left[R^{\prime}, R_{1}^{\prime}\right]$ be the arcs that join R to $u K$ and R^{\prime} to $u K$ respectively. After applying w^{-1} or $w^{\prime-1}$ we obtain in the same way that R_{1} lies on both, $[Q, R]$ and $\left[R, R^{\prime}\right]$, and that R_{1}^{\prime} lies on both, $\left[Q, R^{\prime}\right]$ and $\left[R, R^{\prime}\right]$. Hence the geodesic triangle in $T_{\mathcal{K}}$ with endpoints Q, R, R^{\prime} contains the geodesic triangle with endpoints Q_{1}, R_{1} and R_{1}^{\prime}, and the center of the latter is equal to the center P of the former. But Q_{1}, R_{1} and R_{1}^{\prime} are all three contained in $u K$, so that P is contained in $u K$.

In the following statement and its proof we use the standard terminology for group elements acting on trees, as recalled in $\S 2.1$ above.
Proposition 3.10. Let $w \in F(\mathcal{A})$ is any cyclically reduced word. If the action of w on $T_{\mathcal{K}}$ is hyperbolic, then the axis of w intersects K. If the action of w on $T_{\mathcal{K}}$ is elliptic, then w has a fixed point in K.

Proof. If w is not admissible, let $[x, w y]$ be the segment that joins K to $w K$: these two translates are disjoint by Lemma 3.5 (2). As w acts as an isometry, $\left[w x, w^{2} y\right]$ is the segment that joins $w K$ to $w^{2} K$. Moreover, since w is assumed to be cyclically reduced, the segment that joins K to $w^{2} K$ intersects $w K$, by Lemma 3.8.

Any two consecutive segments among $[x, w y],[w y, w x],\left[w x, w^{2} y\right]$ and [$\left.w^{2} y, w^{2} x\right]$ have precisely one point in common, by Remark 3.3, and hence their union is a segment. This proves that $w x$ belongs to $\left[x, w^{2} x\right]$, and that x is contained in the axis of w.

If w is admissible, then either there exists $n \geq 0$ such that w^{n} is not admissible, in which case we can fall back on the above treated case, as w and w^{n} have the same axis. Otherwise, for arbitrary large n there exists a point $x \in K$ such that $w^{n} x \in K$, by Lemma 3.5 (2). But K is compact and hence has finite diameter. This implies that the action of w on T is not hyperbolic, and hence it is elliptic: w fixes a point of T. Some such fixed point lies on $[x, w x]$ (namely its center), and hence in the subtree K.

3.5 Admissible laminations

In this subsection we use the concepts of algebraic lamination, symbolic lamination and laminary language as defined in [CHL-I], and the equivalence between these three points of view shown there. The definitions and the notation have been reviewed in $\S 2.3$ above.

For any system of isometries $\mathcal{K}=(K, \mathcal{A})$ denote by $\operatorname{Adm}(\mathcal{K}) \subset F(\mathcal{A})$ the set of admissible words. The set $\operatorname{Adm}(\mathcal{K})$ is stable with respect to passage to subwords, but it is not laminary (see [CHL-I], Definition 5.2): not every admissible word w is necessarily equal, for all $k \in \mathbb{N}$, to the word $v \dagger_{k}$ obtained from some larger $v \in \operatorname{Adm}(\mathcal{K})$ by "chopping off" the two boundary subwords of length k. As does any infinite subset of $F(\mathcal{A})$, the set $\operatorname{Adm}(\mathcal{K})$ generates a laminary language, denoted $\mathcal{L}_{\text {adm }}(\mathcal{K})$, which is the largest laminary language made of admissible words:

$$
\mathcal{L}_{\mathrm{adm}}(\mathcal{K})=\left\{w \in F(\mathcal{A}) \mid \forall k \in \mathbb{N} \exists v \in \operatorname{Adm}(\mathcal{K}): w=v \dagger_{k}\right\}
$$

Clearly one has $\mathcal{L}_{\text {adm }}(\mathcal{K}) \subset \operatorname{Adm}(\mathcal{K})$, but the converse is in general false.
As explained in $\S 2.3$, any laminary language determines an algebraic lamination (i.e. a closed F_{N}-invariant and flip-invarinat subset of $\partial^{2} F_{N}$), and conversely. The algebraic lamination determined by $\mathcal{L}_{\text {adm }}(\mathcal{K})$ is called admissible lamination, and denoted by $L_{\text {adm }}(\mathcal{K})$.

An infinite word $X \in \partial F(\mathcal{A})$ is admissible if all of its prefixes X_{n} are admissible. The set of admissible infinite words is denoted by $L_{\text {adm }}^{1}(\mathcal{K})$. It is a closed subset of $\partial F(\mathcal{A})$ but it is not invariant under the action of $F(\mathcal{A})$.

