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We consider the adiabatic pumping of charge through a mesoscopic one dimensional wire in
the presence of electron-electron interactions. A two-delta potential model is used to describe the
wire, which allows to obtain exactly the scattering matrix coefficients, which are renormalized by
the interactions. Two periodic drives, shifted one from another, are applied at two locations of
the wire in order to drive a current through it in the absence of bias. Analytical expressions are
obtained for the pumped charge, current noise, and Fano factor in different regimes. This allows
to explore pumping for the whole parameter range of pumping strengths. We show that, working
close to a resonance is necessary to have a comfortable window of pumping amplitudes where charge
quantization is close to the optimum value: a single electron charge is transferred in one cycle.
Interactions can improve the situation, the charge Q is closer to one electron charge and noise is
reduced, following a Q (1 − Q) behavior, reminiscent of the reduction of noise in quantum wires by
T (1−T ), where T is the energy transmission coefficient. For large pumping amplitudes, this charge
vanishes, noise also decreases but slower than the charge.

PACS numbers: 73.23.-b, 72.70.+m, 71.10.Pm, 05.60.Gg

I. INTRODUCTION

The suggestion that electrons can be supplied one by one by a mesoscopic circuit has been proposed over two
decades ago1. Instead of applying a constant bias voltage to the system, it is possible to supply a.c. gate voltages
which perturb the system periodically. Under certain conditions, the charge transferred from one lead to the other,
during one period, can be almost quantized. Adiabatic pumping of electrons could in principle be used in future
nanoelectronics schemes based on single electron transfer, and it also has applications to quantum information physics.
Over the years, theoretical approaches to this adiabatic pumping based on scattering theory have become available2,3,4.
These situations typically describe mesoscopic systems which are large enough, or sufficiently well connected to leads
that electronic interactions (charging effects for instance) can be discarded. Scattering theory has been applied4 to
calculate both the charge and noise in systems in the absence of electron-electron interactions.

On the experimental scene, Coulomb blockade effects have been successfully exploited to achieve pumping with
isolated quantum dots5. To our knowledge, pumping experiments which are not entirely based on Coulomb blockade,
where the shape of the electron wave functions is modified in an adiabatic drive are rather scarce. A recent study6

has dealt with the transport through an open quantum dot where such interactions are minimized.
Besides Coulomb blockade physics, the effect of electron-electron interactions in conductors with reduced dimension-

ality have been discussed by several authors. The case of strong interactions in a one dimensional quantum wire was
presented in Ref. 7, using Luttinger liquid theory. Alternatively, Ref. 8 discussed the opposite limit, where the effect
of weak interactions can be included in a scattering formulation of pumping using renormalized transmission/reflection
amplitudes9. However, the results for the pumped charge remain mostly numerical in this work.

The conditions under which pumping amplitude and interactions must be tuned to achieve quantized pumping are
not obvious. Many physical parameters enter this problem, such as the amplitude of the pumping potentials, the
phase difference between these, the possibility of a constant offset on these potentials, the overall conductance of the
unperturbed structure, and to what extent the strength of electron-electron interactions play a role. Analytical results
on this issues are highly desirable, as well as information about the noise.

With regard to the experiment of Ref. 6, there is clearly a need for further understanding the role of weak interactions
in such mesoscopic systems in the presence of pumping. The purpose of the present work goes in this direction, in
the sense that we provide analytical expressions for the pumped charge and the noise for a one dimensional wire
in the presence of interactions. This allows us to explore all pumping regimes10 (weak to strong pumping) and to
determine in which manner and to what extent the pumped charge can help to achieve single electron transfer. Besides
addressing the question of the ideal conditions for good charge quantization, we shall establish relationships between
charge and noise in different regimes. For concreteness, a two delta potential model will be used and interactions will
be added on top of it.
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II. PUMPED CHARGE AND NOISE

A. Adiabatic pumping in non interacting systems

Here, we recall the formula which was established for the charge transferred during the single period of an adiabatic
pumping cycle through a quasi one-dimensional system. The system is in general described by a potential V (x) con-
taining two internal parameters which are modulated periodically. The time dependence is assumed to be sufficiently
slow so that, although the scattering matrix depends on time, its variations are minute when an electron is scattered
in the mesoscopic wire. The result for the pumped charge is then independent of the frequency ω and, as derived in
Ref. 3, is given by

Q =
e

π

∫

A

ImΠ(X1, X2)dX1dX2, (1)

where the function Π(X1, X2) is defined as

Π(X1, X2) =
∂s∗11
∂X1

∂s11

∂X2
+

∂s∗12
∂X1

∂s12

∂X2
, (2)

s1i (i = 1, 2) are the elements of the scattering matrix s associated with V (x), and Xi = Xi(t) are the two external
parameters which are adiabatically varying (periodically) with time.

