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R-trees, dual laminations, and 
ompa
tsystems of partial isometriesThierry Coulbois, Arnaud Hilion and, Martin LustigDe
ember 18, 2007Abstra
tLet FN be a free group of �nite rank N ≥ 2, and let T be an
R-tree with a very small, minimal a
tion of FN with dense orbits.For any basis A of FN there exists a heart KA ⊂ T (= the metri

ompletion of T ) whi
h is a 
ompa
t subtree that has the propertythat the dynami
al system of partial isometries ai : KA ∩ aiKA →
a
−1
i KA ∩ KA, for ea
h ai ∈ A, de�nes a tree T(KA,A) whi
h 
ontainsan isometri
 
opy of T as minimal subtree.Contents1 Introdu
tion 22 FN-a
tions on R-trees and their heart 52.1 Ba
kground on R-trees . . . . . . . . . . . . . . . . . . . . . . 52.2 The observers' topology on T . . . . . . . . . . . . . . . . . . 62.3 Algebrai
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iated to a system of isometries . . . . . . . . 131



3.3 Systems of isometries indu
ed by an FN -a
tion on an R-tree . 143.4 Basi
 lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.5 Admissible laminations . . . . . . . . . . . . . . . . . . . . . . 194 The map QK for a system of isometries 214.1 The map QK for non-eventually admissible words . . . . . . . 214.2 Independent generators . . . . . . . . . . . . . . . . . . . . . . 224.3 The map QK for eventually admissible words . . . . . . . . . . 234.4 Continuity of the map QK . . . . . . . . . . . . . . . . . . . . 255 Proof of the Main Theorem 251 Introdu
tionA point on Thurston's boundary of Tei
hmüller spa
e T (Σ) for a surfa
e Σ
an be understood alternatively as a measured lamination (L, µ) on Σ, up tores
aling of the transverse measure, or as small a
tion of π1Σ on some R-tree
T , up to π1Σ-equivariant homothety. The 
orresponden
e between these twoobje
ts, whi
h are naturally dual to ea
h other, is given by the fa
t thatpoints of T are in 1-1 
orresponden
e (or �one-to-�nite� 
orresponden
e, forthe bran
hpoints of T ) with the leaves of L̃, i.e. the lift of L to the universal
overing Σ̃. The metri
 on T is determined by µ, and vi
e versa.Culler-Vogtmann's Outer spa
e CVN is the analogue of T (Σ), withOut(FN) repla
ing the mapping 
lass group. A point of the Thurston bound-ary ∂CVN is given by a homothety 
lass [T ] of very small isometri
 a
tionsof the free group FN on an R-tree T . In general, T will not be dual toa measured lamination on a surfa
e. However, in [CHL-I, CHL-II℄ an �ab-stra
t� dual lamination L(T ) has been de�ned for any su
h T , whi
h is verymu
h the analogue of L in the surfa
e 
ase. L(T ) is an algebrai
 lamina-tion: it lives in the double Gromov boundary of FN , and the 
hoi
e of abasis A transforms L(T ) into a symboli
 dynami
al system whi
h is a 
las-si
al subshift in A ∪ A−1. The dual lamination L(T ), and variations of it,have already been proved to be a useful invariant of the tree T , 
ompare[BFH00, CHL05, HM06, KL07℄.In the 
ase of measured laminations on a surfa
e, the standard tool whi
hallows a transition from geometry to 
ombinatorial dynami
s, is given by in-terval ex
hange transformations. The 
ombinatori
s whi
h o

ur here are2




lassi
ally given through 
oding geodesi
s on a surfa
e by sequen
es of sym-bols, where the symbols 
orrespond to subintervals, and the sequen
es aregiven by the �rst return map. Conversely, the surfa
e and the lamination (orrather �foliation�, in this 
ase), 
an be re
overed from the interval ex
hangetransformation by suspension, i.e. by realizing the map whi
h ex
hanges thesubintervals by a (foliated) mapping torus.Taking the basi
 
on
ept of this 
lassi
al method one step further and
onsidering dire
tly the dual tree T rather than the lamination given bythe 
ombinatorial data, one 
onsiders for any [T ] ∈ ∂CVN a �nite metri
subtree K ⊂ T , and for some basis A of FN the indu
ed �nite system ofpartial isometries between subtrees of K: Ea
h basis element ai ∈ A de�nesa partial isomerty ai : K∩aiK → a−1
i K∩K, and these partial isometries playthe role of the interval ex
hange transformation. Any su
h pair K = (K,A)gives 
anoni
ally rise to a tree TK together with an FN -equivariant map

j : TK → T . The tree TK is the �unfolding spa
e� of the system K. R-trees
T where for some su
h �nite K the map j is an isometry have been studiedintensely, and they play an important role in the study of ∂CVN , see [GL95℄.Indeed, if K is an interval and if it is simultaneously equal to the unionof domains and the union of ranges of the isometries (and if these unions aredisjoint unions ex
ept at the boundary points), then K de�nes a
tually aninterval ex
hange transformation. If one only assumes that K is �nite, thiswill in general not be true: one only obtains a system of interval translations(see [BH04℄). On the level of R-trees one obtains in the �rst 
ase surfa
etree a
tions, and in the se
ond 
ase a
tions that alternatively termed Levitt,thin or exoti
. The union of these two 
lasses are pre
isely the a
tions 
alledgeometri
 in [GL95℄.However, both of these types of a
tions seem to be more the ex
eptionthan the rule: Given any point [T ] ∈ ∂CVN , there is in general no reason why
T should be determined by a system of partial isometries based on a �nitetree K ⊂ T . A possible way to deal with su
h T is to 
onsider in
reasingsequen
es of �nite subtrees and thus to approximate T by the sequen
e ofensuing geometri
 trees TK , in the spirit of the �Rips ma
hine�, whi
h isan important tool to analyze arbitrary group a
tion on R-trees. The goalof this paper is to propose a more dire
t alternative to this approximationte
hnology:We repla
e the 
ondition on the subtree K ⊂ T to be �nite by the weaker
ondition that K be 
ompa
t. It turns out that almost all of the 
lassi
al3



ma
hinery developed for the approximation trees TK for �nite K 
arries overdire
tly to the 
ase of 
ompa
t K. However, the appli
ation of su
h TK
on
ern a mu
h larger 
lass of trees: In parti
ular, every minimal very small
T with dense orbits 
an be des
ribed dire
tly, i.e. 
ir
umventing 
ompletelythe above approximation, as minimal subtree Tmin

K of the tree TK, for aproperly 
hosen 
ompa
t subtree K of the metri
 
ompletion T of T .Theorem 1.1. Let T be an R-tree provided with a very small, minimal,isometri
 a
tion of the free group FN with dense orbits. Let A be a basis of
FN . Then there exists a 
ompa
t subtree KA ⊂ T (
alled the �heart� of Tw.r.t. A), su
h that for any 
ompa
t subtree K of T one has:

T = Tmin
K ⇐⇒ KA ⊆ KThis is a slightly simpli�ed version of Theorem 5.4 proved in this arti
le.The main tool for this proof (and indeed for the de�nition of the heart KA)is the dual lamination L(T ). We de�ne in this arti
le (see �3) a se
ondadmissible lamination Ladm(K) asso
iated to the system of partial isometries