For any infinite admissible X the domain $\operatorname{dom}(X)$ of X is defined to be the intersection of all domains $\operatorname{dom}\left(X_{n}\right)$. Since K is compact, one has

$$
\operatorname{dom}(X) \neq \emptyset
$$

for all $X \in L_{\text {adm }}^{1}(\mathcal{K})$.
A biinfinite indexed reduced word $Z=\ldots z_{-1} z_{0} z_{1} \ldots$, with $z_{i} \in \mathcal{A}^{ \pm}$, is called admissible, if its two halves $Z^{+}=z_{1} z_{2} \ldots$ and $Z^{-}=z_{0}^{-1} z_{-1}^{-1} \ldots$ are admissible, and if the intersection of the domains of Z^{+}and Z^{-}is non-empty. The domain of Z is defined to be this intersection:

$$
\operatorname{dom}(Z)=\operatorname{dom}\left(Z^{+}\right) \cap \operatorname{dom}\left(Z^{-}\right)
$$

We observe that Z is admissible if and only if all its subwords are admissible.
The set of biinfinite admissible words is called the admissible symbolic lamination of the system of isometries $\mathcal{K}=(K, \mathcal{A})$.

We use now the notion of the dual lamination of an \mathbb{R}-tree with isometric F_{N}-action as introduced in [CHL-II] and reviewed above in $\S 2.4$.
Proposition 3.11. For any system of isometries \mathcal{K} one has

$$
L\left(T_{\mathcal{K}}\right) \subseteq L_{\text {adm }}(\mathcal{K})
$$

Proof. Let $u \in F(\mathcal{A})$ be a non-admissible word, and let $\varepsilon=d(K, u K)$. By Lemma 3.5 (2) one has $\varepsilon>0$. Let w be a cyclically reduced word that contains u as a subword: we write $w=u_{1} \cdot u \cdot u_{2}$ as a reduced product. By Proposition 3.10, the axis of w passes through K. But if x is any point in K, the segment $[x, w x]$ contains the segment that joins the disjoint subtrees $u_{1} K$ and $u_{1} u K$, by Lemma 3.8, and hence the translation length of w, which is realized on its axis, is bigger than ε. This proves that u is not in $\mathcal{L}\left(T_{\mathcal{K}}\right)$ (see §2.4) .

As the laminary language of $\mathcal{L}_{\text {adm }}(\mathcal{K})$ is the largest laminary language made of admissible words, this concludes the proof.

4 The map $\mathcal{Q}_{\mathcal{K}}$ for a system of isometries

In this section we define the map $\mathcal{Q}_{\mathcal{K}}$ and we prove that it is the equivalent of the map \mathcal{Q} from $\S 2.5$, for systems of isometries \mathcal{K}. For this definition we distinguish two cases: If $X \in \partial F(\mathcal{A})$ is not eventually admissible we define $\mathcal{Q}_{\mathcal{K}}(X)$ in $\S 4.1$. If X is eventually admissible, the definition of $\mathcal{Q}_{\mathcal{K}}(X)$ is given in $\S 4.3$, and in this case we need the hypothesis that the system of isometries has independent generators. Both cases are collected together in $\S 4.4$ to obtain a continuous equivariant map $\mathcal{Q}_{\mathcal{K}}$.

4.1 The $\operatorname{map} \mathcal{Q}_{\mathcal{K}}$ for non-eventually admissible words

As in $\S 3$, let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K, and let $T_{\mathcal{K}}$ be the associated \mathbb{R}-tree, provided with an action of the free group $F(\mathcal{A})$ by isometries. Let $X \in \partial F(\mathcal{A})$ be an infinite reduced word and denote as before by X_{i} the prefix of X of length $i \geq 0$.

Definition 4.1. An infinite word $X \in \partial F(\mathcal{A})$ is eventually admissible if there exists an index i such that the suffix $X_{i}^{-1} X$ of X is admissible.

Note that an infinite word $X \in \partial F(\mathcal{A})$ is not eventually admissible if for every index $i \geq 0$ there is an index $j>i$ such that the subword $X_{[i+1, j]}=$ $X_{i}^{-1} X_{j}$ of X between the indices $i+1$ and j is not admissible.

Let $X \in \partial F(\mathcal{A})$ be not eventually admissible, and let $i_{0}>0$ be such that the prefix $X_{i_{0}}$ of X of length i_{0} is not admissible. Then for any $i \geq i_{0}$, the prefix X_{i} is not admissible, and thus, by Lemma 3.5, K and $X_{i} K$ are disjoint. By Lemmas 3.8 and 3.9, for any $j \geq i \geq i_{0}$ the segment $\left[K, X_{i} K\right]$ and $\left[K, X_{j} K\right]$ are nested and have the same initial point $Q \in K$. Let Q_{i} be the terminal point of $\left[K, X_{i} K\right]$:

$$
\left[Q, Q_{i}\right]=\left[K, X_{i} K\right]
$$

The sequence of Q_{i} converges in $\widehat{T}_{\mathcal{K}}$ with respect to both, the metric and the observers' topology.

Definition 4.2. For any $X \in \partial F(\mathcal{A})$ which is not eventually admissible we define:

$$
\mathcal{Q}_{\mathcal{K}}(X)=\lim _{i \rightarrow \infty} Q_{i}
$$

Proposition 4.3. Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K. Let $X \in \partial F(\mathcal{A})$ be not eventually admissible.

