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A CONVERGENT FINITE ELEMENT-FINITE VOLUME

SCHEME FOR THE COMPRESSIBLE STOKES PROBLEM

PART I – THE ISOTHERMAL CASE

T. GALLOUËT, R. HERBIN, AND J.-C. LATCHÉ

Abstract. In this paper, we propose a discretization for the (nonlinearized)
compressible Stokes problem with a linear equation of state ρ = p, based on
Crouzeix-Raviart elements. The approximation of the momentum balance is
obtained by usual finite element techniques. Since the pressure is piecewise
constant, the discrete mass balance takes the form of a finite volume scheme, in
which we introduce an upwinding of the density, together with two additional
stabilization terms. We prove a priori estimates for the discrete solution, which
yields its existence by a topological degree argument, and then the convergence
of the scheme to a solution of the continuous problem.

1. Introduction

The problem addressed in this paper is the system of the so-called barotropic
compressible Stokes equations, which reads:

− ∆u+ ∇p = f(1.1a)

div(ρu) = 0(1.1b)

ρ = ̺(p)(1.1c)

where ρ, u and p stand for the density, velocity and pressure in the flow, respec-
tively, and f is a forcing term. The function ̺ is the equation of state used for
the modelling of the particular flow at hand, which may be the actual equation of
state of the fluid or may result from assumptions concerning the flow. Here, we
only consider the following relation, which corresponds to an isothermal flow of a
perfect gas:

(1.2) ̺(p) = A p

where A is a positive constant. Since the sound velocity is defined by c2 = dp/dρ,
A = Ma2/V 2, where Ma is the Mach number and V is a characteristic velocity of
the flow. This system of equations is posed over Ω, a bounded domain of R

d, d ≤ 3
supposed to be polygonal (d = 2) or polyhedral (d = 3). It is supplemented by
homogeneous boundary conditions for u, and by prescribing the total mass M of
the fluid:

(1.3)

∫

Ω

ρ dx = M
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where M is a positive real number.

In this paper, we study a numerical scheme for the solution of this problem,
which combines low order finite element and finite volume techniques, and is very
close to a scheme which was proposed for the solution of barotropic Navier-Stokes
equations in [10] and further extended to two-phase flows in [11]; the resulting
code is today currently used at the French Institut de Radioprotection et de Sûreté
Nucléaire (IRSN) for ”real-life” studies in the nuclear safety field. Up to now,
stability (in the sense of conservation of the entropy) is known for these schemes,
and numerical experiments show convergence rates close to one in natural energy
norms. Our goal is now to prove their convergence. This work is the first one in
this direction, and we address here the probably simplest toy problem, restricting
ourselves to the steady case, to creeping flows (i.e. omitting the convection term in
the momentum balance equation) and to a linear equation of state. The extension
to laws where ρ varies linearly with p1/γ , where γ > 1 is a coefficient which is
specific to the considered fluid, which are typically obtained for isentropic flows
of perfect gases, is the object of a further paper (part II of the present one); the
additional difficulty posed by this further study is to prove the strong convergence
for the density, which necessitates to adapt P.L. Lions’ “effective pressure trick”
[16] at the discrete level. Finally, for the sake of simplicity, we use here a simplified
form of the diffusion term (−∆u) but it is clear from the subsequent developements
that the presented theory holds for any linear elliptic operator (and in particular
for the usual form of the viscous term for compressible constant viscosities flows).

The finite element - finite volume discretization which is chosen here is moti-
vated by the fact that we wish the approximate density to be positive, as in the
continuous model, in order to be compatible with the physics. Moreover, the proof
of convergence of a numerical approximation to (1.1) requires estimates on both
velocity and pressure or density, and the density positivity is very useful to obtain
these estimates. A classical way to ensure positivity is to use a finite volume up-
winding technique in the discretization of the term div(ρu). This technique is easily
set up if the discrete velocities are located on the edges and densities and pressures
at the cell centres, which is the reason why we choose the Crouzeix-Raviart finite
elements for the velocities and cell centred finite volumes for the densities.

This paper is organized as follows. The discretization is first described (section
2), and we prove an L2 compactness result for sequences of Crouzeix-Raviart func-
tions with bounded broken H1 semi-norm (section 3). Then the proposed scheme
is given (section 4), and the above-mentioned compactness result yields the conver-
gence of (sub-)sequences of discrete solutions to a limit, thanks to a priori estimates
which are given in section 5. Finally, this limit is shown to be a solution to the
continuous problem in section 6.

To our knowledge, this convergence proof is the first one for the genuine (non-
linear) compressible Stokes problem; a linearized version of this system is adressed
in previous works [12, 13, 14, 15, 1].

2. Discrete spaces and relevant lemmata

Let T be a decomposition of the domain Ω in simplices. By E(K), we denote
the set of the edges (d = 2) or faces (d = 3) σ of the element K ∈ T ; for short,
each edge or face will be called an edge hereafter. The set of all edges of the mesh
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is denoted by E ; the set of edges included in the boundary of Ω is denoted by Eext

and the set of internal ones (i.e. E \ Eext) is denoted by Eint. The decomposition T
is supposed to be regular in the usual sense of the finite element literature (e.g. [3]),
and, in particular, T satisfies the following properties: Ω̄ =

⋃

K∈T K̄; if K, L ∈ T ,
then K̄ ∩ L̄ = ∅, K̄ ∩ L̄ = ∅ is a vertex of the mesh or K̄ ∩ L̄ is a common edge of K
and L, which is denoted by K|L. For each internal edge of the mesh σ = K|L, nKL
stands for the normal vector of σ, oriented from K to L (so that nKL = −nLK). By
|K| and |σ| we denote the measure, respectively, of the element K and of the edge
σ, and hK and hσ stand for the diameter of K and σ, respectively. We measure
the regularity of the mesh through the parameter θ defined by:

(2.1) θ = inf {
ξK
hK

; K ∈ T } ∪ {
hL
hK

,
hK
hL

; σ = K|L ∈ Eint},

where ξK stands for the diameter of the largest ball included in K. Note that the
following inequality holds:

(2.2) hσ |σ| ≤ 2 θ−d |K|, ∀K ∈ T , ∀σ ∈ E(K).