∫

A
denotes integration within the area encom-

passed by the contour A (in the X1–X2 plane). The above formula implicitly assumes that thermal effects are not
dominant.

Unitarity of the scattering matrix requires that its elements are parametrized in the following way:

s(E) = eiφ

(

−i
√

Reiθ
√

T√
T −i

√
Re−iθ

)

, (3)

where φ is the phase accumulated in a transmission event and θ is the phase characterizing the asymmetry between
the reflection from the left hand side and from the right hand side of the potential. Conservation of probabilities
imposes R + T = 1. We assume the quantities

√
R,

√
T , θ and φ to be functions of the Fermi energy EF and of the

external time-varying parameters Xi(t).
Using this parametrization, (see Eq. (2)), we get:

ImΠ(X1, X2) ==
1

2

(

∂T

∂X2

∂θ

∂X1
− ∂T

∂X1

∂θ

∂X2

)

. (4)

B. Inclusion of weak interactions

In the case of weak interactions, the transmission and the reflection amplitudes s12 and s11 can be calculated
in the presence of Coulomb interaction via a renormalization procedure9. High energy scales above a given cutoff
are eliminated. The high energy cutoff is lowered progressively. The renormalization has to be stopped when the

temperature becomes comparable to this cutoff. Finally, if s
(0)
12 and s

(0)
11 denote respectively, the transmission and

reflexion coefficient without interactions, s12 and s11 can be expressed in the form9:

s12 =
s
(0)
12 lα

√

1 + T0(l2α − 1)
, (5)

s11 =
s
(0)
11

√

1 + T0(l2α − 1)
, (6)

where l = kBΘ/D, where Θ is the temperature, kB the Boltzmann constant and D the original bandwidth. α is an
exponent related to the strength of the Coulomb interaction potential9. Specifically:

α =
Vc(2kF ) − Vc(0)

2πvF

, (7)

with Vc(q) the Fourier transform of the Coulomb potential at q = 2kF and q = 0, respectively. α = 0 corresponds

to the absence of electron-electron interactions. T0 = |s(0)
12 |2 represents the conductance of the wire in units of e2/h.

¿From now on, Q will denote the pumped charge with interactions and Q0 without interactions. The integrand of
Eq. (1) is therefore modified by the presence of the interactions.
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C. Two delta potential model and pumped charge

We specialize to the case where the time-dependent perturbations are two δ-like potentials:

Vp(x, t) =
~

2

2m
kF

[

X(t) δ(x + a) + Y (t) δ(x − a)
]

, (8)

with the amplitudes X(t) = Vi(t)/2kF and Y (t) = Vf (t)/2kF , where Vi() and Vf (t) have periodic time evolution with
the same period τ = 2π/ω and kF is the Fermi wavevector.

The expressions of s
(0)
12 and s

(0)
11 are needed, when the single particle Hamiltonian reads

H = −~
2k2/2m + Vp(x). (9)

The elements of the S-matrix in the absence of electron-electron interactions, are given by

s
(0)
11 =

[

(Y − X)sin(2kF a) − i
{

2X Y sin(2kF a) + (X + Y )cos(2kF a)
}

]

D
, (10)

s
(0)
12 =

1

D
, (11)

with

D =

(

1 − 2X Y sin2(2kF a) + i
[

X + Y + X Y sin(4kF a)
]

)

, (12)

and X = X/2, same for Y . s
(0)
21 = s

(0)
12 and s

(0)
22 is obtained by replacing Y by X in s

(0)
11 .