K = (K,A). One key ingredient in the equivalen
e of Theorem 1.1 is to provethat the two statements given there are equivalent to the equation L(T ) =
Ladm(K). The other key ingredient, developed in �4, is a new understandingof the 
ru
ial map Q : ∂FN → T ∪ ∂T from [LL03℄, based on the dynami
alsystem K = (K,A). The proof of Theorem 5.4 uses the full strength of theduality between trees and laminations, and in parti
ular a transition betweenthe two given by the main result of our earlier paper [CHL05℄.We would like to underline that the main obje
t of his paper, the heart
KA of T with respe
t to any basis A of FN , is a 
ompa
t subtree of T that isdetermined by algebrai
 data asso
iated to T , namely by the dual algebrai
lamination L(T ) of T . This system KA = (KA,A) of partial isometriesis entirely determined by the 
hoi
e of the basis A and it depends on A,but important properties of it turn a
tually out to be independent of that
hoi
e. As an example we derive from the above theorem the following dire
t
hara
terization of geometri
 trees:Corollary 1.2. A very small minimal R-tree T with dense orbits is geometri
if and only if, for any basis A of FN , the heart KA is a �nite subtree of T .A
knowledgments: The authors would like to thank V. Guirardel, P. Hubertand G. Levitt for helpful 
omments. The �rst and the third author would4



also like to thank the MSRI at Berkeley for the support re
eived from theprogram �Geometri
 Group Theory� in the fall of 2007.2 FN-a
tions on R-trees and their heartIn this se
tion we �rst re
all some well known fa
ts about R-trees T withisometri
 a
tion of a free group FN . We also re
all algebrai
 laminations, andin parti
ular the dual lamination L(T ). We then 
on
entrate on the spe
i�

ase of very small trees with dense orbits, and for su
h trees we de�ne thelimit set and the heart of T with respe
t to a �xed basis A of FN .In this paper we need some of the ma
hinary developed in our previousarti
les [CHL-I, CHL-II, CHL05℄. We present these tools in this se
tion, butrefer to those arti
les for proofs and for a more 
omplete dis
ussion.2.1 Ba
kground on R-treesAn R-tree T is a metri
 spa
e whi
h is 0-hyperboli
 and geodesi
. Alterna-tively, a metri
 spa
e T is an R-tree if and only if any two points x, y ∈ T arejoined by a unique topologi
al ar
 [x, y] ⊂ T , and this ar
 (
alled a segment)is geodesi
. For any R-tree T we denote by T the metri
 
ompletion and by
∂T the Gromov boundary of T . We also write T̂ = T ∪ ∂T .Most R-trees T 
onsidered in this paper are provided with an a
tion byisometries (from the left) of a non-abelian free group FN of �nite rank N ≥ 2.Su
h an a
tion is 
alled minimal if T agrees with its minimal FN -invariantsubtree. We say that the a
tion has dense orbits if for some (and hen
e every)point x ∈ T the orbit FN · x is dense in T . In the 
ase of dense orbits, thefollowing three 
onditions are equivalent:

• T has trivial ar
 stabilizers (i.e. for any distin
t x, y ∈ T and w ∈ FNthe equality w[x, y] = [x, y] implies w = 1).
• The FN -a
tion on T is small (see [CM87, CHL-II℄).
• The FN -a
tion on T is very small (see [CL95, CHL-II℄).As usual, for any w ∈ FN we denote by ‖w‖T (or simply by ‖w‖) thetranslation length of the a
tion of w on T , i.e. the in�mum of d(x, wx) overall x ∈ T . 5



There are two types of isometries of T : An element w ∈ FN a
ts as anellipti
 isometry on T if it �xes a point, whi
h is equivalent to ‖w‖ = 0.If ‖w‖ > 0, then the a
tion of w on T is 
alled hyperboli
: There is a wellde�ned axis in T , whi
h is isometri
 to R and is w-invariant: the element wtranslates every point on the axis by ‖w‖.A 
ontinuous map T → T ′ between R-trees is 
alled a morphism if everysegment is mapped lo
ally inje
tively ex
ept at �nitely many points.2.2 The observers' topology on TThere are various independent approa
hes in the literature to de�ne R-treesas topologi
al spa
es without referen
e to the metri
. The following versionhas been studied in [CHL05℄.De�nition 2.1. Let T be an R-tree. A dire
tion in T̂ is a 
onne
ted 
om-ponent of the 
omplement of a point of T̂ . A subbasis of open sets for theobservers' topology on T̂ is given by the set of all su
h dire
tions in T̂ .The observers' topology on T̂ (or T ) is weaker than the metri
 topology:For example, any sequen
e of points that �turns around� a bran
h point
onverges to this bran
h point. We denote by T̂ obs the set T̂ equipped withthe observers' topology. The spa
e T̂ obs is Hausdor� and 
ompa
t.For any sequen
e of points Pn in T̂ , and for some base point Q ∈ T̂ , thereis a well de�ned inferior limit from Q, whi
h we denote by:
P = lim inf

n→∞
Q PnIt is given by

[Q, P ] =

∞⋃

m=0

⋂

n≥m

[Q, Pn].The inferior limit P is always 
ontained in the 
losure of the 
onvex hullof the Pn, but its pre
ise lo
ation does in fa
t depend on the 
hoi
e of thebase point Q. However, in [CHL05℄ the following has been shown:Lemma 2.2. If a sequen
e of points Pn 
onverges in T̂ obs to some limit point
P ∈ T̂ obs, then for any Q ∈ T̂ one has:

P = lim inf
n→∞

Q Pn6



The observers' topology is very useful, but it is also easy to be de
eivedby it. For example, it is not true that any 
ontinuous map between R-trees
T1 → T2 indu
es 
anoni
ally a 
ontinuous map T̂ obs

1 → T̂ obs
2 , as is illustratedin the following remark.Remark 2.3. Let T1 be the ∞-pod, given by a 
enter Q and edges [Q, Pk]of length 1, for every k ∈ N. Let T2 be obtained from T1 by gluing theinitial segment of length k−1

k
of ea
h [Q, Pk], for k ≥ 2, to [Q, P1]. Thenthe 
anoni
al map f : T1 → T2 is 
ontinuous, and even a length de
reasingmorphism, but lim Pk = Q, while lim f(Pk) = f(P1) 6= f(Q).We refer the reader to [CHL05℄ for more details about the observers'topology.2.3 Algebrai
 laminationsFor the free group FN of �nite rank N ≥ 2 we denote by ∂FN the Gromovboundary of FN . We also 
onsider

∂2FN = ∂FN × ∂FN r ∆ ,where ∆ denotes the diagonal. The spa
e ∂2FN inherits from ∂FN a left-a
tion of FN , de�ned by w(X, Y ) = (wX, wY ) and a topology. It also admitsthe �ip map (X, Y ) 7→ (Y, X). An algebrai
 lamination L2 ⊂ ∂2FN is a non-empty 
losed subset whi
h is invariant under the FN -a
tion and the �ip map.If one 
hoses a basis A of FN , then every element w ∈ FN 
an be uniquelywritten as �nite redu
ed word in A±1, so that FN is 
anoni
ally identi�edwith the set F (A) of su
h words. Similarly, a point of the boundary ∂FN 
anbe written as in�nite redu
ed word X = z1z2 . . ., so that ∂FN is 
anoni
allyidenti�ed with the set ∂F (A) of su
h in�nite words.We also 
onsider redu
ed biin�nite indexed words
Z = . . . z−1z0z1 . . .with all zi ∈ A±1. We say that Z has positive half Z+ = z1z2 . . . and negativehalf Z− = z−1

0 z−1
−1 . . ., whi
h are two in�nite words

Z+, Z− ∈ ∂F (A)with distin
t initial letters Z+
1 6= Z−

1 . We write the redu
ed produ
t Z =
(Z−)−1 · Z+ to mark the letter Z+

1 with index 1.7



For any �xed 
hoi
e of a basis A, an algebrai
 lamination L2 determinesa symboli
 lamination
LA = {(Z−)−1 · Z+ | (wZ−, wZ+) ∈ L2}as well as a laminary language

LA = {w ∈ F (A) | w is a subword of some Z ∈ LA} .Both, symboli
 laminations and laminary languages 
an be 
hara
terizedindependently, and the natural transition from one to the other and ba
k toan algebrai
 lamination has been established with 
are in [CHL-I℄. In 
ase wedo not want to spe
ify whi
h of the three equivalent terminologies is meant,we simply speak of a lamination and denote it by L.One of the 
ru
ial points of the en
ounter between symboli
 dynami
s andgeometri
 group theory, in the subje
t treated in this paper, o

urs pre
iselyat the transition between algebrai
 and symboli
 laminations. Sin
e the mainthrust of this paper (as presented in �3) 
an be reinterpreted as translatingthe symboli
 dynami
s viewpoint into the world of R-trees, it seems useful tohighlight this transition in the symboli
 language, before embroiling it withthe topology of R-trees:Remark 2.4. As before, we �x a basis A of FN , and denote an element Xof the boundary ∂FN = ∂F (A) by the 
orresponding in�nite redu
ed wordin A±1. We denote by Xn its pre�x of length n.We 
onsider the unit 
ylinder C2
A in ∂2FN :

C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}Contrary to ∂2FN , the unit 
ylinder C2

A is a 
ompa
t set (in fa
t, a Cantorset). The unit 
ylinder C2
A has the property that the 
anoni
al map ρA :