Let $w_{n} \in F(\mathcal{A})$ be a sequence of words which converge in $F(\mathcal{A}) \cup \partial F(\mathcal{A})$ to X, and let $P_{n} \in w_{n} K$. Then the sequence of points P_{n} converges in $\widehat{T}_{\mathcal{K}}^{\text {obs }}$ to $\mathcal{Q}_{\mathcal{K}}(X)$, and $\mathcal{Q}_{\mathcal{K}}(X)$ belongs to $\widehat{T}_{\mathcal{K}}^{\text {obs }} \backslash T_{\mathcal{K}}$.
Proof. We use the above notations. For every index $i \geq 0$, let $\left[Q_{i}, R_{i}\right]$ be the intersection of $\left[Q, \mathcal{Q}_{\mathcal{K}}(X)\right]$ with $X_{i} K$. Hence for $i \geq i_{0}$ the point Q_{i} is, as before, the terminal point of the segment $\left[K, X_{i} K\right]$. The segments $\left[Q, Q_{i}\right]$ are increasingly nested, the segments $\left[R_{i}, \mathcal{Q}_{\mathcal{K}}(X)\right]$ are decreasingly nested, Q_{i} is a point of $\left[Q, R_{i}\right]$ and R_{i} is a point of $\left[Q_{i}, \mathcal{Q}_{\mathcal{K}}(X)\right]$.

As X is not eventually admissible, for every index $i \geq 0$ there is an index $j>i$ such that the subword $X_{[i+1, j]}$ of X between the indices $i+1$ and j is not admissible. By Lemma 3.5 the segments $\left[Q_{i}, R_{i}\right]$ and $\left[Q_{j}, R_{j}\right]$ are disjoint.

For any n, let $i(n)$ be the length of the maximal common prefix of w_{n} and X. By Lemma 3.9, the maximal common segment $\left[Q, P_{n}^{\prime}\right]$ of $\left[Q, P_{n}\right]$ and $\left[Q, \mathcal{Q}_{\mathcal{K}}(X)\right]$ has its terminal point P_{n}^{\prime} in $\left[Q_{i(n)}, R_{i(n)}\right]$. As X is not eventually admissible, for m big enough the subword $X_{[i(n)+1, i(m)]}$ of X between the indices $i(n)+1$ and $i(m)$ is not admissible and the segments $\left[Q_{i(n)}, R_{i(n)}\right]$ and $\left[Q_{i(m)}, R_{i(m)}\right]$ are disjoint. Therefore the maximal common segment of $\left[Q, P_{n}\right]$ and $\left[Q, P_{m}\right]$ is also the maximal common segment of $\left[Q, P_{n}\right]$ and $\left[Q, \mathcal{Q}_{\mathcal{K}}(X)\right]$, and hence it is equal to $\left[Q, P_{n}^{\prime}\right]$.

The points P_{n}^{\prime} converge to $\mathcal{Q}_{\mathcal{K}}(X)$, as any sequence of points in $\left[Q_{i(n)}, R_{i(n)}\right]$ does, and this proves that

$$
\liminf _{Q} P_{n}=\mathcal{Q}_{\mathcal{K}}(X)
$$

By Lemma 2.2 any subsequence of P_{n}, which converges in $\widehat{T}_{\mathcal{K}}{ }^{\text {obs }}$, necessarily converges to $\mathcal{Q}_{\mathcal{K}}(X)$. Hence by compactness of $\widehat{T}_{\mathcal{K}}^{\text {obs }}$, the sequence of all of the points P_{n} converges to $\mathcal{Q}_{\mathcal{K}}(X)$ with respect to the observers' topology.

If P is a point in $u K$ for some u in F_{N}, then the maximal common segment $\left[Q, P^{\prime}\right]$ of $[Q, P]$ and $\left[Q, \mathcal{Q}_{\mathcal{K}}(X)\right]$ has its endpoint P^{\prime} in $\left[Q_{i}, R_{i}\right]$, where X_{i} is the maximal common prefix of u and X. Thus $P^{\prime} \neq \mathcal{Q}_{\mathcal{K}}(X)$, and hence $\mathcal{Q}_{\mathcal{K}}(X)$ is not contained in $T_{\mathcal{K}}$.

4.2 Independent generators

The following concept is due to Gaboriau [Gab97], in the case of finite K, and we extend it here to the compact case.

Definition 4.4. Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K. Then \mathcal{K} is said to have independant generators if, for any infinite admissible word $X \in \partial F(\mathcal{A})$, the non-empty domain of X consists of exactly one point.

The same arguments as in [Gab97] show the following equivalences. However, they will not be used in the sequel.

Remark 4.5. Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K. The following are equivalent:
(1) \mathcal{K} has independant generators.
(2) Every non-trivial admissible word fixes at most one point of K.
(3) The action of $F(\mathcal{A})$ on the associated tree $T_{\mathcal{K}}$ has trivial arc stabilizers.

Note that Gaboriau [Gab97] used originally property (2) as definition, but in our context this seems less natural.

4.3 The $\operatorname{map} \mathcal{Q}_{\mathcal{K}}$ for eventually admissible words

Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K. Consider the set $L_{\text {adm }}^{1}(\mathcal{K}) \subset \partial F(\mathcal{A})$ of infinite admissible words as defined in $\S 3.5$.