Indeed, this relation is derived by noting that hσ |σ| ≤ hdK and |K| ≥ c ξdK with
c = π/4 in 2D and c = π/6 in 3D; it will be used throughout this paper. Finally,
as usual, we denote by h the quantity maxK∈T hK .

The space discretization relies on the Crouzeix-Raviart element (see [4] for the
seminal paper and, for instance, [5, p. 199–201] for a synthetic presentation). The
reference element is the unit d-simplex and the discrete functional space is the space
P1 of affine polynomials. The degrees of freedom are determined by the following
set of nodal functionals:

(2.3) {Fσ, σ ∈ E(K)} , Fσ(v) = |σ|−1

∫

σ

v dγ.

The mapping from the reference element to the actual one is the standard affine
mapping. Finally, the continuity of the average value of the discrete functions (i.e.,
for any function v, Fσ(v)) across each face of the mesh is required, thus the discrete
space Vh is defined as follows:

(2.4)
Vh = { v ∈ L2(Ω) : v|K ∈ P1(K), ∀K ∈ T ; Fσ(v) continuous

across each edge σ ∈ Eint; Fσ(v) = 0, ∀σ ∈ Eext}.

The space of approximation for the velocity is the space Wh of vector valued func-
tions each component of which belongs to Vh: Wh = (Vh)

d. The pressure is ap-
proximated by the space Lh of piecewise constant functions:

Lh =
{
q ∈ L2(Ω) : q|K = constant, ∀K ∈ T

}
.

Since only the continuity of the integral over each edge of the mesh is imposed,
the functions of Vh are discontinuous through each edge; the discretization is thus
nonconforming in H1(Ω)d. We then define, for 1 ≤ i ≤ d and v ∈ Vh, ∂h,i v as the
function of L2(Ω) which is equal to the (piecewise constant) derivative of v with
respect to the ith space variable almost everywhere. This notation allows to define
the discrete gradient, denoted by ∇h, for both scalar and vector valued discrete
functions and the discrete divergence of vector valued discrete functions, denoted
by divh.
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The Crouzeix-Raviart pair of approximation spaces for the velocity and the pres-
sure is inf-sup stable, in the usual sense for ”piecewise H1” discrete velocities, i.e.
there exists ci > 0 independent of the mesh such that:

∀q ∈ Lh, sup
v∈Wh

∑

K∈T

∫

K

q divv dx

||v||1,b
= sup

v∈Wh

∫

Ω

q divhv dx

||v||1,b
≥ ci ||q − qm||L2(Ω) ,

where qm is the mean value of q over Ω and || · ||1,b stands for the broken Sobolev
H1 semi-norm, which is defined for any function v ∈ Vh or v ∈Wh by:

||v||21,b =
∑

K∈T

∫

K

|∇v|2 dx =

∫

Ω

|∇hv|
2 dx.

This broken Sobolev semi-norm is known to control the L2 norm by an extended
Poincaré inequality [19, proposition 4.13], in the sense that for any function v ∈ Vh,
||v||1,b ≤ c ||v||L2(Ω) where the real number c only depends on the computational
domain.

We also define a discrete semi-norm on Lh, similar to the usual finite volume
discrete H1 semi-norm, weighted by a mesh-dependent coefficient:

∀q ∈ Lh, |q|2T,β =
∑

σ∈Eint,
σ=K|L

(hK + hL)β
|σ|

hσ
(qK − qL)2.

From the definition (2.3), each velocity degree of freedom can be associated to
an element edge. Consequently, the velocity degrees of freedom are indexed by the
number of the component and the associated edge, thus the set of velocity degrees
of freedom reads:

{uσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.

We denote by φσ the usual Crouzeix-Raviart shape function associated to σ, i.e.
the scalar function of Vh such that Fσ(φσ) = 1 and Fσ′(φσ) = 0, ∀σ′ ∈ E \ {σ}.

Similarly, each degree of freedom for the pressure is associated to a cell K, and
the set of pressure degrees of freedom is denoted by {pK , K ∈ T }.

Finally, we define by rh the following interpolation operator:

(2.5)

rh : H1
0(Ω) −→ Vh

v 7→ rhv =
∑

σ∈E

Fσ(v)φσ =
∑

σ∈E

|σ|−1

(∫

σ

v dγ

)

φσ.

This operator naturally extends to vector-valued functions (i.e. to perform the
interpolation from H1

0(Ω)d to Wh), and we keep the same notation rh for both the
scalar and vector case. The properties of rh are gathered in the following lemma.
They are proven in [4].

Lemma 2.1. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1). The interpolation operator rh
enjoys the following properties:

(1) Preservation of the divergence:

(2.6) ∀v ∈ H1
0(Ω)d, ∀q ∈ Lh,

∫

Ω

q divh(rhv) dx =

∫

Ω

q divv dx.
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(2) Stability:

(2.7) ∀v ∈ H1
0(Ω), ||rhv||1,b ≤ c1(θ0) |v|H1(Ω) .

(3) Approximation properties:

(2.8)
∀v ∈ H2(Ω) ∩ H1

0(Ω), ∀K ∈ T ,

||v − rhv||L2(K) + hK ||∇h(v − rhv)||L2(K) ≤ c2(θ0)h
2
K |v|H2(K) .