(X, Y ) 7→ X−1 · Y (see [CHL-I℄, Remark 4.3) restri
ts to an inje
tion on C2
Awith inverse map Z 7→ (Z−, Z+).In symboli
 dynami
s, the natural operator on biin�nite sequen
es is theshift map, whi
h in our notation is given by

σ(X−1 · Y ) = X−1Y1 · (Y
−1
1 Y ) ,i.e. the same symbol sequen
e as in X−1 ·Y , but with Y1 as letter of index 0.8



On the other hand, there is a system of �partial bije
tions� on C2
A, givenfor ea
h ai ∈ A by:

ai : C2
A ∩ ai

−1C2
A → aiC

2
A ∩ C2

AA parti
ular feature of this system is that it �
ommutes� via the map ρA withthe shift map σ on the set of biin�nite redu
ed words: More pre
isely, for all
(X, Y ) ∈ C2

A one has:
ρA(Y −1

1 (X, Y )) = σ(ρA(X, Y ))This transition from group a
tion to the shift (or more pre
isely, the 
onversedire
tion), will be explored in �3 in detail, with the additional feature thatthe topology of 
ompa
t trees is added on, in the analogous way as intervalex
hange transformations are a 
lassi
al tool to interpret 
ertain symboli
dynami
al systems topologi
ally.2.4 The dual lamination L(T )In [CHL-II℄ a dual lamination L(T ) for any isometri
 a
tion of a free group
FN on an R-tree T has been introdu
ed and investigated. If T is very smalland has dense orbits, three di�erent de�nitions of L(T ) have been given in[CHL-II℄ and shown there to be equivalent. However, as in this paper we
an not always assume that T has dense orbits, it is most 
onvenient to�x a basis A of FN and to give the general de�nition of L(T ) via its duallaminary language LA(T ) (see De�nition 4.1 and Remark 4.2 of [CHL-I℄),whi
h determines L(T ) and vi
e versa:

LA(T ) = {v ∈ F (A) | ∀ ε > 0 ∃u, w ∈ F (A) : ‖u · v · w‖T < ε,
u · v · w redu
ed and 
y
li
ally redu
ed}Remark 2.5. It follows dire
tly from this de�nition that L(T ) = L(Tmin),where Tmin denotes the minimal FN -invariant subtree of T .2.5 The map QTheorem 2.6 ([LL03, LL04℄). Let T be an R-tree with a very small a
tionof FN by isometries that has dense orbits. Then there exists a surje
tive

FN -equivariant map Q : ∂FN → T̂ whi
h has the following property:9



For any sequen
e of elements un of FN whi
h 
onverges to X ∈ ∂FN andfor any point P ∈ T , if the sequen
e of points unP ∈ T 
onverges (metri
ally)in T̂ to a point Q, then Q(X) = Q.Using the properties of a metri
 topology we get the following lemma.Lemma 2.7. Let T be an R-tree with a very small a
tion of FN by isometriesthat has dense orbits. Let K be a 
ompa
t (with respe
t to the metri
 topology)subtree of T . Let Q be a point in K and wn a sequen
e of elements in
FN whi
h 
onverge in FN ∪ ∂FN to some X ∈ ∂FN . If for all n one has
w−1

n Q ∈ K, then Q(X) = Q.Proof. As K is 
ompa
t, up to passing to a subsequen
e, we 
an assume that
w−1

n Q 
onverges to a point P in K, that is to say limn→∞ d(w−1
n Q, P ) = 0.As the a
tion is isometri
 we get that limn→∞ d(Q, wnP ) = 0, i.e. the wnP
onverge to Q. Hen
e Theorem 2.6 gives the desired 
on
lusion Q(X) = Q.

⊔⊓It is 
ru
ial for the arguments presented in this paper to remember thatthe map Q is not 
ontinuous with respe
t to the metri
 topology on T̂ , i.e.the topology given by the metri
 on T . In fa
t, this has been the reason whyin [CHL05℄ the weaker observers' topology on T̂ has been investigated.Theorem 2.8 (Remark 2.2 and Proposition 2.3 of [CHL05℄). Let Tbe an R-tree with isometri
 very small a
tion of FN that has dense orbits.Then the following holds:(1) The map Q de�ned in Theorem 2.6 is 
ontinuous with respe
t to theobservers' topology, i.e. it de�nes a 
ontinuous equivariant surje
tion
Q : ∂FN → T̂ obs.(2) For any point P ∈ T the map Q de�nes the 
ontinuous extension to

FN ∪ ∂FN of the map
QP : FN → T̂ obs, w 7→ wP .Though obvious it is worth noting that the last property determines themap Q uniquely. 10



2.6 The map Q2If the tree T is very small and has dense orbits, the dual lamination L(T )des
ribed in �2.4 admits an alternative se
ond de�nition via the above de�nedmap Q as algebrai
 lamination L2(T ) (
ompare �2.3):
L2(T ) = {(X, Y ) ∈ ∂2FN | Q(X) = Q(Y )}It has been proved in [LL03, LL04℄ that the map Q is one-to-one on thepreimage of the Gromov boundary ∂T of T . Hen
e the map Q indu
es amap Q2 from L2(T ) to T , given by:

Q2((X, Y )) = Q(X) = Q(Y )In light of the above dis
ussion the following result seems remarkable. It isalso 
ru
ial for the de�nition of the heart of T in the next subse
tion.Proposition 2.9 (Proposition 8.3 in [CHL-II℄). The FN -equivariantmap
Q2 : L2(T ) → Tis 
ontinuous, with respe
t to the metri
 topology on T .As in [CHL05℄, �2, we 
onsider the equivalen
e relation on ∂FN whose
lasses are �bers of Q, and we denote by ∂FN/L2(T ) the quotient set. Thequotient topology on ∂FN/L2(T ) is the �nest topology su
h that the naturalproje
tion π : ∂FN → ∂FN/L2(T ) is 
ontinuous. The map Q splits over π,thus indu
ing a map ϕ : ∂FN/L2(T ) → T̂ obs with Q = ϕ ◦ π.Theorem 2.10 (Corollary 2.6 of [CHL05℄). The map

ϕ : ∂FN/L2(T ) → T̂ obsis a homeomorphism.2.7 The limit set and the heart of TWe 
onsider again the unit 
ylinder C2
A = {(X, Y ) ∈ ∂2FN | X1 6= Y1}in ∂2FN as de�ned in Remark 2.4. The following de�nition is the 
ru
ialinnovative tool of this paper: 11



De�nition 2.11. The limit set of T with respe
t to the basis A is the set
ΩA = Q2(C2

A ∩ L2(T )) ⊂ T .The heart KA of T with respe
t to the basis A is the 
onvex hull in T of thelimit set ΩA.It is not hard to see that in any R-tree the 
onvex hull of a 
ompa
t setis again 
ompa
t. Thus we obtain from Proposition 2.9 and De�nition 2.11:Corollary 2.12. The limit set ΩA is a 
ompa
t subset of T . The heart
KA ⊂ T is a 
ompa
t R-tree.Note that, while L2(T ) does not depend on the 
hoi
e of the basis A,the unit 
ylinder C2

A and thus the limit set and the heart of T do 
ru
iallydepend on the 
hoi
e of A.3 Systems of isometries on 
ompa
t R-treesIn this se
tion we review the basi
 
onstru
tion that asso
iates an R-tree toa system of isometries. This goes ba
k to the seminal papers of D. Gaboriauand G. Levitt [GL95℄, G. Levitt and F. Paulin [LP97℄, and before them tothe study of surfa
e trees and the work of J. Morgan and P. Shalen [MS91℄,R. Skora [Sko96℄, and of 
ourse to the fundamental work E. Rips.3.1 De�nitionsDe�nition 3.1. (a) Let K be a 
ompa
t R-tree. A partial isometry of K isan isometry between two 
losed subtrees of K. It is said to be non-empty ifits domain is non-empty.(b) A system of isometries K = (K,A) 
onsists of a 
ompa
t R-tree K and a�nite set A of non-empty partial isometries of K. This de�nes a pseudo-groupof partial isometries of K by admitting inverses and 
omposition.We note that in the literature mentioned above it is usually required that
K is a �nite tree, i.e. K is a metri
 realisation of a �nite simpli
ial tree, or,equivalently, K is the 
onvex hull of �nitely many points. The novelty hereis that we only require K to be 
ompa
t. Re
all that a 
ompa
t R-tree Kmay well have in�nitely many bran
h points, possibly with in�nite valen
e,12



and that K may well 
ontain �nite trees of unbounded volume (but of 
ourse
K has �nite diameter).Any element of the free group FN over the basis A, given as redu
edword w = z1 . . . zn ∈ F (A), de�nes a (possibly empty) partial isometry,also denoted by w, whi
h is de�ned as the 
omposition of partial isometries
z1 ◦ z2 ◦ . . . ◦ zn. We write this pseudo-a
tion of F (A) on K on the right, i.e.