Definition 4.6. Let \mathcal{K} be a system of isometries which has independent generators. Then for any infinite admissible word $X \in L_{\text {adm }}^{1}(\mathcal{K})$ there exists exactly one element of K in the domain of X, which will be called $\mathcal{Q}_{\mathcal{K}}(X)$.

Lemma 4.7. Identify K with the image of $\{1\} \times K$ in $\widehat{T}_{\mathcal{K}}$ as in $\S 3$, and let $X \in L_{\text {adm }}^{1}(\mathcal{K})$.
(1) Denoting as before by X_{i} the prefix of X of length $i \geq 1$, we obtain:

$$
\left\{\mathcal{Q}_{\mathcal{K}}(X)\right\}=\bigcap_{i \geq 1} X_{i} K
$$

(2) For every $i \geq 1$ we have:

$$
\mathcal{Q}_{\mathcal{K}}\left(X_{i}^{-1} X\right)=X_{i}^{-1} \mathcal{Q}_{\mathcal{K}}(X)
$$

Proof. Assertion (1) follows directly from Lemma 3.6 (2) and the above definition of the map $\mathcal{Q}_{\mathcal{K}}$. Assertion (2) follows directly from (1).

Recall from Definition 4.1 that an infinite words $X \in \partial F(\mathcal{A})$ is eventually admissible if it has a prefix X_{i} such that the infinite remainder $X_{i}^{\prime}=X_{i}^{-1} X$ is admissible. We observe that for all integers $j \geq i$ the word $X_{i}^{-1} X_{j}$ is admissible, so that Lemma 4.7 (2) gives:

$$
X_{i} \mathcal{Q}_{\mathcal{K}}\left(X_{i}^{\prime}\right)=X_{i} \mathcal{Q}_{\mathcal{K}}\left(X_{i}^{-1} X_{j} X_{j}^{\prime}\right)=X_{i}\left(X_{i}^{-1} X_{j}\right) \mathcal{Q}_{\mathcal{K}}\left(X_{j}^{\prime}\right)=X_{j} \mathcal{Q}_{\mathcal{K}}\left(X_{j}^{\prime}\right)
$$

Hence the following definition does not depend on the choice of the index i.
Definition 4.8. For any eventually admissible word $X \in \partial F(\mathcal{A})$ we define

$$
\mathcal{Q}_{\mathcal{K}}(X)=X_{i} \mathcal{Q}_{\mathcal{K}}\left(X_{i}^{\prime}\right)
$$

We note that for any element $u \in F(\mathcal{A})$ and any eventually admissible word $X \in \partial F(\mathcal{A})$ one has:

$$
\mathcal{Q}_{\mathcal{K}}(u X)=u \mathcal{Q}_{\mathcal{K}}(X)
$$

Proposition 4.9. Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K with indenpendent generators. Let $X \in \partial F(\mathcal{A})$ be an eventually admissible word.

For any element P in $T_{\mathcal{K}}$, and any sequence w_{n} of elements of F_{N} that converge to X, the sequence of points $w_{n} P$ converges to $\mathcal{Q}_{\mathcal{K}}(X)$, with respect to the observers' topology on $T_{\mathcal{K}}$.

Proof. Up to multiplying by the inverse of a prefix we can assume that X is admissible and $\mathcal{Q}_{\mathcal{K}}(X) \in K$. By compactness of $\widehat{T}_{\mathcal{K}}^{\text {obs }}$ we can assume that $w_{n} P$ converges to some point Q_{∞}. By contradiction assume that $Q_{\infty} \neq$ $\mathcal{Q}_{\mathcal{K}}(X)$, and let M be a point in the open interval $\left(Q_{\infty}, \mathcal{Q}_{\mathcal{K}}(X)\right)$. From Lemma 2.2 we deduce

$$
Q_{\infty}=\liminf _{\mathcal{Q}_{\mathcal{K}}(X)} w_{n} P
$$

Thus, for n and m big enough, the maximal common segment $\left[\mathcal{Q}_{\mathcal{K}}(X), P_{m, n}\right.$] of $\left[\mathcal{Q}_{\mathcal{K}}(X), w_{n} P\right]$ and $\left[\mathcal{Q}_{\mathcal{K}}(X), w_{m} P\right]$ contains M. As w_{n} converges to X, for n fixed and for m sufficiently large, the maximal common prefix of w_{n} and w_{m} is a prefix X_{i} of X. By Lemma 3.9, $P_{m, n}$ is contained in $X_{i} K$. By Lemma 4.7, $\mathcal{Q}_{\mathcal{K}}(X)$ is also contained $X_{i} K$, and hence, so is M. As m and n grow larger, the index i goes to infinity (since $w_{n} \rightarrow X$), which proves that M is contained in the intersection of all the $X_{i} K$. Since we assumed $M \neq \mathcal{Q}_{\mathcal{K}}(X)$, this contradicts the independent generators' hypothesis.

4.4 Continuity of the map $\mathcal{Q}_{\mathcal{K}}$

As any element of $\partial F(\mathcal{A})$ is either eventually admissible or not, from Definitions 4.2 and 4.8 we collect a map $\mathcal{Q}_{\mathcal{K}}$.