In both above inequalities, the notation ci(θ0) means that the real number ci
only depends on θ0, and, in particular, not on the parameter h characterizing the
size of the cells; this notation will be kept throughout the paper.

The following lemma is known (e.g. [5, lemma 3.32]); we give its (elementary)
proof for the sake of completeness.

Lemma 2.2. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1), and Vh be the space of Crouzeix-
Raviart discrete functions associated to T , as defined by (2.4). Then there exists a
real number c(θ0) such that the following bound holds for any v ∈ Vh:

∑

σ∈E

1

hσ

∫

σ

[v]2 dγ ≤ c(θ0) ||v||
2
1,b ,

where, on any σ ∈ Eint, [v] stands for the jump of v across σ and, on any σ ∈ Eext,
[v] = v.

Proof. For any control volume K of the mesh, we denote by (∇v)K the (constant)
gradient of the restriction of v to K. With this notation, using the continuity of v
across σ at the mass center xσ of any internal edge and the fact that v vanishes at
the mass center xσ of any external edge, we get:

∑

σ∈E

1

hσ

∫

σ

[v]2 dγ =
∑

σ∈Eint,
σ=K|L

1

hσ

∫

σ

(((∇v)K − (∇v)L) · (x− xσ))
2

dγ

+
∑

σ∈Eext,
σ∈E(K)

1

hσ

∫

σ

((∇v)K · (x− xσ))
2

dγ.

We thus have:
∑

σ∈E

1

hσ

∫

σ

[v]2 dγ ≤ 2
∑

σ∈Eint,
σ=K|L

hσ |σ| (|(∇v)K |2 + |(∇v)L|
2) +

∑

σ∈Eext,
σ∈E(K)

hσ |σ| |(∇v)K |2.

and the result follows by regularity of the mesh. �

The proof of the following trace lemma can be found in [21, section 3].

Lemma 2.3. Let T be a given triangulation of Ω and K be a control volume of T ,
hK its diameter and σ one of its edges. Let v be a function of H1(K). Then the
following inequality holds:

||v||L2(σ) ≤

(

d
|σ|

|K|

)1/2
(
||v||L2(K) + hK ||∇v||L2(K)

)
.
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We will also need the following Poincaré ineqality:

(2.9) ∀K ∈ T , ∀v ∈ H1(K), ||v − vm,K ||L2(K) ≤
1

π
hK ||∇v||L2(K) .

where vm,K stands for the mean value of v over K. This relation is proven for any
convex domain in [18].

We are now in position to prove the following technical result.

Lemma 2.4. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1); let (aσ)σ∈Eint be a family of real
numbers such that ∀σ ∈ Eint, aσ ≤ 1 and let v be a function of the Crouzeix-Raviart
space Vh associated to T . Then the following bound holds:

∑

σ∈Eint

∣
∣
∣
∣

∫

σ

aσ [v] f dγ

∣
∣
∣
∣
≤ c(θ0)h ||v||1,b |f |H1(Ω) , ∀f ∈ H1

0(Ω).

where the real number c(θ0) only depends on θ0 and on the domain Ω.

Proof. Since the integral of the jump across any edge of the mesh of a function of
Vh is zero, we have, for any σ ∈ Eint:

∫

σ

aσ [v] f dγ =

∫

σ

aσ [v] (f − fσ) dγ,

where fσ is any real number. Using the Cauchy-Schwarz inequality, first in L2(σ)
then in R

card(E) we thus get:

∑

σ∈Eint

∣
∣
∣
∣

∫

σ

aσ [v] f dγ

∣
∣
∣
∣

≤
∑

σ∈Eint

[∫

σ

[v]2 dγ

]1/2 [∫

σ

(f − fσ)
2 dγ

]1/2

≤

[
∑

σ∈Eint

1

hσ

∫

σ

[v]2 dγ

]1/2 [
∑

σ∈Eint

hσ

∫

σ

(f − fσ)
2 dγ

]1/2

︸ ︷︷ ︸

T1

.

By lemma 2.2, the first term of the latter product is bounded by c(θ0) ||v||1,b . For
the second one, choosing arbitrarily one adjacent simplex to each edge and applying
the above trace lemma 2.3, we get:

T 2
1 ≤

∑

σ∈Eint
(σ∈E(K))

2d hσ
|σ|

|K|

(

||f − fσ||
2
L2(K) + h2

K ||∇f ||2L2(K)

)

.

Choosing for fσ the mean value of f on K and using (2.9), we thus get:

T 2
1 ≤

∑

σ∈Eint
(σ∈E(K))

2d (1 +
1

π2
)hσ

|σ|

|K|
h2
K ||∇f ||2L2(K) .

and the result follows by observing that the H1 semi-norm of f on K appears at
most (d+ 1) times in the summation and using the regularity of the mesh. �
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3. A compactness result

The aim of this section is to state and prove a compactness result for || · ||1,b
bounded sequences of discrete functions. We begin by a preliminary lemma.

Lemma 3.1. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1); for σ ∈ E, let χσ be the function
defined by:

χσ : R
d × R

d −→ {0, 1}

(x,y) 7→ χσ(x,y) = 1 if [x,y] ∩ σ 6= ∅, χσ(x,y) = 0 otherwise,

where x and y are two points of R
d. Then there exists a family of positive real

numbers (dσ)σ∈E such that:

(1) for any σ ∈ E, dσ = c1(θ0) hσ,
(2) for any points x and y of R

d (possibly located outside Ω), the following
inequality holds:

∑

σ∈E

χσ(x,y) dσ ≤ c2(θ0) (|y − x| + h)

Proof. We first deal with the two-dimensional case and with quasi-uniform meshes
(i.e. the bound we first prove blows up when maxK∈T (h/hK) tends to infinity).