Instead of using the formula giving Q as a double integral3, we prefer to use it as a simple contour integral,2,8

Q =
e

2π

∫ 2π

ω

0

Im

[

(

∂s11

∂X
s∗11 +

∂s12

∂X
s∗12

)

dX

dt
+ X ↔ Y

]

dt. (13)

It is possible to simplify this formula. Expressing the matrix elements of s(E) in terms of R, T , θ and φ, (Eq. (3)),
and switching to variables X and Y , we get

Q0 =
e

2π

∫ 2π

ω

0

[( ∂φ

∂X
+ R

∂θ

∂X

) dX

dt
+ (X ↔ Y )

]

dt. (14)

Using then the relationship11,12 between the Green’s function and the s matrix elements, setting s̃
(0)
11 = e2ikF as

(0)
11 ,

s̃
(0)
12 = e2ikF as

(0)
12 and s̃

(0)
22 = e−2ikF as

(0)
22 ,

i
∂s̃

(0)
11

∂X
=
(

1 + s̃
(0)
11

)2

, (15)

i
∂s̃

(0)
12

∂X
= s̃

(0)
12

(

1 + s̃
(0)
11

)

, (16)

i
∂s̃

(0)
11

∂Y
=
(

s̃
(0)
12

)2

, (17)

i
∂s̃

(0)
12

∂Y
= s̃

(0)
12

(

1 + s̃
(0)
22

)

. (18)

Then, the following relations are obtained

∂φ

∂X
+ R

∂θ

∂X
= |(1 + s̃

(0)
11 )|2, (19)

∂φ

∂Y
+ R

∂θ

∂Y
= |s(0)

12 |2. (20)
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This leads to

Q0 = − e

2π

∫ 2π

ω

0

(

∣

∣

∣

∂ ln s
(0)
11

∂X

∣

∣

∣

2 dX

dt
+ T0

dY

dt

)

dt. (21)

Using the same method for Q, we obtain, in the presence of interactions

Q = Q0 −
e(l2α − 1)

2π

×
∫ 2π

ω

0

[

(

Im
{∂ ln s

(0)
11

∂X

}

−
∣

∣

∣

∂ ln s
(0)
11

∂X

∣

∣

∣

2
)

dX

dt
+

(

Im
{∂ ln s

(0)
11

∂Y

}

− T0

)

dY

dt

]

T0

1 + T0(l2α − 1)
dt. (22)

D. Noise

Ref. 13 studied adiabatic quantum pumping in the context of scattering theory. Their goal was to derive under
what conditions pumping could be achieved optimally, in a noiseless manner, with the assumption that the pumping
frequency is small compared to the temperature. This enabled the authors to derive expressions not only for the
pumped charge per cycle, but also for the pumped noise, the current-current correlation function, averaged over a
time which is long compared to the period of the adiabatic drive, at zero frequency. Specifically, the noise is defined
from the current-current time correlator:

S(t, t′) =
1

2
〈δI(t)δI(t′) + δI(t′)δI(t)〉, (23)

with δI = I − 〈I〉. This correlator is then averaged over n periods of the pumping drive with n large, and it is taken
at zero frequency by performing an integral over the remaining time argument. Setting τ0 = n 2π/ω,

S(Ω = 0) =
ω

2π n

∫ τ0

0

dt

∫ ∞

0

dt′S(t, t′). (24)

Ref. 4 extended the results of Ref. 13 to the case where this limiting assumption is relaxed, yielding a complete
description of the quantum statistical properties of an adiabatic quantum pump, albeit restricted to small pumping
amplitudes. Results made use of the generalized emissivity matrix. These results were generalized to arbitrary
pumping amplitudes by Ref. 14. Here, our goal is to address the question whether electron-electron interactions
affect the pumping noise and how. We shall be primarily interested in the case where temperature is much lower than
the pumping frequency. Note that it should not be too low otherwise, electron-electron interactions can no longer be
treated perturbatively7. Following formula (14) of Ref. 14 and applying their Eq. (15) without assuming that the
pumping amplitudes X(t) are small, it is possible to put the zero frequency noise S for arbitrary pumping amplitudes
into the form

S(Ω = 0) =
1

(2π~)2
e2

τ0

∫ τ0

0

dt

∫ ∞

−∞

d(t′ − t)

∫ ∞

−∞

f(−ǫ1)