Corollary 4.10. Let $\mathcal{K}=(K, \mathcal{A})$ be a system of isometries on a compact \mathbb{R}-tree K with independent generators. The $\operatorname{map} \mathcal{Q}_{\mathcal{K}}: \partial F_{N} \rightarrow \widehat{T}_{\mathcal{K}}^{\text {obs }}$ is equivariant and continuous.

For any point P in $T_{\mathcal{K}}$, the map $\mathcal{Q}_{\mathcal{K}}$ defines the continuous extension to $F_{N} \cup \partial F_{N}$ of the map

$$
\begin{aligned}
Q_{P}: F_{N} & \rightarrow \widehat{T}_{\mathcal{K}}^{o b s} \\
w & \mapsto w P
\end{aligned}
$$

Proof. Equivariance and continuity of $\mathcal{Q}_{\mathcal{K}}$ follow from the second part of the Proposition, which is proved in Propositions 4.3 and 4.9, blended with a small dose of Bourbaki extract.

5 Proof of the Main Theorem

Throughout this section let T be an \mathbb{R}-tree provided with a minimal, very small action of F_{N} by isometries which has dense orbits. Hence we obtain from Theorem 2.6 an equivariant and continuous map \mathcal{Q}, which we denote here by $\mathcal{Q}_{T}: \partial F_{N} \rightarrow \widehat{T}^{\text {obs }}$.

Let \mathcal{A} be a basis of of F_{N}, and let K be a compact subtree of \bar{T}. Let $\mathcal{K}=(K, \mathcal{A})$ be the induced system of isometries $a_{i}: K \cap a_{i} K \rightarrow a_{i}^{-1} K \cap$ $K, x \mapsto x a_{i}=a_{i}^{-1} x$, as discussed in $\S 3.3$. We assume that K is chosen large enough so that for each $a_{i} \in \mathcal{A}$ the intersection $K \cap a_{i} K$ and hence the partial isometry $a_{i} \in \mathcal{A}$ is non-empty. As a consequence (see $\S 3$), there exists an \mathbb{R}-tree $T_{\mathcal{K}}$ with isometric action by F_{N}, and by Theorem 3.2 there exists a unique continuous F_{N}-equivariant map

$$
j: T_{\mathcal{K}} \rightarrow \bar{T}
$$

which induces the identity map $T_{K} \supset K \xrightarrow{j} K \subset \bar{T}$.
Lemma 5.1. The system of isometries $\mathcal{K}=(K, \mathcal{A})$ has independent generators.

Proof. Let Q be a point in the domain of an infinite admissible word X, compare $\S 3.5$. Then for any prefix X_{n} of X, the point $Q X_{n}=X_{n}{ }^{-1} Q$ is also contained in K (recall that we write the action of $F(\mathcal{A})$ on $T_{\mathcal{K}}$ on the left, and the pseudo-action of partial isometries of \mathcal{K} on the right).

By Theorem 3.2, j restricts to an isometry between $K \subset T_{\mathcal{K}}$ and $K \subset T$. Therefore, for any $n \geq 0, X_{n}{ }^{-1} j(Q)$ lies in $K \subset T$. By Lemma 2.7, we get $\mathcal{Q}_{T}(X)=j(Q)$.

This proves that the domain of X consists of at most the point $j^{-1}\left(\mathcal{Q}_{T}(X)\right)$. Hence \mathcal{K} has independent generators.

As a consequence of Lemma 5.1, we can apply Corollary 4.10 to obtain an equivariant and continuous map $\mathcal{Q}_{\mathcal{K}}: \partial F_{N} \rightarrow \widehat{T}_{\mathcal{K}}^{\text {obs }}$.

Lemma 5.2. For any $X \in \partial F_{N}$ such that $\mathcal{Q}_{\mathcal{K}}(X)$ is contained in $T_{\mathcal{K}}$, one has

$$
j\left(\mathcal{Q}_{\mathcal{K}}(X)\right)=\mathcal{Q}_{T}(X)
$$

Proof. By Proposition 4.3, X is eventually admissible and by equivariance of $\mathcal{Q}_{\mathcal{K}}, \mathcal{Q}_{T}$ and j, we can assume that X is admissible and that $\mathcal{Q}_{\mathcal{K}}(X)$ is in K. By Definition 4.6, for any $i \geq 0, \mathcal{Q}_{\mathcal{K}}(X) \cdot X_{i}=X_{i}^{-1} \mathcal{Q}_{\mathcal{K}}(X)$ lies in K.

By Theorem 3.2, j restricts to an isometry between $K \subset T_{\mathcal{K}}$ and $K \subset T$. Therefore for any $i \geq 0$, the point $X_{i}{ }^{-1} j\left(\mathcal{Q}_{\mathcal{K}}(X)\right)$ lies in $K \subset T$. Thus we can apply Lemma 2.7 to get $\mathcal{Q}_{T}(X)=j\left(\mathcal{Q}_{\mathcal{K}}(X)\right)$.