x(u ◦ v) = (xu)vfor all x ∈ K and u, v ∈ F (A). For any points x, y ∈ K and any w ∈ F (A)we obtain
xw = yif and only if x is in the domain dom(w) of w and is sent by w to y.A redu
ed word w ∈ F (A) is 
alled admissible if it is non-empty as apartial isometry of K.3.2 The R-tree asso
iated to a system of isometriesA system of isometries K = (K,A) de�nes an R-tree TK, provided with ana
tion of the free group FN = F (A) by isometries. The 
onstru
tion is thesame as in the 
ase where K is a �nite tree and will be re
alled now.As in [GL95℄ the tree TK 
an be des
ribed using a foliated band-
omplex,but for non-�nite K one would not get a CW-
omplex. We use the followingequivalent 
onstru
tion in 
ombinatorial terms.The tree TK is obtained by gluing 
ountably many 
opies of K along thepartial isometries, one for ea
h element of FN . On the topologi
al spa
e

FN × K these identi�
ations are made formal by de�ning
TK = FN × K/ ∼where the equivalen
e relation ∼ is de�ned by:

(u, x) ∼ (v, y) ⇐⇒ x(u−1v) = yThe free group FN a
ts on TK, from the left: this a
tion is simply givenby left-multipli
ation on the �rst 
oordinate of ea
h pair (u, x) ∈ FN × K:
w(u, x) = (wu, x)for all u, w ∈ FN , x ∈ K. 13



Sin
e FN is free over A, ea
h 
opy {u}×K of K embeds 
anoni
ally into
TK. Thus we 
an identify K with the image of {1} ×K in TK, so that every
{u} × K maps bije
tively onto uK. Using these bije
tions, the metri
 on
K de�nes 
anoni
ally a pseudo-metri
 on TK. Again, by the freeness of FNover A, this pseudo-metri
 is a metri
. The arguments given in the proof ofTheorem I.1. of [GL95℄ extend dire
tly from the 
ase of �nite K to 
ompa
t
K, to show:Theorem 3.2. Given a system of isometries K = (K,A) on a 
ompa
t R-tree K, there exists a unique R-tree TK, provided with a left-a
tion of F (A)by isometries, whi
h satis�es:(1) TK 
ontains K (as an isometri
ally embedded subtree).(2) If x ∈ K is in the domain of a ∈ A, then a−1x = xa.(3) Every orbit of the F (A)-a
tion on TK meets K. Indeed, every segmentof TK is 
ontained in a �nite union of translates wiK, for suitable

wi ∈ F (A).(4) If T is another R-tree with an a
tion of F (A) by isometries satisfying(1) and (2), then there exists a unique F (A)-equivariant morphism
j : TK → T su
h that j(x) = x for all x ∈ K. ⊔⊓3.3 Systems of isometries indu
ed by an FN -a
tion onan R-treeFrequent and important examples of systems of isometries o

ur in the fol-lowing 
ontext:Let T be any R-tree with an F (A)-a
tion by isometries. Then any 
om-pa
t subtree K ⊂ T , whi
h is su�
iently large so that it interse
ts for any

ai ∈ A the translate aiK, de�nes 
anoni
ally a system of isometries givenby:
ai : aiK ∩ K → K ∩ a−1

i K
x 7→ xai = a−1

i xSin
e K embeds into T , Theorem 3.2 gives a map
j : TK → T.14



The map j fails in general to be inje
tive. A 
lassi
al te
hnique for thestudy of an a
tion on an R-tree T is to view TK as an approximation of T ,and to 
onsider a sequen
e of in
reasing K. As K in
reases to exhaust T ,the 
onvergen
e of the sequen
e of TK to T is well understood. Moreover, if
K is a �nite subtree of T , then TK is 
alled geometri
 and the full strengthof the Rips ma
hine 
an be used to study itIn this arti
le, we propose a new approa
h to study T , namely we provethat there exists a 
ompa
t subtree K of T su
h that j is an isometry. Thisgives the possibility to extend the results proved for geometri
 trees (i.e.when K is �nite) to the 
ase where K is only assumed to be 
ompa
t.3.4 Basi
 lemmasWe now present some basi
 lemmas about the a
tion on TK, for admissibleand non-admissible words in the given system of isometries. We �rst observe:Remark 3.3. (a) Let K and K ′ be two 
losed disjoint subtrees of T . Thenthere exists a unique segment [x, x′] whi
h joins K to K ′, i.e. one has K ∩
[x, x′] = {x} and K ′ ∩ [x, x′] = {x′}. For any further points y ∈ K, y′ ∈ K ′the segment [y, y′] 
ontains both segments [x, y′] and [x′, y], and both 
ontain
[x, x′].(b) As a shorthand, we use in the situation given above the following notation:

[K, K ′] := [x, x′], [y, K ′] := [y, x′], [K, y′] := [x, y′](
) If y ∈ K, then we set [y, K] = [K, y] = {y}, i.e. the segment of length 0with y as initial and terminal point.The following is a spe
i�
ation of statement (3) of Theorem 3.2:Lemma 3.4. For any non-admissible word w ∈ F (A) one has
[K, wK] ⊂

|w|⋃

i=0

wiK ,where wi is the pre�x of w with length |wi| = i.Proof. It su�
es to show that for the redu
ed word w = z1 . . . zn the union
n⋃

i =0

wiK is 
onne
ted. This follows dire
tly from the fa
t that for all i =15



1, . . . , n the union wi−1K ∪ wiK = wi−1(K ∪ w−1
i−1wiK) is 
onne
ted, sin
e

w−1
i−1wi = zi ∈ A±1, and all partial isometries from A are assumed to benon-empty. ⊔⊓Lemma 3.5. Let K = (K,A), TK and F (A) be as above.(1) For all w ∈ F (A) one hasdom(w) = K ∩ wK .(2) A word w ∈ F (A) is admissible if and only if K ∩ wK 6= ∅.(3) If x ∈ dom(w), then

w−1x = xw .Proof. Let w ∈ F (A) and x ∈ TK. If x ∈ dom(w) ⊂ K, then the de�nitionof TK gives (1, x) ∼ (w, xw), or equivalently (
ompare Theorem 3.2)
w−1x = xw .Therefore x is 
ontained in both, K and wK. This shows:dom(w) ⊂ K ∩ wKConversely, let x be in K ∩ wK. Then (1, x) ∼ (w, y) for some point

y ∈ K, and by de�nition of ∼ the point x lies in the domain of w, with
xw = y. Thus w is admissible, and

K ∩ wK ⊂ dom(w) .

⊔⊓Lemma 3.6. For all w ∈ F (A) the following holds, where wk denotes thepre�x of w of length k:(1) dom(w) ⊂ dom(wk) for all k ≤ |w|.(2) dom(w) =
|w|⋂

k = 0

wkKProof. Assertion (1) follows dire
tly from the de�nition of dom(w). Assertion(2) follows from assertion (1) and Lemma 3.5 (1). ⊔⊓16