∫ ∞

−∞

f(ǫ2)

×Tr
[

s(ǫ1, t)
∗T σzs(ǫ2, t)s(ǫ2, t

′)∗T σzs(ǫ1, t
′) − I

]

ei
(t−t

′)(ǫ1−ǫ2)
~ dǫ1dǫ2, (25)

where s(ǫ1, t) is the 2×2 S-matrix, for an incoming wave at energy ǫ1 + ǫF and value of the pumping parameter X(t).
τ0 is a time which is much larger than the period τ . ǫ1 = ~

2k2
1/2m− ǫF , where k1 is a wave vector and ǫF is the Fermi

energy ǫF = ~
2k2

F /2m. f is the Fermi-Dirac function. σz is the usual Pauli matrix and I the identity two by two
matrix. ∗T is the sign for transposed and conjugate. If s were independent on time, we would have s∗T = s†. Here,
s(ǫ1, t) is taken for fixed t and one takes the transposed and complex conjugate of the matrix, without14 changing
t into −t. ¿From now on, we work at zero temperature, so that f(−ǫ1) = 1 for ǫ1 > 0 and 0 otherwise. We set
ǫ′2 = −ǫ2 so that both ǫ1 and ǫ′2 will be positive. M is defined as

M(ǫ1, ǫ
′
2, t) = s(ǫ1, t)

∗T σzs(−ǫ′2, t). (26)

For zero temperature, S now reads

S =
e2

(2π~)2
limτ0→∞

∫ τ0

0

dt

τ0

∫ ∞

−∞

dt′
∫ ∞

0

dǫ1

∫ ∞

0

dǫ′2 Tr
{

M(ǫ1, ǫ
′
2, t)M(ǫ1, ǫ

′
2, t

′)∗T − I
}

e−i
(t−t

′)(ǫ1+ǫ
′

2)

~ . (27)
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Now, for large pumping amplitudes, the above formula needs to be rearranged, using the fact that X(t) is a periodic
function of period 2π/ω. Note that the dependence of M on ǫ1 and ǫ′2 prevents the direct use of fast Fourier
transform. Nevertheless, we can use the fact that, for given values of ǫ1 and ǫ′2, M(t) and M(t′) are periodic functions
of t. Switching to Fourier transform

M̂n(ǫ1, ǫ
′
2) =

ω

2π

∫ 2π

ω

0

M(ǫ1, ǫ
′
2, t) e−inωt dt, (28)

M(ǫ1, ǫ
′
2, t) =

+∞
∑

n=−∞

M̂n(ǫ1, ǫ
′
2) einωt. (29)

Performing the trace, we arrive at

S =
e2

2π~2

∫ ∞

0

dǫ1

∫ ∞

0

dǫ′2

∞
∑

n=−∞

(

|M̂1,1 n|2 + 2|M̂1,2n|2 + |M̂2,2 n|2 − 2δn,0

)

δ
(ǫ1 + ǫ′2

~
− nω

)

, (30)

where δn,0 is 1 if n = 0 and zero otherwise and M̂i,j n is the (i, j) element of matrix of M̂n(ǫ1, ǫ
′
2), where energy

dependences have been omitted to ease the notations.
When ~ω is much smaller than ǫF , formula (30) can be simplified. In this case, M(ǫ1, ǫ

′
2, t) will be different from

M(0, 0, t) only when ǫ1 or ǫ′2 are a non negligible fraction of ǫF . This occurs because M(0, 0, t) corresponds to
matrix M for incident wave and outgoing wave at energy ǫF . We denote by ǫ1F typical energies of the order ǫF .
ǫ1F will correspond to n of the order

(

ǫ1F /~ω
)

, which is very large. The Fourier transform M̂n(ǫ1, ǫ
′
2) will decrease

exponentially with n for large n. Thus, we can neglect the dependence on ǫ1 and ǫ′2 and replace them by zero, which
amounts to replacing the energies by ǫF , except in the argument of the δ function. Under these conditions, we have

S ≃ e2 ω

2π

[

∑

n≥1

n

(

|M̂11 n|2 + 2|M̂12 n|2 + |M̂22 n|2
)

]

. (31)

For numerical simulations however, we did not make this simplification and kept the dependence on ǫ1 and ǫ′2 of
Eq. (30).