Let T be a triangulation of a two-dimensional domain Ω, K a triangular cell
of T and σ an edge of K. Without loss of generality, we suppose that σ is the
segment (0, hσ) × 0 and we denote by ξK the diameter of the largest ball included
in K and by hK the diameter of K. We denote by zσ the opposite vertex to σ;
the first coordinate of zσ is necessarily lower than hK while its second coordinate
is necessarily greater than ξK (in the opposite case, no ball of diameter ξK would
be included in K). It thus follows (see figure 1):

(1) that the rectangular domain ωσ = (hσ/3, 2hσ/3) × (0, hσξK/(12hK)) is
included in K,

(2) that, if the similar construction is performed for another edge σ′ of K to
obtain ωσ′ , ωσ and ω′

σ do not intersect.

We denote by dσ the quantity dσ = hσξK/(12hK). We thus have dσ ≥ (θ/12) hσ,
where θ is the parameter defined by 2.1.

We now perform this construction for each edge σ of the mesh. If σ ∈ Eext, there
is only one possible choice for K (the adjacent cell to σ); if σ ∈ Eint, σ = K|L, we
choose either K or L. Let x and y be two points of R

2. Let t(x,y) be the vector
given by:

t(x,y) =
y − x

|y − x|

and n(x,y) a normal vector to t(x,y). We denote by S(x,y) the rectangle defined by:

S(x,y) =
{
x+ ξ1 t(x,y) + ξ2 n(x,y), ξ1 ∈ (−h, |y − x| + h), ξ2 ∈ (−h, +h)

}

For each edge intersected by the segment [x,y] (i.e. for each edge σ such that
χσ(x,y) = 1), the rectangle ωσ is included in S(x,y); thus, since these domains ωσ
and ωσ′ are disjoint:

∑

σ∈E

χσ(x,y) |ωσ| ≤ |S(x,y)|
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K

ωσ ξK
hσ

12 hK

ωσ′

σ
′

b

zσ

b

(
hσ
3
, 0)

b

(
2 hσ
3
, 0)

hσ

≥ ξK

≥ ξK
hσ

3 hK

Figure 1. Notations for the control volume K

and thus:
∑

σ∈E

χσ(x,y)
1

3
dσ hσ ≤ 2 h (|y − x| + 2h),

which concludes the proof if maxK∈T (h/hK) is supposed to be bounded.

The extension to the three-dimensional case is straightforward, since it only
necessitates to adapt the construction of the domains ωσ. Finally, giving up the
assumption that maxK∈T (h/hK) is bounded only needs a more careful definition
of the domain S(x,y), replacing the parameter h by a local value. �

The following bound provides an estimate of the translates of a discrete function
v as a function of ||v||1,b .

Lemma 3.2. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1); let Vh be the space of Crouzeix-
Raviart discrete functions associated to T , as defined by (2.4). Let v be a function
of Vh; we denote by ṽ the extension by zero of v to R

d. Then the following estimate
holds:

∀η ∈ R
d, ||ṽ(· + η) − ṽ(·)||2L2(Rd) ≤ c(θ0) |η| (|η| + h) ||v||21,b .

Proof. We follow the proof of a similar result for piecewise constant functions,
namely [6, Lemma 9.3, pp. 770-772]. Let η ∈ R

d be given, v be a Crouzeix-Raviart
discrete function and ṽ its extension by zero to R

d. With the definition of the



A FE-FV SCHEME FOR THE ISOTHERMAL COMPRESSIBLE STOKES PROBLEM 9

function χσ of Lemma 3.1, the following identity holds for any x ∈ R
d:

ṽ(x+ η) − ṽ(x) =
∑

σ∈E

χσ(x,x+ η) [v](yx,η,σ)

︸ ︷︷ ︸

T1(x)

+

∫ 1

0

∇hṽ(x+ sη) · η ds

︸ ︷︷ ︸

T2(x)

where yx,η,σ stands for the intersection between the line issued from x and of
direction η and the hyperplane containing σ. Defining for each edge σ of the mesh
a real positive number dσ such that Lemma 3.1 holds, by the Cauchy-Schwarz
inequality, we get for T1(x):

(T1(x))2 ≤

(
∑

σ∈E

χσ(x,x+ η)
[v](yx,η,σ)

2

dσ

)(
∑

σ∈E

χσ(x,x+ η) dσ

)

Integrating now over R
d, we thus obtain:

∫

Rd

(T1(x))2 dx ≤ c2(θ0) (|η| + h)

(
∑

σ∈E

∫

Rd

χσ(x,x+ η)
[v](yx,η,σ)

2

dσ
dx

)

Let Qσ,η = {x = y + sη;y ∈ σ and s ∈ [−1, 0]}. Noting that the function x 7→
χσ(x,x+ η) is in fact the characteristic function of Qσ,η, we get that:

∫

Rd

χσ(x,x+ η)
(
[v](yx,η,σ)

)2
dx =

∫

Qσ,η

(
[v](yx,η,σ)

)2
dx

= |nσ · η|

∫ 0

−1

∫

σ

([v](y))
2
dy ds,

where nσ is a unit normal vector to σ. Therefore:
∫

Rd

(T1(x))2 dx ≤ c2(θ0) (|η| + h) |η|
∑

σ∈E

1

dσ

∫

σ

([v](y))
2
dy,

and thus, by choice of dσ:

(3.1)

∫

Rd

(T1(x))2 dx ≤
c2(θ0)

c1(θ0)
(|η| + h) |η|

∑

σ∈E

1

hσ

∫

σ

([v](y))
2
dy.

On the other hand, by the Cauchy-Schwarz inequality, we have for T2:

(T2(x))2 ≤ |η|2
∫ 1

0

|∇hṽ(x+ sη)|2 ds,

and thus, using the Fubini theorem and remarking that ∇hṽ vanishes outside Ω,
we get:

(3.2)

∫

Rd

(T2(x))2 dx ≤ |η|2 ||v||21,b .