Remark 3.7. We would like to emphasize that it is important to keep the
F (A)-a
tion on TK apart from the F (A)-pseudo-a
tion on K. This is thereason why we de�ne the a
tion on TK from the left, whereas we de�ne thepseudo-a
tion by partial isometries on K from the right.This setting is also 
onvenient to keep tra
k of the two a
tions: a point
x ∈ K lies in the domain of the partial isometry asso
iated to w ∈ F (A) ifand only if x is 
ontained in wK (Lemma 3.5 (1)). More to the point, thesequen
e of partial isometries given by the word w = z1 . . . zn de�nes points
xz1 . . . zi whi
h lie all inside of K if and only if the sequen
e of isometriesof T given by the pre�xes of w moves K within T in su
h a way that x is
ontained in ea
h of the translates z1 . . . ziK (see Lemma 3.6 (2)).Lemma 3.8. (a) For any non-admissible word w ∈ F (A) and any disjoint
losed subtrees K and wK, the ar
 [K, wK] interse
ts all wiK, where wi isa pre�x of w.(b) For any point Q ∈ K and any (possibly admissible) word w ∈ F (A), thear
 [Q, wK] interse
ts all wiK.Proof. (a) We prove part (a) by indu
tion on the length of w.Let u be the longest admissible pre�x of w. Thus u 6= 1, as all partialisometries in A±1 are non-empty. Hen
e we 
an assume by indu
tion that
u−1w is either admissible or satis�es the property stated in part (a).Let a be the next letter of w after the pre�x u. We write w as redu
edprodu
t w = u · a · v. A

ording to Lemma 3.5 (2) one has:(i) uK ∩ K = dom(u) 6= ∅(ii) uK ∩ uaK = u dom(a) 6= ∅, and(iii) K ∩ ua K = ∅By (iii) there is a non-trivial segment β = [K, uaK] ⊂ TK that interse
ts Kand uaK only in its endpoints. By (i) and (ii) the segment β is 
ontained inthe subtree uK: there are points x, y ∈ K su
h that β = [ux, uy]. Sin
e uxbelongs to K ∩ uK = dom(u), it follows from Lemma 3.6 (2) that ux alsobelongs to every u′K, for any pre�x u′ of u.Moreover, for any pre�x v′ of v one has, by Lemma 3.5 (1) and Lemma3.6 (1):

uav′K ∩ uK = u dom(av′) ⊂ u dom(a) = uaK ∩ uK17



From this we dedu
e that
uav′K ∩ [ux, uy] ⊂ uav′K ∩ [ux, uy] ∩ uK

⊂ [ux, uy]∩ uaK ∩ uK
⊂ [ux, uy]∩ uaK = {uy} .Sin
e the segment α = [K, wK] is by Lemma 3.4 
ontained in the union

|w|⋃

i=0

wiKit follows from the above derived in
lusion uav′K ∩ [ux, uy] ⊂ {uy} that α isthe union of β = [ux, uy] and of the segment γ = [uy, wK], with β∩γ = {uy}.If av is admissible, then the endpoint of γ is 
ontained in the interse
tionof all uav′K, by Lemma 3.6 (2). If av is non-admisible, we apply the indu
tionhypothesis to u−1w = av and obtain that every av′K meets the ar
 γ′ =
[K, avK]. But uγ′ is a subar
 of γ, so that the ar
 [ux, uy] ∪ γ meets infa
tall wiK, as 
laimed.(b) In 
ase that w is non-admissible, there is a largest index i su
h that
K ∩ wiK 6= ∅. We 
an now apply statement (a) to w−1

i K and w−1
i w to getthe desired 
on
lusion.If w is admissible, then dom(w) = K ∩ wK (by Lemma 3.5 (1)). Hen
ethe ar
 [Q, wK] is 
ontained in K, and by Lemma 3.6 (2) its endpoint is
ontained in any wiK. ⊔⊓Lemma 3.9. Let w, w′ ∈ F (A) with maximal 
ommon pre�x u ∈ F (A).Then for any triplet of points Q ∈ K, R ∈ wK and R′ ∈ w′K the ar
s [Q, R]and [Q, R′] interse
t in an ar
 [Q, P ] with endpoint P ∈ uK.Proof. Let [Q, Q1] the ar
 whi
h joins K to uK. It follows dire
tly fromLemma 3.8 (b) that Q1 lies on both, [Q, R] and [Q, R′]. Similarly, let [R, R1]and [R′, R′

1] be the ar
s that join R to uK and R′ to uK respe
tively. Afterapplying w−1 or w′−1 we obtain in the same way that R1 lies on both, [Q, R]and [R, R′], and that R′
1 lies on both, [Q, R′] and [R, R′]. Hen
e the geodesi
triangle in TK with endpoints Q, R, R′ 
ontains the geodesi
 triangle withendpoints Q1, R1 and R′
1, and the 
enter of the latter is equal to the 
enter

P of the former. But Q1, R1 and R′
1 are all three 
ontained in uK, so that

P is 
ontained in uK. ⊔⊓18



In the following statement and its proof we use the standard terminologyfor group elements a
ting on trees, as re
alled in �2.1 above.Proposition 3.10. Let w ∈ F (A) is any 
y
li
ally redu
ed word. If thea
tion of w on TK is hyperboli
, then the axis of w interse
ts K. If thea
tion of w on TK is ellipti
, then w has a �xed point in K.Proof. If w is not admissible, let [x, wy] be the segment that joins K to wK:these two translates are disjoint by Lemma 3.5 (2). As w a
ts as an isometry,
[wx, w2y] is the segment that joins wK to w2K. Moreover, sin
e w is assumedto be 
y
li
ally redu
ed, the segment that joins K to w2K interse
ts wK, byLemma 3.8.Any two 
onse
utive segments among [x, wy], [wy, wx], [wx, w2y] and
[w2y, w2x] have pre
isely one point in 
ommon, by Remark 3.3, and hen
etheir union is a segment. This proves that wx belongs to [x, w2x], and that
x is 
ontained in the axis of w.If w is admissible, then either there exists n ≥ 0 su
h that wn is notadmissible, in whi
h 
ase we 
an fall ba
k on the above treated 
ase, as wand wn have the same axis. Otherwise, for arbitrary large n there exists apoint x ∈ K su
h that wnx ∈ K, by Lemma 3.5 (2). But K is 
ompa
tand hen
e has �nite diameter. This implies that the a
tion of w on T is nothyperboli
, and hen
e it is ellipti
: w �xes a point of T . Some su
h �xedpoint lies on [x, wx] (namely its 
enter), and hen
e in the subtree K. ⊔⊓3.5 Admissible laminationsIn this subse
tion we use the 
on
epts of algebrai
 lamination, symboli
 lam-ination and laminary language as de�ned in [CHL-I℄, and the equivalen
ebetween these three points of view shown there. The de�nitions and thenotation have been reviewed in �2.3 above.For any system of isometries K = (K,A) denote by Adm(K) ⊂ F (A) theset of admissible words. The set Adm(K) is stable with respe
t to passageto subwords, but it is not laminary (see [CHL-I℄, De�nition 5.2): not everyadmissible word w is ne
essarily equal, for all k ∈ N, to the word v†k obtainedfrom some larger v ∈ Adm(K) by �
hopping o�� the two boundary subwordsof length k. As does any in�nite subset of F (A), the set Adm(K) generates alaminary language, denoted Ladm(K), whi
h is the largest laminary languagemade of admissible words:

Ladm(K) = {w ∈ F (A) | ∀k ∈ N ∃v ∈ Adm(K) : w = v†k}19



Clearly one has Ladm(K) ⊂ Adm(K), but the 
onverse is in general false.As explained in �2.3, any laminary language determines an algebrai
 lam-ination (i.e. a 
losed FN -invariant and �ip-invarinat subset of ∂2FN ), and
onversely. The algebrai
 lamination determined by Ladm(K) is 
alled ad-missible lamination, and denoted by Ladm(K).An in�nite word X ∈ ∂F (A) is admissible if all of its pre�xes Xn areadmissible. The set of admissible in�nite words is denoted by L1adm(K). It isa 
losed subset of ∂F (A) but it is not invariant under the a
tion of F (A).For any in�nite admissible X the domain dom(X) of X is de�ned to bethe interse
tion of all domains dom(Xn). Sin
e K is 
ompa
t, one hasdom(X) 6= ∅for all X ∈ L1adm(K).A biin�nite indexed redu
ed word Z = . . . z−1z0z1 . . ., with zi ∈ A±,is 
alled admissible, if its two halves Z+ = z1z2 . . . and Z− = z−1
0 z−1

−1 . . . areadmissible, and if the interse
tion of the domains of Z+ and Z− is non-empty.The domain of Z is de�ned to be this interse
tion:dom(Z) = dom(Z+) ∩ dom(Z−)We observe that Z is admissible if and only if all its subwords are admissible.The set of biin�nite admissible words is 
alled the admissible symboli
lamination of the system of isometries K = (K,A).We use now the notion of the dual lamination of an R-tree with isometri

FN -a
tion as introdu
ed in [CHL-II℄ and reviewed above in �2.4.Proposition 3.11. For any system of isometries K one has