III. DISCUSSION OF PHYSICAL RESULTS

We now illustrate these formula by computing the charge and noise. The two parameters of the drive X and Y
(Eq.(9)) are chosen to vary periodically according to:

X = X0 + η cos(ωt), (32)

Y = Y0 + η cos(ωt − φ), (33)

where X0 is a constant offset potential and φ a phase difference. Note that X , X0 and η are all dimensionless, see
eq.(8). To ensure maximal pumping, we shall specialize10 to φ = π/2.

A. Zero offset

First, the case without offset X0 = Y0 = 0 is studied. To look at the influence of interactions, we plot in Fig. 1 the
pumped charge in units of e, with interactions and without, versus the amplitude of the drive η, for an interaction
parameter l2α = 0.3 (moderate electron-electron interactions). There are three regimes: weak pumping, η ≪ 1,
intermediate pumping, η of order 1 and large pumping amplitudes, η ≫ 1. The current noise times 2π/ω, in the limit
of small ω, is plotted together on the same figure in units of e2. Analytically, for η ≪ 1, Q reads

Q =
e

4
sin(4kF a) l−2αη2. (34)

As noted in Ref. 8, in the weak pumping regime, charge Q is larger with interactions by a factor l−2α, see Fig.
2. Results of Ref. 4 for the noise, valid for weak pumping and no interactions can be adapted in a straightforward
fashion to the case with interactions. We find the following formula for the noise for weak pumping.

S = e2l−2αη2 ω

2π
. (35)
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η
Q

(2
 π

/ω
)

S

0. 5. 10. 15. 20.
0.

0.2

0.4

0.6

0.8

1.

1.2

1.4

FIG. 1: Q, charge with interactions, (solid line), Q0, charge without interactions, (dashed line), both in units of e. S, noise with
interactions, (dotted line) and S0 without, (dashed dotted line), multiplied by 2π/ω, in units of e2, vs. η. Essential parameters
are X0 = 0, no offset, l2α = 0.3, kF a = 0.5 and ~ω = 10−2ǫF .

l
2α

Q

0.2 0.4. 0.6. 0.8. 1.
0.02

0.04

0.06

0.08

0.090.09

Q
0

l
−2α

FIG. 2: Q, charge with interactions, (pluses), and Q0 l−2α, (upper dashed line), both in units of e vs. l2α, for η = 0.3, X0 = 0,
kF a = 0.5 and ~ω = 10−2ǫF .

The noise is thus increased by the same factor as the current. The Fano factor, defined as the ratio S/e〈I〉, is
4/sin(4kF a) and remains independent of the interactions, as long as we remain in the weak pumping regime. This
corresponds to the very left part of Fig. 1, for η smaller than 0.25, typically.

At intermediate pumping amplitudes, Q reaches a maximum value Qmax which is again larger than its non-
interacting analog Q0 max. This maximum is of the order of the single electron charge, but less than it. Meanwhile,
the noise decreases. This is a reminder of the reduction of the noise by a factor T (1 − T ), where T is the energy
transmission coefficient for electrons in quantum wires. This explains why the noise exhibits a first maximum around
η close to 1, since Q gets closer to one electron charge, noise will decrease. Then, for moderate amplitudes, η around
6, charge decreases and passes through the value 0.5e, this corresponds then to the second maximum of the noise.

For large, but not very large pumping amplitudes, typically η = 10, Q remains smaller than Q0 but behaves in the
same way, namely as η−3, as noted in Ref. 10. As a function of the interaction parameter, Q behaves as Q0l

2α. See
Fig. 3. For very large pumping amplitudes, (typically order 100 or more), Q becomes practically equal to Q0, Q−Q0

behaves as η−4, see appendix for details.
For the noise, we found numerically that S and its analog without interactions, S0, both decrease as η−2, much

slower than the charge. See below for analytical derivations. As concerns now the interaction dependence of the noise,
S is always smaller than S0, but for very large η, S tends towards S0. More precisely, for large but still reasonable η,
of the order 10 typically, S is almost equal to S0l

2α, whereas for very large η, of the order 100 or more, S and S0 are
practically the same. This is not surprising since Q and Q0 are then also practically equal in the end.