The result then follows thanks to the inequality |ṽ(x+ η) − ṽ(x)|2 ≤ 2(T1(x))2 +
2(T2(x))2, to the bounds (3.1) and (3.2) and to Lemma 2.2. �

We are now in position to state the following compactness result.

Theorem 3.3. Let (v(m))m∈N be a sequence of functions satisfying the following
assumptions:
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(1) ∀m ∈ N, there exists a triangulation of the domain T (m) such that v(m) ∈

V
(m)
h , where V

(m)
h is the Crouzeix-Raviart space associated to T (m) defined

by (2.4), and the parameter θ(m) characterizing the regularity of T (m) is
bounded away from zero independently of m,

(2) the sequence (v(m))m∈N is uniformly bounded with respect to the broken
Sobolev H1 semi-norm, i.e.:

∀m ∈ N, ||v(m)||1,b ≤ C

where the real number C does not depend on m and || · ||1,b stands for the

broken Sobolev H1 semi-norm associated to T (m) (with a slight abuse of
notation, namely dropping for short the index (m) pointing the dependence
of the norm with respect to the mesh).

Then, possibly up to the extraction of a subsequence, the sequence (v(m))m∈N con-
verges strongly in L2(Ω) to a limit v̄ such that v̄ ∈ H1

0(Ω).

Proof. The result follows from the translates estimates of lemma 3.2. The com-
pactness in L2(Ω) of the sequence is a consequence of the Kolmogorov theorem (see
e.g. [6, theorem 14.1, p. 833] for a statement of this result). The fact that the
limit belongs to H1

0(Ω) follows from the particular expression for the bound of the
translates and is proven in [6, theorem 14.2, pp. 833-834]. �

4. The numerical scheme

Let ρ∗ be the mean density, i.e. ρ∗ = M/|Ω| where |Ω| stands for the measure of
the domain Ω. We consider the following numerical scheme for the discretization
of Problem (1.1):

∀v ∈Wh,

∫

Ω

∇hu : ∇hv dx−

∫

Ω

p divhv dx =

∫

Ω

f · v dx,(4.1a)

∀K ∈ T ,
∑

σ=K|L

(

v+
σ,K ̺(pK) − v−

σ,K ̺(pL)
)

+ hα |K| (̺(pK) − ρ∗)
︸ ︷︷ ︸

Tstab,1

(4.1b)

+
∑

σ=K|L

(hK + hL)β
|σ|

hσ
|̺(pK) + ̺(pL)| (̺(pK) − ̺(pL))

︸ ︷︷ ︸

Tstab,2

= 0,

where v+
σ,K and v−

σ,K stands respectively for v+
σ,K = max(vσ,K , 0) and v−

σ,K =

−min(vσ,K , 0) with vσ,K = |σ|uσ · nKL = v+
σ,K − v−

σ,K . Note that the up-

winded convection term
∑

σ=K|L

(

v+
σ,K ̺(pK) − v−

σ,K ̺(pL)
)

may also be written:
∑

σ=K|L vσ,Kρσ, with

(4.2) ρσ =

{

ρK if vσ,K ≥ 0,

ρL otherwise.

Equation (4.1a) may be considered as the standard finite element discretization of
(1.1a). Since the pressure is piecewise constant, the finite element discretization of
(1.1b), i.e. the mass balance, is similar to a finite volume formulation, in which we
introduce the standard first-order upwinding and two stabilizing terms. The first
one, i.e. Tstab,1, guarantees that the integral of the density over the computational
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domain is alwaysM (this can easily be seen by summing the second relation forK ∈
T ). The second one, i.e. Tstab,2, is useful in the convergence analysis. It may be seen
as a finite volume analogue of a continuous term of the form div (|ρ|∇ρ) weighted by
a mesh-dependent coefficient tending to zero as hβ ; note, however, that hσ is not the
distance which is usually encountered in the finite volume discretization of diffusion
terms; consequently, the usual restriction for the mesh when diffusive terms are to
be approximated by the two-points finite volume method (namely,the Delaunay
condition) is not required here. We suppose that α ≥ 1 and the convergence
analysis uses 0 < β < 2.

Remark 4.1. At first glance, leaving the weight |ρ| out, the stabilization term Tstab,2

may look as a Brezzi-Pitkäranta regularisation [2], as used in [8] for stabilizing the
colocated approximation of the Stokes problem, which would be rather puzzling
since we use here an inf-sup stable pair of approximation spaces. However, using
the equation of state (1.2), we obtain:

Tstab,2 = A2
∑

σ=K|L

(hK + hL)β
|σ|

hσ
|pK + pL| (pK − pL)

which shows, since A2 = Ma4, that this term rapidly vanishes when approaching
the incompressible limit.

5. Existence of a solution and a priori estimates

The existence of a solution to (4.1) follows, with minor changes to cope with
the diffusion stabilization term, from the theory developed in [10, section 2]. In
this latter paper, it is obtained for fairly general equations of state by a topological
degree argument. We only give here the obtained result, together with a proof of
the a priori estimates verified by the solution, and we refer to [10] for the proof of
existence.

Theorem 5.1. Let θ0 > 0 and let T be a triangulation of the computational domain
Ω such that θ ≥ θ0, where θ is defined by (2.1). Problem (4.1) admits at least one
solution (u, p) ∈Wh × Lh; any possible solution satisfies pK > 0, ∀K ∈ T and:

(5.1) ||u||1,b + ||p||L2(Ω) + ||ρ||L2(Ω) + |ρ|T ,β ≤ C(f ,M)

where C(f ,M) ∈ R only depends on Ω, A, f , M and θ0.