L(TK) ⊆ Ladm(K).Proof. Let u ∈ F (A) be a non-admissible word, and let ε = d(K, uK). ByLemma 3.5 (2) one has ε > 0. Let w be a 
y
li
ally redu
ed word that
ontains u as a subword: we write w = u1 · u · u2 as a redu
ed produ
t. ByProposition 3.10, the axis of w passes through K. But if x is any point in
K, the segment [x, wx] 
ontains the segment that joins the disjoint subtrees
u1K and u1uK, by Lemma 3.8, and hen
e the translation length of w, whi
his realized on its axis, is bigger than ε. This proves that u is not in L(TK)(see �2.4) .As the laminary language of Ladm(K) is the largest laminary languagemade of admissible words, this 
on
ludes the proof. ⊔⊓20



4 The map QK for a system of isometriesIn this se
tion we de�ne the map QK and we prove that it is the equivalentof the map Q from �2.5, for systems of isometries K. For this de�nition wedistinguish two 
ases: If X ∈ ∂F (A) is not eventually admissible we de�ne
QK(X) in �4.1. If X is eventually admissible, the de�nition of QK(X) isgiven in �4.3, and in this 
ase we need the hypothesis that the system ofisometries has independent generators. Both 
ases are 
olle
ted together in�4.4 to obtain a 
ontinuous equivariant map QK.4.1 The map QK for non-eventually admissible wordsAs in �3, let K = (K,A) be a system of isometries on a 
ompa
t R-tree K,and let TK be the asso
iated R-tree, provided with an a
tion of the free group
F (A) by isometries. Let X ∈ ∂F (A) be an in�nite redu
ed word and denoteas before by Xi the pre�x of X of length i ≥ 0.De�nition 4.1. An in�nite word X ∈ ∂F (A) is eventually admissible ifthere exists an index i su
h that the su�x Xi

−1X of X is admissible.Note that an in�nite word X ∈ ∂F (A) is not eventually admissible if forevery index i ≥ 0 there is an index j > i su
h that the subword X[i+1,j] =
X−1

i Xj of X between the indi
es i + 1 and j is not admissible.Let X ∈ ∂F (A) be not eventually admissible, and let i0 > 0 be su
hthat the pre�x Xi0 of X of length i0 is not admissible. Then for any i ≥ i0,the pre�x Xi is not admissible, and thus, by Lemma 3.5, K and XiK aredisjoint. By Lemmas 3.8 and 3.9, for any j ≥ i ≥ i0 the segment [K, XiK]and [K, XjK] are nested and have the same initial point Q ∈ K. Let Qi bethe terminal point of [K, XiK]:
[Q, Qi] = [K, XiK]The sequen
e of Qi 
onverges in T̂K with respe
t to both, the metri
 and theobservers' topology.De�nition 4.2. For any X ∈ ∂F (A) whi
h is not eventually admissible wede�ne:
QK(X) = lim

i→∞
Qi21



Proposition 4.3. Let K = (K,A) be a system of isometries on a 
ompa
t
R-tree K. Let X ∈ ∂F (A) be not eventually admissible.Let wn ∈ F (A) be a sequen
e of words whi
h 
onverge in F (A) ∪ ∂F (A)to X, and let Pn ∈ wnK. Then the sequen
e of points Pn 
onverges in T̂ obs

Kto QK(X), and QK(X) belongs to T̂ obs
K r TK.Proof. We use the above notations. For every index i ≥ 0, let [Qi, Ri] be theinterse
tion of [Q,QK(X)] with XiK. Hen
e for i ≥ i0 the point Qi is, asbefore, the terminal point of the segment [K, XiK]. The segments [Q, Qi] arein
reasingly nested, the segments [Ri,QK(X)] are de
reasingly nested, Qi isa point of [Q, Ri] and Ri is a point of [Qi,QK(X)].As X is not eventually admissible, for every index i ≥ 0 there is an index

j > i su
h that the subword X[i+1,j] of X between the indi
es i + 1 and j isnot admissible. By Lemma 3.5 the segments [Qi, Ri] and [Qj , Rj] are disjoint.For any n, let i(n) be the length of the maximal 
ommon pre�x of wnand X. By Lemma 3.9, the maximal 
ommon segment [Q, P ′
n] of [Q, Pn] and

[Q,QK(X)] has its terminal point P ′
n in [Qi(n), Ri(n)]. As X is not eventuallyadmissible, for m big enough the subword X[i(n)+1,i(m)] of X between theindi
es i(n)+1 and i(m) is not admissible and the segments [Qi(n), Ri(n)] and

[Qi(m), Ri(m)] are disjoint. Therefore the maximal 
ommon segment of [Q, Pn]and [Q, Pm] is also the maximal 
ommon segment of [Q, Pn] and [Q,QK(X)],and hen
e it is equal to [Q, P ′
n].The points P ′

n 
onverge to QK(X), as any sequen
e of points in
[Qi(n), Ri(n)] does, and this proves that

lim inf QPn = QK(X).By Lemma 2.2 any subsequen
e of Pn, whi
h 
onverges in T̂ obs
K , ne
essarily
onverges to QK(X). Hen
e by 
ompa
tness of T̂ obs

K , the sequen
e of all ofthe points Pn 
onverges to QK(X) with respe
t to the observers' topology.If P is a point in uK for some u in FN , then the maximal 
ommon segment
[Q, P ′] of [Q, P ] and [Q,QK(X)] has its endpoint P ′ in [Qi, Ri], where Xi isthe maximal 
ommon pre�x of u and X. Thus P ′ 6= QK(X), and hen
e
QK(X) is not 
ontained in TK. ⊔⊓4.2 Independent generatorsThe following 
on
ept is due to Gaboriau [Gab97℄, in the 
ase of �nite K,and we extend it here to the 
ompa
t 
ase.22



De�nition 4.4. Let K = (K,A) be a system of isometries on a 
ompa
t
R-tree K. Then K is said to have independant generators if, for any in�niteadmissible word X ∈ ∂F (A), the non-empty domain of X 
onsists of exa
tlyone point.The same arguments as in [Gab97℄ show the following equivalen
es. How-ever, they will not be used in the sequel.Remark 4.5. Let K = (K,A) be a system of isometries on a 
ompa
t R-tree
K. The following are equivalent:(1) K has independant generators.(2) Every non-trivial admissible word �xes at most one point of K.(3) The a
tion of F (A) on the asso
iated tree TK has trivial ar
 stabilizers.Note that Gaboriau [Gab97℄ used originally property (2) as de�nition,but in our 
ontext this seems less natural.4.3 The map QK for eventually admissible wordsLet K = (K,A) be a system of isometries on a 
ompa
t R-tree K. Considerthe set L1adm(K) ⊂ ∂F (A) of in�nite admissible words as de�ned in �3.5.De�nition 4.6. Let K be a system of isometries whi
h has independentgenerators. Then for any in�nite admissible word X ∈ L1adm(K) there existsexa
tly one element of K in the domain of X, whi
h will be 
alled QK(X).Lemma 4.7. Identify K with the image of {1} × K in T̂K as in �3, and let
X ∈ L1adm(K).(1) Denoting as before by Xi the pre�x of X of length i ≥ 1, we obtain:

{QK(X)} =
⋂

i≥ 1

XiK(2) For every i ≥ 1 we have:
QK(X−1

i X) = X−1
i QK(X)23



Proof. Assertion (1) follows dire
tly from Lemma 3.6 (2) and the above def-inition of the map QK. Assertion (2) follows dire
tly from (1). ⊔⊓Re
all from De�nition 4.1 that an in�nite words X ∈ ∂F (A) is eventuallyadmissible if it has a pre�x Xi su
h that the in�nite remainder X ′
i = X−1

i Xis admissible. We observe that for all integers j ≥ i the word X−1
i Xj isadmissible, so that Lemma 4.7 (2) gives:

XiQK(X ′
i) = XiQK(X−1

i XjX
′
j) = Xi(X

−1
i Xj)QK(X ′

j) = XjQK(X ′
j)Hen
e the following de�nition does not depend on the 
hoi
e of the index i.De�nition 4.8. For any eventually admissible word X ∈ ∂F (A) we de�ne

QK(X) = XiQK(X ′
i).We note that for any element u ∈ F (A) and any eventually admissibleword X ∈ ∂F (A) one has:

QK(uX) = uQK(X)Proposition 4.9. Let K = (K,A) be a system of isometries on a 
ompa
t
R-tree K with indenpendent generators. Let X ∈ ∂F (A) be an eventuallyadmissible word.For any element P in TK, and any sequen
e wn of elements of FN that
onverge to X, the sequen
e of points wnP 
onverges to QK(X), with respe
tto the observers' topology on TK.Proof. Up to multiplying by the inverse of a pre�x we 
an assume that Xis admissible and QK(X) ∈ K. By 
ompa
tness of T̂ obs

K we 
an assume that
wnP 
onverges to some point Q∞. By 
ontradi
tion assume that Q∞ 6=
QK(X), and let M be a point in the open interval (Q∞,QK(X)). FromLemma 2.2 we dedu
e

Q∞ = lim inf QK(X)wnP.Thus, for n and m big enough, the maximal 
ommon segment [QK(X), Pm,n]of [QK(X), wnP ] and [QK(X), wmP ] 
ontains M . As wn 
onverges to X,for n �xed and for m su�
iently large, the maximal 
ommon pre�x of wnand wm is a pre�x Xi of X. By Lemma 3.9, Pm,n is 
ontained in XiK. ByLemma 4.7, QK(X) is also 
ontained XiK, and hen
e, so is M . As m and
n grow larger, the index i goes to in�nity (sin
e wn → X), whi
h provesthat M is 
ontained in the interse
tion of all the XiK. Sin
e we assumed
M 6= QK(X), this 
ontradi
ts the independent generators' hypothesis. ⊔⊓24



4.4 Continuity of the map QKAs any element of ∂F (A) is either eventually admissible or not, from De�-nitions 4.2 and 4.8 we 
olle
t a map QK.Corollary 4.10. Let K = (K,A) be a system of isometries on a 
ompa
t
R-tree K with independent generators. The map QK : ∂FN → T̂ obs

K is equiv-ariant and 
ontinuous.For any point P in TK, the map QK de�nes the 
ontinuous extension to
FN ∪ ∂FN of the map

QP : FN → T̂ obs
K

w 7→ wPProof. Equivarian
e and 
ontinuity of QK follow from the se
ond part of theProposition, whi
h is proved in Propositions 4.3 and 4.9, blended with asmall dose of Bourbaki extra
t. ⊔⊓5 Proof of the Main TheoremThroughout this se
tion let T be an R-tree provided with a minimal, verysmall a
tion of FN by isometries whi
h has dense orbits. Hen
e we obtainfrom Theorem 2.6 an equivariant and 
ontinuous map Q, whi
h we denotehere by QT : ∂FN → T̂ obs.Let A be a basis of of FN , and let K be a 
ompa
t subtree of T . Let
K = (K,A) be the indu
ed system of isometries ai : K ∩ aiK → a−1

i K ∩
K, x 7→ xai = a−1

i x, as dis
ussed in �3.3. We assume that K is 
hosen largeenough so that for ea
h ai ∈ A the interse
tion K∩aiK and hen
e the partialisometry ai ∈ A is non-empty. As a 
onsequen
e (see �3), there exists an
R-tree TK with isometri
 a
tion by FN , and by Theorem 3.2 there exists aunique 
ontinuous FN -equivariant map

j : TK → Twhi
h indu
es the identity map TK ⊃ K
j
→ K ⊂ T .Lemma 5.1. The system of isometries K = (K,A) has independent gener-ators. 25



Proof. Let Q be a point in the domain of an in�nite admissible word X,
ompare �3.5. Then for any pre�x Xn of X, the point QXn = Xn
−1Q is also
ontained in K (re
all that we write the a
tion of F (A) on TK on the left,and the pseudo-a
tion of partial isometries of K on the right).By Theorem 3.2, j restri
ts to an isometry between K ⊂ TK and K ⊂ T .Therefore, for any n ≥ 0, Xn

−1j(Q) lies in K ⊂ T . By Lemma 2.7, we get
QT (X) = j(Q).This proves that the domain of X 
onsists of at most the point
j−1(QT (X)). Hen
e K has independent generators. ⊔⊓As a 
onsequen
e of Lemma 5.1, we 
an apply Corollary 4.10 to obtainan equivariant and 
ontinuous map QK : ∂FN → T̂ obs

K .Lemma 5.2. For any X ∈ ∂FN su
h that QK(X) is 
ontained in TK, onehas
j(QK(X)) = QT (X).Proof. By Proposition 4.3, X is eventually admissible and by equivarian
eof QK, QT and j, we 
an assume that X is admissible and that QK(X) is in

K. By De�nition 4.6, for any i ≥ 0, QK(X) · Xi = Xi
−1QK(X) lies in K.By Theorem 3.2, j restri
ts to an isometry between K ⊂ TK and K ⊂ T .Therefore for any i ≥ 0, the point Xi

−1j(QK(X)) lies in K ⊂ T . Thus we
an apply Lemma 2.7 to get QT (X) = j(QK(X)). ⊔⊓Lemma 5.3. The admissible lamination of K is 
ontained in the dual lami-nation of T :
Ladm(K) ⊂ L(T )Proof. The admissible lamination Ladm(K) (see �3.5) is de�ned by all biin�-nite words Z in A± su
h the two half-words Z+ and Z− have non-empty do-main, and the two domains interse
t non-trivially. Thus QK(Z+) = QK(Z−)is a point in K. Thus by Lemma 5.2 one has QT (Z+) = QT (Z−). The latterimplies (and is equivalent to) that Z belongs to L(T ). ⊔⊓
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We sumarize the above dis
ussion in the following 
ommutative diagram:
∂FN

QK

||yy
yy

yy
yy QT

"" ""EE
EE

EE
EE

E

T̂ obs
K T̂ obs
TK

?�

OO

j //
T
?�

OO

All the maps in the diagram are equivariant and 
ontinuous, where the topol-ogy 
onsidered on the bottom line is the metri
 topology.We 
an now prove the main result of this paper. Re
all from �2.7 thatfor any basis A of FN and T as above the set ΩA ⊂ T denotes the 
ore of Twith respe
t to A.Theorem 5.4. Let T be an R-tree with very small minimal FN -a
tion byisometries, and with dense orbits. Let A be a basis of FN , and let K ⊂ Tbe a 
ompa
t subtree whi
h satis�es K ∩ aiK 6= ∅ for all ai ∈ A. Then thefollowing are equivalent:(1) The restri
tion of the 
anoni
al map j : TK → T to the minimal FN -invariant subtree Tmin
K of TK de�nes an isometry jmin : Tmin

K → T .(2) L(T ) ⊂ Ladm(K) (⇐⇒ L(T ) = Ladm(K) , by Lemma 5.3)(3) ΩA ⊂ KProof. (1) =⇒ (2): By the assumption on j the minimal subtree Tmin
K ⊂ TKis isometri
 to T . Hen
e the dual laminations satisfy L(T ) = L(Tmin
K ), andby Remark 2.5 one has L(Tmin

K ) = L(TK). We now apply Proposition 3.11 toget L(TK) ⊂ Ladm(K).(2) =⇒ (3): By De�nition 2.11, a point Q ∈ T belongs to the limit set ΩA ifand only if there is a pair of in�nite words (X, Y ) ∈ L2(T ) ⊂ ∂2F (A), withinitial letters X1 6= Y1, whi
h satisfy QT (X) = QT (Y ) = Q. By assumption,
L(T ) is a subset of Ladm(K), so that the redu
ed words X, Y and X−1 · Yare admissible for the system of isometries K. By De�nition 4.6, {QK(X)}is the domain of X and Y , and thus is 
ontained in K. We dedu
e fromLemma 5.2 that j(QK(X)) = QT (X) = Q, and Q lies in K.27



(3) =⇒ (2): Let Z be a biin�nite indexed redu
ed word in the symboli
lamination LA(T ) de�ned by the dual lamination L(T ) of T (see �2.3). Thatis to say, Z = (Z−)−1 · Z+, written as a redu
ed produ
t, and QT (Z−) =
QT (Z+) is a point Q ∈ ΩA. For any n ∈ Z, we 
onsider the shift σn(Z) of
Z as in Remark 2.4. If u is the pre�x of Z+ of length n (or, if n < 0, thepre�x of Z− of length −n), then σn(Z) = (Z−)−1u·u−1Z+ and QT (u−1Z+) =
QT (u−1Z−) = u−1Q, and this is again a point of ΩA and thus 
ontained in K,by hypothesis. Therefore both, Z+ and Z− are admissible, and dom(Z+) =dom(Z−) = {Q}. Thus Z is an admissible biin�nite word of the system ofisometries K = (K,A), whi
h shows L(T ) ⊂ Ladm(K).(2) =⇒ (1): Sin
e the dual lamination L(T ) is a subset of the admissiblelamination Ladm(K), for any pair of distin
t in�nite words X, Y ∈ ∂F (A)the equality QT (X) = QT (Y ) implies that X−1Y is admissible, and fromDe�nition 4.6 we dedu
e QK(X) = QK(Y ). Thus the map QK : ∂FN → T̂ obs