This dependence on the interaction parameter is shown in fig. 4. We have to plot (2π/ω)Sη2, vs. l2α, but the
overall factor 2π/ω is unimportant; the product Sη2 can be compared to both l2αS0η

2 and to S0η
2 for η = 15 and

η = 200. For η = 15, we see that η2S is fairly well approximated by η2S0l
2α. On the contrary, for η = 200, such a fit
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l2α

Q

0.2 0.4. 0.6. 0.8. 1.
4 10

−4

10
−3

1.5 10
−3

2 10
−3

2.2 10
−3

Q0 l2α

FIG. 3: Q, charge with interactions, (pluses), and Q0 l2α, (lower dashed line), both in units of e, vs. l2α, for η = 15, X0 = 0,
kF a = 0.5 and ~ω = 10−2ǫF . In this regime, Q is approximately larger than Q0 by a factor l−2α.

l2α

η
2

(2
 π

/ω
)

S

0.2 0.4. 0.6. 0.8. 1.
5

10

20

30

FIG. 4: (2π/ω) η2S, noise with interactions scaled by η2 and by the period, (+) and (2π/ω) η2S0l
2α, lower solid line, for

moderate η = 15. Also illustrated by the top two curves, is the very large pumping amplitude regime, (2π/ω) η2S (×) and
(2π/ω) η2S0 (∗), for very large η; η = 100. The top two curves are close to each other. An attempt to fit η2S by l2αη2S0

(dashed line) for η = 100, clearly fails for this regime of pumping amplitudes. kF a = 0.5 and ~ω = 10−2ǫF for all cases.

fails and instead, η2S is almost equal to η2S0.
The results at large η can be derived from analytical formula for the charge and noise. An expansion for large η is

performed, X and Y behave as η, except at particular points where X or Y are zero. See Appendix A for details.

B. Non-zero offset

We now turn to the case where X0 is non-zero, which enables to have regions where Q is almost quantized. There
are basically three cases, according to the value of kF a.

The first case corresponds to kF a = nπ/2 (rigorously), where n is an integer. In this case, it is impossible to pump
anything. The reason is given below. The second case corresponds to the case where kF a is small but non-zero, 0.1
typically. We first describe the behavior, then give numerical illustrations and last provide analytical justifications.
In this case, the charge is almost zero up to η = X0. It rises quickly around η =

√
2X0 and reaches a value close to

quantized e for a wide range of values of η. This is the quantized region of η. The width of this region can be shown
to scale approximately as (kF a)−1. After the end of this region, Q and Q0 first decrease abruptly and for even larger
values of η, decrease slower, as η−3. The noise in the quantized region and around it seems to be well approximated
by Q(1 − Q), reminiscent of the noise for fermions in narrow quantum wires. However, this does not last when η
becomes noticeably out of the region of almost quantized charge, since Q and Q0 behave as η−3, whereas S and S0

decay only as η−2.
Fig. 5 shows noise and charge with and without interactions, versus η for kF a = 0.1. Fig. 6 shows a comparison
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between S and a least square fit of the form C Q(1−Q), in the quantized charge regime, where C is the only adjustable
parameter. See captions for details. We now turn to analytical justifications of the previous assertions.

η

Q

S
(2

 π
/ω

)

0.0. 20. 40. 60. 80.

0.2

0.4

0.6

0.8

1.

1.2

1.4

FIG. 5: Q, (solid line), curve with a plateau for η between 28 and 43, (the quantized region), Q0, (dashed line). The two curves
with two spikes located at η around 28 and at η around 43 represent (2π/ω) S, (dotted line) and (2π/ω)S0, (dashed dotted
line), vs. η. Essential parameters are X0 = 20, l2α = 0.3, kF a = 0.1 and ~ω = 10−2ǫF . Electron charge e is set to 1. The solid
horizontal line of ordinate 1 and the thick vertical line at η = X0

√
2 ≃ 28.28 are guides to the eye.

η

S
(2

 π
/ω

)

20. 30. 45. 60. 80
0.

0.5

1.

1.4

FIG. 6: S (solid line), in units of e2, and best fit of the form C Q(1−Q) (dashed line) in the interval 20 ≤ η ≤ 45, for the same
situation as Fig. 5. The fit no longer works in the large pumping regime, for η between 45 and 80 here.