Proof. Let (u, p) ∈ Wh × Lh be a solution to (4.1). Let ρK = ̺(pK) for any
K ∈ T , and let ρ denote the vector (ρK)K∈T . A natural ordering of the equations
and unknowns in (4.1b) leads to a linear system of the form Mρ = c, where c ∈ R

N ,
N is the number discretization cells, c ∈ R

N , c > 0, and where M is an M–matrix
(in particular M−1 ≥ 0 and M−t ≥ 0). Therefore the i-th component of ρ reads
ρi = M−1c · ei = c ·M−tei where ei is the i-th canonical basis vector of R

N . Since
M−t ≥ 0, we get M−tei ≥ 0, and since M−tei 6= 0, this proves that ρi > 0, which,
in turns, yields pK > 0, ∀K ∈ T . Let us then prove the estimate (5.1). To this
end, we take v = u in (4.1a) and obtain:

(5.2)

∫

Ω

|∇hu|
2 dx−

∫

Ω

p divhu dx =

∫

Ω

f · udx.

Let us then multiply (4.1b) by A−1[1 + log(ρK)] (see remark 5.2 below for an
explanation of this choice) and we sum over K ∈ T ; dropping the terms which
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vanish by conservativity, we then obtain:

T1 + T2 + T3 = 0 with:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T1 = A−1
∑

K∈T

log(ρK)
∑

σ=K|L

(

v+
σ,K ρK − v−

σ,K ρL

)

,

T2 = A−1 hα
∑

K∈T

|K| [1 + log(ρK)] [ρK − ρ∗] ,

T3 = A−1
∑

K∈T

log(ρK)
∑

σ=K|L

(hK + hL)β
|σ|

hσ
(ρK + ρL) (ρK − ρL) ,

where the term |̺(pK)+̺(pL)| has been replaced by ̺(pK)+̺(pL) in (4.1b), thanks
to the positivity of the pressure. Let us first write T1 as:

T1 = A−1
∑

K∈T

log(ρK)
∑

σ=K|L

vσ,K ρσ,

where ρσ is the upwind choice defined by (4.2). Adding and substracting the same
quantity, T1 equivalently reads:

T1 = A−1
∑

K∈T

ρK
∑

σ=K|L

vσ,K +A−1
∑

K∈T

∑

σ=K|L

vσ,K(ρσ log(ρK) − ρK).

In the first summation, we recognize

∫

Ω

p divhu dx. A reordering of the second

summation yields:

T1 =

∫

Ω

p divhudx+A−1
∑

σ∈Eint,
σ=K|L

vσ,K [(ρσ log(ρK) − ρK) − (ρσ log(ρL) − ρL)] .

Let ρ̄σ be defined by

{

ρ̄σ = ρK = ρL if ρK = ρL,

ρ̄σ log(ρK) − ρK = ρ̄σ log(ρL) − ρL otherwise.

With this notation, we get:

T1 =

∫

Ω

p divhu dx+A−1
∑

σ∈Eint,
σ=K|L

vσ,K (ρσ − ρ̄σ) (log(ρK) − log(ρL)).

In the last summation, we can, without loss of generality, choose the orientation
of each edge in such a way that vσ,K ≥ 0. With this convention, the term in the
summation reads vσ,K (ρK− ρ̄σ) (log(ρK)− log(ρL)), and is non-negative thanks to
the fact that ρσ ∈ [min(ρK , ρL), max(ρK , ρL)] and the log function is increasing.
We thus finally obtain:

(5.3) T1 ≥

∫

Ω

p divhu dx.

Let us now turn to the estimate of T2. Since the function z 7→ z log(z) is convex
for positive z and its derivative is z 7→ 1 + log(z), we simply have:

(5.4) T2 ≥ A−1 hα
∑

K∈T

|K| [ρK log(ρK) − ρ∗ log(ρ∗)] .
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Finally, reordering the sums, the term T3 reads:

T3 = A−1
∑

σ∈Eint,
σ=K|L

(hK + hL)β
|σ|

hσ
(ρK + ρL) (ρK − ρL) (log(ρK) − log(ρL)) .

By concavity of the log function, we have:

| log(ρK) − log(ρL)| ≥
1

max(ρK , ρL)
|ρK − ρL|,

and thus:

(5.5) T3 ≥ A−1
∑

σ∈Eint,
σ=K|L

(hK + hL)β
|σ|

hσ
(ρK − ρL)

2
.

Summing equations (5.2)–(5.5) and using Young’s inequality, we obtain:

||u||1,b +A−1/2 |ρ|T ,β ≤ C(f ,M).

Furthermore, summing (4.1b) over K ∈ T , we obtain that the mean value of the
pressure pm is given by:

pm =
1

|Ω|

∫

Ω

p dx = A−1 ρ∗.

Using the inf-sup stability of the discretization, we get on the other hand:

||p− pm||L2(Ω) ≤
1

ci
sup

v∈Wh

1

||v||1,b

∫

Ω

p divhv dx

=
1

ci
sup

v∈Wh

1

||v||1,b

∫

Ω

(∇hu : ∇hv − f · v) dx,

and the control of ||p||L2(Ω) (or, equivalently, ||ρ||L2(Ω) ) follows from the estimate
for ||u||1,b . �

Remark 5.2 (On the choice of (log(ρK))K∈T as test function). At first glance,
the choice of log(ρK) to multiply (4.1b) in the preceding proof may seem rather
puzzling. In fact, this computation is a particular case of the so-called ”elastic
potential identity”, which is well-known in the continuous setting and is central
in a priori estimates for the compressible Navier-Stokes equations [16, 17, 9]. An
analogous identity is proven at the discrete level, for the same discretization as
here, in [10, theorem 2.1].