Kfa
tors over the quotient map π : ∂FN → ∂FN/L2(T ) (see �2.6) to de�ne anequivariant map s : ∂FN/L2(T ) → T̂ obs
K .
∂FN

QK

����
��

��
��

��
��

��
��

��

QT

�� ��9
99

99
99

99
99

99
99

99
9

π
����

∂FN/L2(T )

s

yyssssssssss
ϕ

≃
%%KKKKKKKKKK

T̂ obs
K T̂ obs
TK

?�

OO

j //
T
?�

OO

Tmin
K

?�

OO

jmin
//
T
?�

OO

As the topology on ∂FN/L2(T ) is the quotient topology (see �2.6) andas QK is 
ontinuous (see Corollary 4.10), the map s is 
ontinuous. Sin
e
ϕ : ∂FN/L2(T ) → T̂ obs is a homeomorphism (see Theorem 2.10), we dedu
ethat the image of s is an FN -invariant 
onne
ted subtree of T̂ obs

K . Thereforethe image of s 
ontains the minimal subtree Tmin
K of TK.As a 
onsequen
e, for any point P in Tmin

K there exists an element X ∈
∂FN su
h that s(π(X)) = QK(X) = P . From Lemma 5.2 we obtain that28



jmin(P ) = j(QK(X)) = QT (X). By de�nition of the homeomorphism ϕ, onehas ϕ−1(jmin(P )) = π(X) and s(ϕ−1(jmin(P ))) = P . This proves that jmin isinje
tive.Sin
e j is 
ontinuous with respe
t to the metri
 topology, sin
e j maps
K isometri
ally, and sin
e TK = FNK, this implies that jmin is an isometry.

⊔⊓Re
all from �2.7 that the heart KA ⊂ T denotes the 
onvex hull of thelimit set ΩA of T with respe
t to the basis A. We denote by KA = (KA,A)the asso
iated system of partial isometries.We remark that, in the above theorem, the map QK may fail to be sur-je
tive onto TK if K is too large. And hen
e, j may fail to be inje
tive evenif the limit set ΩA is 
ontained in K. This is the reason why we 
onsideredthe minimal subtree Tmin
K of TK. However if K is exa
tly equal to the heart

KA we get the following 
orollary.Corollary 5.5. Let T be an R-tree with very small minimal FN -a
tion byisometries, and with dense orbits. Let A be a basis of FN , with heart KA.The map j : TKA
→ T is isometri
 and its image 
ontains T .Proof. By de�nition, for K = KA the three equivalent 
onditions of Theo-rem 5.4 are satis�ed.In the proof of impli
ation (2)⇒(3) of Theorem 5.4, we proved that ΩAis in the image of QK. In the proof of impli
ation (2)⇒(1), we proved thatthe image of QK is 
onne
ted and that j is inje
tive on the image of QK.Therefore KA is in the image of QK, and the map j : TKA

→ T isinje
tive. From the last paragraph of the proof of Theorem 5.4 we dedu
ethat j is isometri
. Finally, from the minimality of T we dedu
e that theimage of j 
ontains T . ⊔⊓We will now give an appli
ation of our main result to a spe
ial 
lass ofgroup a
tions on R-trees whi
h play an important role in what is often 
alledthe �Rips ma
hine�: A minimal R-tree T is 
alled geometri
 if there exists a�nite subtree K ⊂ T and a basis A of FN su
h that the map j : TK → Tis an isometry. It is proved in [GL95℄ that in this 
ase for any basis A one
an �nd su
h a �nite subtree K. For more information about geometri
 treesregarding the 
ontext of this paper see [GL95℄.29



Re
all from �2.7 that the heart KA ⊂ T denotes the 
onvex hull of thelimit set ΩA of T with respe
t to the basis A. We denote by KA = (KA,A)the asso
iated system of partial isometries.Corollary 5.6. A very small minimal R-tree T with dense orbits is geometri
if and only if, for any basis A of FN , KA is a �nite subtree of T .Proof. If T is geometri
, then by de�nition there is a �nite tree K ⊂ T su
hthat the map j : TK → T is an isometry. Thus 
ondition (1) of Theorem 5.4is satis�ed, and hen
e 
ondition (3) implies that KA is a subtree of K, andthus it is �nite.Conversely, if KA lies in T , the image of the map j de�ned on TKA
is
ontained in T ⊂ T , giving a map j : TKA

→ T whi
h by Corollary 5.5 isisometri
. By minimality of T , the map j is onto. ⊔⊓Referen
es[BF95℄ M. Bestvina, and M. Feighn. Stable a
tions of groups on realtrees. Invent. Math., 121(2):287�321, 1995.[BFH00℄ M. Bestvina, M. Feighn, and M. Handel. The Tits alternative for
Out(Fn). I. Dynami
s of exponentially-growing automorphisms.Ann. of Math. 151:517�623, 2000.[BH04℄ J. Buzzi, and P. Hubert Pie
ewise monotone maps without pe-riodi
 points: rigidity, measures and 
omplexity. Ergodi
 TheoryDynam. Systems 24:383�405, 2004.[Bow99℄ B. Bowdit
h. Treelike stru
tures arising from 
ontinua and 
on-vergen
e groups, Memoirs Amer. Math. So
. 662, 1999.[CHL05℄ T. Coulbois, A. Hilion, and M. Lustig. Non-uniquely ergodi
 R-trees are topologi
ally determined by their algebrai
 lamination.Preprint, 2005. (To appear in Illinois J. Math.)[CHL-I℄ T. Coulbois, A. Hilion, and M. Lustig. R-trees and laminationsfor free groups I: Algebrai
 laminations. ArXiv:math/0609416.[CHL-II℄ T. Coulbois, A. Hilion, and M. Lustig. R-trees and lamina-tions for free groups II: The lamination asso
iated to an R-tree.ArXiv:math/0702281. 30



[CL95℄ M. Cohen, and M. Lustig. Very small group a
tions on R-treesand Dehn twist automorphisms. Topology, 34:575�617, 1995.[CM87℄ M. Culler, and J. Morgan. Group a
tions on R-trees. Pro
. LondonMath. So
. 55:571�604, 1987.[Gab97℄ Damien Gaboriau. Générateurs indépendants pour les systèmesd'isométries de dimension un. Ann. Inst. Fourier (Grenoble),47(1):101�122, 1997.[GL95℄ D. Gaboriau and G. Levitt. The rank of a
tions on R-trees. Ann.S
i. É
ole Norm. Sup. 28, 549�570, 1995.[GLP94℄ D. Gaboriau, G. Levitt, and F. Paulin. Pseudogroups of isometriesof R and Rips' theorem on free a
tions on R-trees. Israel J. Math.,87(1-3):403�428, 1994.[HM06℄ M. Handel, and L. Mosher. Axes in Outer Spa
e.ArXiv:math/0605355[KL07℄ I. Kapovi
h, and M. Lustig. Interse
tion form, laminations and
urrents on free groups ArXiv:math/07114337[LL03℄ G. Levitt and M. Lustig. Irredu
ible automorphisms of Fn havenorth-south dynami
s on 
ompa
ti�ed outer spa
e. J. Inst. Math.Jussieu 2, 59�72, 2003.[LL04℄ G. Levitt and M. Lustig. Automorphisms of free groups haveasymptoti
ally periodi
 dynami
s. ArXiv:math/0407437.[LP97℄ Gilbert Levitt and Frédéri
 Paulin. Geometri
 group a
tions ontrees. Amer. J. Math., 119(1):83�102, 1997.[MS91℄ John W. Morgan and Peter B. Shalen. Free a
tions of surfa
egroups on R-trees. Topology, 30(2):143�154, 1991.[Sela97℄ Z. Sela. A
ylindri
al a

essibility for groups. Invent. Math.,129(3):527�565, 1997.[Sko96℄ R. Skora. Splittings of surfa
es. J. Amer. Math. So
. 9, 605�616,1996. 31