We now explain why pumping is impossible for kF a = nπ/2. Since sin(2kF a) = 0, the scattering matrix now

depends only on a single parameter, the combination (X + Y ), see eqs. (10-12), so we denote by s
(0) ′
ij its derivative

with respect to X + Y . Thus,

Q0 =
e

π

∫ 2π

ω

0

Im

[

(

2
∑

j=1

s
(0) ′
1j (X + Y ) s

(0) ∗
1j (X + Y )

)

]

d

dt
(X + Y ) dt = 0, (36)

because the bracket is just (1/2) d/d(X + Y )
(

|s(0)
11 |2 + |s(0)

12 |2
)

. Then, we look at the case when kF a is close to nπ/2,
but different from it. Clearly, when sin(2kF a) is small, for η|sin(kF a)| < 1, we will be back to the former case, so
Q0 can start to level noticeably from 0 only for η values larger than a critical value ηc1, which is proportionnal to
1/|sin(2kF a)|, independently of X0. There is at least another scale, namely X0. For X0 large, (typically larger than
10) and η smaller than X0, the pumping contour is a circle which does not enclose the origin and both transmission

s
(0)
12 and derivatives of the reflexion coefficients, ∂s

(0)
11 /∂X are small. Q0 will remain very small. Thus, to have a

significant Q0, one needs η > max
(

X0, 1/|sin(2kF a)|
)

, where max(x, y) is the larger of x and y. For even larger

η, when terms like sin(2kF a)X Y dominate over terms linear in X of Y , i.e.
(

|sin(2kF a)| η
)

≫ 1, it is possible to
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expand in η−1 and we are back to the large pumping regime where Q decays as η−3. So, for |sin(2kF a)| smaller than
X0, there will be a region between max(X0, C1/sin(2kF a)) and C2/sin(2kF a), where C1 and C2 are constants, where
Q0 is appreciable. These very qualitative arguments however do not prove that the charge is almost quantized in this
interval, whose width is of the order |sin(2kF a)|−1.

The third case corresponds to kF a not close to nπ/2. In this case, for large X0, Q is almost zero except in the

vicinity of a value ηc, which is very near
√

2X0; numerically it seems that ηc is always a little less than this value. The
maximum pumped charge is of order e but no longer close to one electron charge. Noise has a double peak structure
around ηc. A rough qualitative picture of this can be seen in Eq. (1) because, as soon as the integration contour does
not get close to the point X(t) = Y (t) = 0, for any t, the integrand in Eq. (13) is very small. An example is shown
in Fig 7.

η

Q

(2
 π

/ω
)

S

20. 30. 40. 45.
0.

0.5

1.

1.2

FIG. 7: Same as Fig. 5, except that kF a = 0.4. The solid horizontal line of ordinate 1 and the thick vertical line at abscissa
X0

√
2 are just guides to the eye.

IV. CONCLUSION

We have studied the influence of weak electron-electron interactions on pumped charge and noise in the adiabatic
regime, within the two delta potential barrier model. Analytical results were obtained for the charge and noise.
Results were analyzed numerically for local pumping fields with a harmonic dependence. Without any voltage offset,
at weak pumping amplitudes, interactions tend to enhance the pumped charge, as l−2α, where l is the interaction
parameter. For fairly large pumping amplitudes, it is exactly the reverse, Q and Q0 both decrease as η−3, but Q
remains smaller than Q0 by a factor l2α. At very large pumping amplitudes, Q and Q0 are practically the same. As to
the pumping noise, at weak amplitudes, it increases with interactions, but in the same way as the charge, so that, the
Fano factor remains constant, independent of the interactions. For moderate pumping amplitudes, noise has a double
peak structure around the maximum of pumped charge. For large amplitudes, the noise decreases slower than the
charge, as η−2, and for very large amplitudes, noise with and without interactions become approximately the same.

As emphasised in Ref. 8, interactions tend to make resonances sharper, which is conducive to obtaining an almost
quantized pumped charge. However, it is not sufficient to enclose a resonance, it is also necessary that the pumping
contour does not go too far from the resonance. Otherwise, the noise is appreciable and the signal Q can even be very
small.