Lemma 5.3. The admissible lamination of \mathcal{K} is contained in the dual lamination of T :

$$
L_{a d m}(\mathcal{K}) \subset L(T)
$$

Proof. The admissible lamination $L_{\text {adm }}(\mathcal{K})$ (see $\S 3.5$) is defined by all biinfinite words Z in $\mathcal{A}^{ \pm}$such the two half-words Z^{+}and Z^{-}have non-empty domain, and the two domains intersect non-trivially. Thus $\mathcal{Q}_{\mathcal{K}}\left(Z^{+}\right)=\mathcal{Q}_{\mathcal{K}}\left(Z^{-}\right)$ is a point in K. Thus by Lemma 5.2 one has $\mathcal{Q}_{T}\left(Z^{+}\right)=\mathcal{Q}_{T}\left(Z^{-}\right)$. The latter implies (and is equivalent to) that Z belongs to $L(T)$.

We sumarize the above discussion in the following commutative diagram:

All the maps in the diagram are equivariant and continuous, where the topology considered on the bottom line is the metric topology.

We can now prove the main result of this paper. Recall from $\S 2.7$ that for any basis \mathcal{A} of F_{N} and T as above the set $\Omega_{\mathcal{A}} \subset \bar{T}$ denotes the core of T with respect to \mathcal{A}.

Theorem 5.4. Let T be an \mathbb{R}-tree with very small minimal F_{N}-action by isometries, and with dense orbits. Let \mathcal{A} be a basis of F_{N}, and let $K \subset \bar{T}$ be a compact subtree which satisfies $K \cap a_{i} K \neq \emptyset$ for all $a_{i} \in \mathcal{A}$. Then the following are equivalent:
(1) The restriction of the canonical map $j: T_{\mathcal{K}} \rightarrow \bar{T}$ to the minimal $F_{N^{-}}$ invariant subtree $T_{\mathcal{K}}^{\text {min }}$ of $T_{\mathcal{K}}$ defines an isometry $j^{\text {min }}: T_{\mathcal{K}}^{\text {min }} \rightarrow T$.
(2) $L(T) \subset L_{a d m}(\mathcal{K}) \quad\left(\Longleftrightarrow L(T)=L_{a d m}(\mathcal{K})\right.$, by Lemma 5.3)
(3) $\Omega_{\mathcal{A}} \subset K$

Proof. $\underline{(1) \Longrightarrow(2): ~ B y ~ t h e ~ a s s u m p t i o n ~ o n ~} j$ the minimal subtree $T_{\mathcal{K}}^{\text {min }} \subset T_{\mathcal{K}}$ is isometric to T. Hence the dual laminations satisfy $L(T)=L\left(T_{\mathcal{K}}^{\text {min }}\right)$, and by Remark 2.5 one has $L\left(T_{\mathcal{K}}^{\text {min }}\right)=L\left(T_{\mathcal{K}}\right)$. We now apply Proposition 3.11 to get $L\left(T_{\mathcal{K}}\right) \subset L_{\mathrm{adm}}(\mathcal{K})$.
$(2) \Longrightarrow(3)$: By Definition 2.11, a point $Q \in T$ belongs to the limit set $\Omega_{\mathcal{A}}$ if and only if there is a pair of infinite words $(X, Y) \in L^{2}(T) \subset \partial^{2} F(\mathcal{A})$, with initial letters $X_{1} \neq Y_{1}$, which satisfy $Q_{T}(X)=Q_{T}(Y)=Q$. By assumption, $L(T)$ is a subset of $L_{\mathrm{adm}}(\mathcal{K})$, so that the reduced words X, Y and $X^{-1} \cdot Y$ are admissible for the system of isometries \mathcal{K}. By Definition 4.6, $\left\{\mathcal{Q}_{\mathcal{K}}(X)\right\}$ is the domain of X and Y, and thus is contained in K. We deduce from Lemma 5.2 that $j\left(\mathcal{Q}_{\mathcal{K}}(X)\right)=\mathcal{Q}_{T}(X)=Q$, and Q lies in K.
$(3) \Longrightarrow(2)$: Let Z be a biinfinite indexed reduced word in the symbolic lamination $L_{\mathcal{A}}(T)$ defined by the dual lamination $L(T)$ of T (see §2.3). That is to say, $Z=\left(Z^{-}\right)^{-1} \cdot Z^{+}$, written as a reduced product, and $\mathcal{Q}_{T}\left(Z^{-}\right)=$ $\mathcal{Q}_{T}\left(Z^{+}\right)$is a point $Q \in \Omega_{\mathcal{A}}$. For any $n \in \mathbb{Z}$, we consider the shift $\sigma^{n}(Z)$ of Z as in Remark 2.4. If u is the prefix of Z^{+}of length n (or, if $n<0$, the prefix of Z^{-}of length $-n$), then $\sigma^{n}(Z)=\left(Z^{-}\right)^{-1} u \cdot u^{-1} Z^{+}$and $\mathcal{Q}_{T}\left(u^{-1} Z^{+}\right)=$ $\mathcal{Q}_{T}\left(u^{-1} Z^{-}\right)=u^{-1} Q$, and this is again a point of $\Omega_{\mathcal{A}}$ and thus contained in K, by hypothesis. Therefore both, Z^{+}and Z^{-}are admissible, and $\operatorname{dom}\left(Z^{+}\right)=$ $\operatorname{dom}\left(Z^{-}\right)=\{Q\}$. Thus Z is an admissible biinfinite word of the system of isometries $\mathcal{K}=(K, \mathcal{A})$, which shows $L(T) \subset L_{\text {adm }}(\mathcal{K})$.
$(2) \Longrightarrow(1)$: Since the dual lamination $L(T)$ is a subset of the admissible lamination $L_{\text {adm }}(\mathcal{K})$, for any pair of distinct infinite words $X, Y \in \partial F(\mathcal{A})$ the equality $\mathcal{Q}_{T}(X)=\mathcal{Q}_{T}(Y)$ implies that $X^{-1} Y$ is admissible, and from Definition 4.6 we deduce $\mathcal{Q}_{\mathcal{K}}(X)=\mathcal{Q}_{\mathcal{K}}(Y)$. Thus the map $\mathcal{Q}_{\mathcal{K}}: \partial F_{N} \rightarrow \widehat{T}_{\mathcal{K}}^{\text {obs }}$ factors over the quotient map $\pi: \partial F_{N} \rightarrow \partial F_{N} / L^{2}(T)$ (see §2.6) to define an equivariant map $s: \partial F_{N} / L^{2}(T) \rightarrow \widehat{T}_{\mathcal{K}}^{\text {obs }}$.