For the particular case under consideration, an elementary explanation of this
choice may be given. Indeed, it is crucial in the above proof that the quantity
ρ̄σ lies in the interval [min(ρK , ρL), max(ρK , ρL)]. Let us suppose, without loss of
generality, that 0 < ρK < ρL and that, instead of the log function, the computation
is performed with a non-specified increasing ond continuously differentiable function
f ; then we get:

ρ̄σ =
ρL − ρK

f(ρL) − f(ρK)
.

The condition ρ̄σ ≥ ρK is equivalent to:

1

ρK
≥
f(ρL) − f(ρK)

ρL − ρK
,
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which is verified for f = log by concavity of the latter and, letting ρL tend to ρK ,
yields f ′(x) ≤ 1/x. Conversely, the condition ρ̄σ ≤ ρL yields:

1

ρL
≤
f(ρL) − f(ρK)

ρL − ρK
,

which, once again, is verified by the log function, and now implies f ′(x) ≥ 1/x.
This limitation for the choice of the test function is the reason for the expression

of the stabilizing diffusion term.

6. Convergence analysis

In this section, we prove the following convergence result.

Theorem 6.1. Let (T (m))m∈N be a sequence of triangulations of Ω such that h(m)

tends to zero when m tends to +∞. Let us assume that this sequence is regular
in the sense that there exists θ0 > 0 such that θ(m) ≥ θ0, ∀m ∈ N, where θ(m) is

defined by (2.1). For m ∈ N, we denote by W
(m)
h and L

(m)
h the discrete velocity

and pressure spaces associated to T (m) and by (u(m), p(m)) ∈W
(m)
h ×L

(m)
h the cor-

responding solution to (4.1), with α ≥ 1 and 0 < β < 2. Then, up to a subsequence,
the sequence (u(m))m∈N strongly converges to a limit ū in L2(Ω)d and (p(m))m∈N

converges to p̄ weakly in L2(Ω), where the pair (ū, p̄) is a solution to (1.1) in the
following weak sense:

ū ∈ H1
0(Ω)d, p̄ ∈ L2(Ω) and :
∫

Ω

∇ū : ∇ψ dx−

∫

Ω

p̄ divψ dx =

∫

Ω

f ·ψ dx, ∀ψ ∈ C∞
c (Ω)d,(6.1a)

∫

Ω

p̄ ū · ∇ψ dx = 0, ∀ψ ∈ C∞
c (Ω),(6.1b)

∫

Ω

̺(p̄) = M.(6.1c)

Proof. The proof is divided in three steps: we first show the existence of the limits
ū and p̄, then we pass to the limit in (4.1a) and (4.1b). Since the equation of
state is linear, the last equation is then a straightforward consequence of the weak
convergence in L2(Ω) of the (sub)sequence (p(m))m∈N to p̄.

Step 1: existence of a limit.

By the a priori estimates of theorem 5.1, we know that: ∀m ∈ N, ||u(m)||1,b ≤
C(f ,M). The compactness in L2(Ω)d of the sequence (u(m))m∈N, together with
the fact that the limit ū lies in H1

0(Ω)d, thus follows by applying theorem 3.3 to

each component u
(m)
i , 1 ≤ i ≤ d. Once again by theorem 5.1, we have: ∀m ∈

N, ||p(m)||L2(Ω) ≤ C(f ,M). which is sufficient to ensure a weak convergence in

L2(Ω) of the sequence (p(m))m∈N to p̄ ∈ L2(Ω).

Step 2: passing to the limit in (4.1a).

Let ψ be a function of C∞
c (Ω)d. We denote by ψ(m) the interpolation of ψ inW

(m)
h ,

i.e. ψ(m) = r
(m)
h ψ where the operator r

(m)
h is defined by (2.5). Taking v = ψ

(m) in



A FE-FV SCHEME FOR THE ISOTHERMAL COMPRESSIBLE STOKES PROBLEM 15

(4.1a), we get:

∫

Ω

∇hu
(m) : ∇hψ

(m) dx−

∫

Ω

p(m) divhψ
(m) dx =

∫

Ω

f · ψ(m) dx, ∀m ∈ N.

Since the considered interpolation operator preserves the divergence (2.6), we have:

∫

Ω

p(m) divhψ
(m) dx =

∫

Ω

p(m) divψ dx −→

∫

Ω

p̄ divψ dx as m −→ +∞.

By the approximation properties of the interpolation operator (2.8) invoked com-
ponent by component, we have:

∫

Ω

f ·ψ(m) dx −→

∫

Ω

f ·ψ dx as m −→ ∞.

Finally, we have:

∫

Ω

∇hu
(m) : ∇hψ

(m) dx =
∫

Ω

∇hu
(m) : ∇h(ψ

(m) −ψ) dx

︸ ︷︷ ︸

T
(m)
1

+

∫

Ω

∇hu
(m) : ∇ψ dx

︸ ︷︷ ︸

T
(m)
2

Once again by (2.8), the term T
(m)
1 obeys the following estimate:

|T
(m)
1 | ≤ ||u(m)||1,b ||ψ(m) −ψ||1,b ≤ c(θ0)h

(m) ||u(m)||1,b |ψ|H2(Ω) ,

and thus tends to zero as m tends to +∞. Integrating by parts over each control

volume, the term T
(m)
2 reads:

T
(m)
2 = −

∫

Ω

u(m) · ∆ψ dx+
∑

σ∈E
(m)
int

∫

σ

[u(m)] ∇ψ · nσ dγ,

where nσ is a normal vector to σ, with the same orientation as that of the jump
through σ. Applying Lemma 2.4 for each component of ∇ψ, aσ being the relevant
component of the normal vector nσ, we get:

∑

σ∈E
(m)
int

∫

σ

[u(m)] ∇ψ · nσ dγ ≤ c(θ0)h
(m) ||u(m)||1,b |ψ|H2(Ω) ,

and thus tends to zero, while the first one tends to −
∫

Ω ū · ∆ψ dx as m tends to

+∞. Since ū ∈ H1
0(Ω)d, we may integrate by parts, and collecting the limits, we

obtain (6.1a).