In the case of constant offset X0, the behavior depends if we are close to a resonance, kF a = nπ/2 in this model.
Close to a resonance, there is a region of almost quantized pumped charge where the noise seems to follow a Q(1−Q)
behavior, reminiscent of the noise reduction in quantum wires for good transmission by a T (1 − T ) factor, where
T is the modulus of the energy transmision coefficient. Interactions do help in having a charge closer to e and to
reduce the noise. However, it does not change the range of pumping amplitudes, where quantized charge is observed,
i.e. the width of the quantized region practically does not depend on the interactions. Qualitative arguments seem
to indicate that this width scales as sin(2kF a)−1 close to kF a = nπ/2. Further from the resonance, the maximum
charge which can be pumped becomes of order, but less than e. Moreover, the region of quantized charge shrinks to
a narrow window of pumping amplitudes around a value close to X0

√
2.

In summary, our study of noise shows that interactions tend to increase the quality of pumping. However, two
conditions need to be met; first, to operate at certain wavevectors and second to have a pumping contour which
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encircles the resonant point, passing not very far from it. Otherwise, only noise is produced and the quantization of
the charge is not achieved. These restrictions were not pointed out in previous works.c
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APPENDIX A

In this appendix, we consider the limit of large pumping. In order to explain why, for offset X0 = 0, Q0 behaves
like η−3 at large η, we use Eq. (21). Let us look first at the terms involving dX/dt.

X, Y , as well as their time derivatives will be of order η, except at isolated particular points. The term
∣

∣

∣
∂ ln s

(0)
11 /∂X

∣

∣

∣

2

can be expanded in powers of 1/X and 1/Y :

∣

∣

∣

∣

∣

∂ ln s
(0)
11

∂X

∣

∣

∣

∣

∣

2

=
1

X
2 − cotan(2kF a)

X
3 +

3 cotan2(2kF a) − 1

4X
4 − 1 + cotan2(2kF a)

4X
2
Y

2 +
cotan2(2kF a) − 1

2X
3
Y

+ o(η−5). (A1)

All terms multiplied by dX/dt and then, integrated over one period give zero. Note that a term like 1/(X
4
Y ), which

is in η−5, would not give 0. Thus, for large η, the term proportionnal to dX/dt in Q, behaves at least as η−3.
For the term involving dY /dt, the situation is simpler. dY /dt goes as η, but since D goes as η2, T0 goes as η−4,

thus this term is at least in η−3.
Now the remainder of contributions to Q−Q0 behave at least like η−4 for large η; it can be seen from (22). For large

η, since T0 goes as η−4, the quantity T0/(1 + T0(A
2α − 1)) is practically equivalent to T0 ∼ η−4. Im{∂ ln s

(0)
11 /∂X}

goes as η−1 for large η. The same holds for Im{∂ ln s
(0)
11 /∂Y }. In the integral in the r.h.s. of (22), Im{∂ ln s

(0)
11 /∂X}

is larger, by η, than |(∂ ln s
(0)
11 /∂X)|2. Then, Im{∂ ln s

(0)
11 /∂X} is of order η−1 whereas T0 is of order η−4. Finally, the

integrand is at least of order Im{∂ ln s
(0)
11 /∂X}(dX/dt)T0, or Im{∂ ln s

(0)
11 /∂Y }(dY /dt)T0, which are both at least of

order η−1 × η × η−4 ∼ η−4.

We now evaluate the behavior of the noise for large η. When ω ≪ ǫF , only the low order Fourier components of

η(t) are important. ǫ1 and ǫ′2 will be much smaller than ǫF . At ǫ1 = ǫ′2 = 0, s
(0)
11 ≃ −e−2ikF a

(

1 + i/X + o(η−2)
)

and

s
(0)
22 is the same but X is replaced by Y . s

(0)
12 = −(1/2X Y )

(

1 + i cotan(2kF a)
)

+ o(η−3). As a result, in Eq. (30),

s(ǫ1, t)
∗T σzs(ǫ2, t) = σz + o(η−2), the same holds for s(ǫ2, t

′)∗T σzs(ǫ1, t
′), so that the trace is o(η−2), which yields S

of order η−2, at least.
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