As the topology on $\partial F_{N} / L^{2}(T)$ is the quotient topology (see $\left.\S 2.6\right)$ and as $\mathcal{Q}_{\mathcal{K}}$ is continuous (see Corollary 4.10), the map s is continuous. Since $\varphi: \partial F_{N} / L^{2}(T) \rightarrow \widehat{T}^{\text {obs }}$ is a homeomorphism (see Theorem 2.10), we deduce that the image of s is an F_{N}-invariant connected subtree of $\widehat{T}_{\mathcal{K}}^{\text {obs }}$. Therefore the image of s contains the minimal subtree $T_{\mathcal{K}}^{\min }$ of $T_{\mathcal{K}}$.

As a consequence, for any point P in $T_{\mathcal{K}}^{\min }$ there exists an element $X \in$ ∂F_{N} such that $s(\pi(X))=\mathcal{Q}_{\mathcal{K}}(X)=P$. From Lemma 5.2 we obtain that
$j^{\min }(P)=j\left(\mathcal{Q}_{\mathcal{K}}(X)\right)=\mathcal{Q}_{T}(X)$. By definition of the homeomorphism φ, one has $\varphi^{-1}\left(j^{\min }(P)\right)=\pi(X)$ and $s\left(\varphi^{-1}\left(j^{\min }(P)\right)\right)=P$. This proves that $j^{\min }$ is injective.

Since j is continuous with respect to the metric topology, since j maps K isometrically, and since $T_{\mathcal{K}}=F_{N} K$, this implies that j^{min} is an isometry.

Recall from $\S 2.7$ that the heart $K_{\mathcal{A}} \subset \bar{T}$ denotes the convex hull of the limit set $\Omega_{\mathcal{A}}$ of T with respect to the basis \mathcal{A}. We denote by $\mathcal{K}_{\mathcal{A}}=\left(K_{\mathcal{A}}, \mathcal{A}\right)$ the associated system of partial isometries.

We remark that, in the above theorem, the map $\mathcal{Q}_{\mathcal{K}}$ may fail to be surjective onto $T_{\mathcal{K}}$ if K is too large. And hence, j may fail to be injective even if the limit set $\Omega_{\mathcal{A}}$ is contained in K. This is the reason why we considered the minimal subtree $T_{\mathcal{K}}^{\text {min }}$ of $T_{\mathcal{K}}$. However if K is exactly equal to the heart $K_{\mathcal{A}}$ we get the following corollary.

Corollary 5.5. Let T be an \mathbb{R}-tree with very small minimal $F_{N^{-}}$action by isometries, and with dense orbits. Let \mathcal{A} be a basis of F_{N}, with heart $K_{\mathcal{A}}$. The map $j: T_{\mathcal{K}_{\mathcal{A}}} \rightarrow \bar{T}$ is isometric and its image contains T.

Proof. By definition, for $K=K_{\mathcal{A}}$ the three equivalent conditions of Theorem 5.4 are satisfied.

In the proof of implication $(2) \Rightarrow(3)$ of Theorem 5.4 , we proved that $\Omega_{\mathcal{A}}$ is in the image of $\mathcal{Q}_{\mathcal{K}}$. In the proof of implication $(2) \Rightarrow(1)$, we proved that the image of $\mathcal{Q}_{\mathcal{K}}$ is connected and that j is injective on the image of $\mathcal{Q}_{\mathcal{K}}$.

Therefore $K_{\mathcal{A}}$ is in the image of $\mathcal{Q}_{\mathcal{K}}$, and the map $j: T_{\mathcal{K}_{\mathcal{A}}} \rightarrow \bar{T}$ is injective. From the last paragraph of the proof of Theorem 5.4 we deduce that j is isometric. Finally, from the minimality of T we deduce that the image of j contains T.

We will now give an application of our main result to a special class of group actions on \mathbb{R}-trees which play an important role in what is often called the "Rips machine": A minimal \mathbb{R}-tree T is called geometric if there exists a finite subtree $K \subset T$ and a basis \mathcal{A} of F_{N} such that the map $j: T_{\mathcal{K}} \rightarrow T$ is an isometry. It is proved in [GL95] that in this case for any basis \mathcal{A} one can find such a finite subtree K. For more information about geometric trees regarding the context of this paper see [GL95].

Recall from $\S 2.7$ that the heart $K_{\mathcal{A}} \subset T$ denotes the convex hull of the limit set $\Omega_{\mathcal{A}}$ of T with respect to the basis \mathcal{A}. We denote by $\mathcal{K}_{\mathcal{A}}=\left(K_{\mathcal{A}}, \mathcal{A}\right)$ the associated system of partial isometries.

Corollary 5.6. A very small minimal \mathbb{R}-tree T with dense orbits is geometric if and only if, for any basis \mathcal{A} of $F_{N}, K_{\mathcal{A}}$ is a finite subtree of T.
Proof. If T is geometric, then by definition there is a finite tree $K \subset T$ such that the map $j: T_{K} \rightarrow T$ is an isometry. Thus condition (1) of Theorem 5.4 is satisfied, and hence condition (3) implies that $K_{\mathcal{A}}$ is a subtree of K, and thus it is finite.

Conversely, if $K_{\mathcal{A}}$ lies in T, the image of the map j defined on $T_{\mathcal{K}_{\mathcal{A}}}$ is contained in $T \subset \bar{T}$, giving a map $j: T_{\mathcal{K}_{\mathcal{A}}} \rightarrow T$ which by Corollary 5.5 is isometric. By minimality of T, the map j is onto.

References

[BF95] M. Bestvina, and M. Feighn. Stable actions of groups on real trees. Invent. Math., 121(2):287-321, 1995.
[BFH00] M. Bestvina, M. Feighn, and M. Handel. The Tits alternative for $\operatorname{Out}\left(F_{n}\right)$. I. Dynamics of exponentially-growing automorphisms. Ann. of Math. 151:517-623, 2000.
[BH04] J. Buzzi, and P. Hubert Piecewise monotone maps without periodic points: rigidity, measures and complexity. Ergodic Theory Dynam. Systems 24:383-405, 2004.
[Bow99] B. Bowditch. Treelike structures arising from continua and convergence groups, Memoirs Amer. Math. Soc. 662, 1999.
[CHL05] T. Coulbois, A. Hilion, and M. Lustig. Non-uniquely ergodic $\mathbb{R}-$ trees are topologically determined by their algebraic lamination. Preprint, 2005. (To appear in Illinois J. Math.)
[CHL-I] T. Coulbois, A. Hilion, and M. Lustig. \mathbb{R}-trees and laminations for free groups I: Algebraic laminations. ArXiv:math/0609416.
[CHL-II] T. Coulbois, A. Hilion, and M. Lustig. \mathbb{R}-trees and laminations for free groups II: The lamination associated to an \mathbb{R}-tree. ArXiv:math/0702281.
[CL95] M. Cohen, and M. Lustig. Very small group actions on R-trees and Dehn twist automorphisms. Topology, 34:575-617, 1995.
[CM87] M. Culler, and J. Morgan. Group actions on R-trees. Proc. London Math. Soc. 55:571-604, 1987.
[Gab97] Damien Gaboriau. Générateurs indépendants pour les systèmes d'isométries de dimension un. Ann. Inst. Fourier (Grenoble), 47(1):101-122, 1997.
[GL95] D. Gaboriau and G. Levitt. The rank of actions on R-trees. Ann. Sci. École Norm. Sup. 28, 549-570, 1995.
[GLP94] D. Gaboriau, G. Levitt, and F. Paulin. Pseudogroups of isometries of \mathbf{R} and Rips' theorem on free actions on \mathbf{R}-trees. Israel J. Math., 87(1-3):403-428, 1994.
[HM06] M. Handel, and L. Mosher. Axes in Outer Space. ArXiv:math/0605355
[KL07] I. Kapovich, and M. Lustig. Intersection form, laminations and currents on free groups ArXiv:math/07114337
[LL03] G. Levitt and M. Lustig. Irreducible automorphisms of F_{n} have north-south dynamics on compactified outer space. J. Inst. Math. Jussieu 2, 59-72, 2003.
[LL04] G. Levitt and M. Lustig. Automorphisms of free groups have asymptotically periodic dynamics. ArXiv:math/0407437.
[LP97] Gilbert Levitt and Frédéric Paulin. Geometric group actions on trees. Amer. J. Math., 119(1):83-102, 1997.
[MS91] John W. Morgan and Peter B. Shalen. Free actions of surface groups on R-trees. Topology, 30(2):143-154, 1991.
[Sela97] Z. Sela. Acylindrical accessibility for groups. Invent. Math., 129(3):527-565, 1997.
[Sko96] R. Skora. Splittings of surfaces. J. Amer. Math. Soc. 9, 605-616, 1996.