Step 3: passing to the limit in (4.1b).

Let ψ be a function of C∞
c (Ω). Multiplying the second equation of (4.1) by

1/|K|
∫

K ψ(x) dx and summing overK ∈ T yields T
(m)
3 +T

(m)
4 +T

(m)
5 = 0, ∀m ∈ N,
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with:

T
(m)
3 =

∑

K∈T (m)

1

|K|




∑

σ=K|L

v
(m)
σ,K ρ(m)

σ





∫

K

ψ dx

T
(m)
4 = (h(m))α

∑

K∈T (m)

|K|
(

ρ
(m)
K − ρ∗

)

ψK

T
(m)
5 =

∑

K∈T (m)




∑

σ=K|L

(hK + hL)β
|σ|

hσ

(

ρ
(m)
K + ρ

(m)
L

) (

ρ
(m)
K − ρ

(m)
L

)



 ψK ,

where ρ
(m)
σ is defined by (4.2) and ψK stands for the mean value of ψ over K.

Let q(m) ∈ Wh be defined as q(m)(x) =
∑

σ∈E
(m)
int

u
(m)
σ ρ

(m)
σ φσ(x), where φσ is

the Crouzeix-Raviart basis function associated to σ. The divergence of q(m) is a
piecewise constant function and reads:

∀K ∈ T (m), divq(m) =
1

|K|

∑

σ=K|L

v
(m)
σ,K ρ(m)

σ a.e. in K.

We thus have for T
(m)
3 :

T
(m)
3 =

∑

K∈T (m)

∫

K

ψ divq(m) dx.

Integrating by parts over each control volume, we get:

T
(m)
3 = −

∫

Ω

∇ψ · q(m) dx+
∑

σ∈E
(m)
int

∫

σ

ψ [q(m)] · nσ dγ

= −

∫

Ω

∇ψ · (ρ(m) u(m)) dx

+
∑

σ∈E
(m)
int

∫

σ

ψ [q(m)] · nσ dγ

︸ ︷︷ ︸

T
(m)
6

+

∫

Ω

∇ψ · (q(m) − ρ(m) u(m)) dx

︸ ︷︷ ︸

T
(m)
7

.

By the respectively weak and strong convergence of (ρ(m))m∈N and (u(m))m∈N to
ρ̄ and ū in L2(Ω) and L2(Ω)d, we have:

∫

Ω

∇ψ · (ρ(m) u(m)) dx −→

∫

Ω

∇ψ · (ρ̄ ū) dx as m −→ +∞.

By the definition of q(m), the term T
(m)
6 reads:

T
(m)
6 =

∑

σ∈E
(m)
int

∫

σ

ψ [
∑

σ′∈E
(m)
int

u
(m)
σ′ ρ

(m)
σ′ φσ′ (x)] · nσ dγ = T

(m)
8 + T

(m)
9 .
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with:

T
(m)
8 =

∑

σ∈E
(m)
int

∫

σ

ψ ρ(m)
σ [

∑

σ′∈E
(m)
int

u
(m)
σ′ φσ′ (x)] · nσ dγ

=
∑

σ∈E
(m)
int

ρ(m)
σ

∫

σ

ψ [u(m)] · nσ dγ

T
(m)
9 =

∑

σ∈E
(m)
int

∫

σ

ψ [
∑

σ′∈E
(m)
int \{σ}

u
(m)
σ′ (ρ

(m)
σ′ − ρ(m)

σ )φσ′ (x)] · nσ dγ.

Since the integral of the jump of a Crouzeix-Raviart function over an internal edge

of the mesh vanishes, the term T
(m)
8 can be estimated as follows:

|T
(m)
8 | ≤ cψ h

(m)
∑

σ∈E
(m)
int

ρ(m)
σ

∫

σ

∣
∣
∣[u(m)] · nσ

∣
∣
∣ dγ,

where cψ only depends on ψ. Using the Cauchy-Schwarz inequality then yields:

|T
(m)
8 | ≤ cψ h

(m)
∑

σ∈E
(m)
int

|σ|1/2 ρ(m)
σ

(∫

σ

| [u(m)] |2 dγ
)1/2

≤ cψ h
(m)
( ∑

σ∈E
(m)
int

hσ |σ| (ρ
(m)
σ )2

)1/2( ∑

σ∈E
(m)
int

1

hσ

∫

σ

| [u(m)] |2 dγ
)1/2

.

By the regularity of the mesh, the first summation is bounded by ||ρ(m)||L2(Ω)

while, by Lemma 2.2, the second one is bounded by c(θ0) ||u(m)||21,b . Let us now

turn to the study of T
(m)
9 . Since, for σ′ ∈ E

(m)
int \ {σ}, the integral of φσ′ over σ

vanishes, and since the functions φσ are bounded (namely |φσ| ≤ 1 in 2D, |φσ| ≤ 2
in 3D) we get:

∫

σ

ψ (ρ
(m)
σ′ − ρ(m)

σ ) [φσ′ (x)] u
(m)
σ′ · nσ dγ ≤ cψ hσ |σ| |ρ

(m)
σ′ − ρ(m)

σ | |u
(m)
σ′ |,

where cψ still only depends on ψ. Since the function φσ′ is non-zero over σ = K|L
only when σ′ belongs to the edges of K or L, only a limited number of terms are

non-zero in T
(m)
9 , in such a way that the difference ρ

(m)
σ′ − ρ

(m)
σ only involves two

neigbouring cells or two cells sharing the same neighbour. Splitting the difference
in this last case, using the previous inequality and the regularity of the mesh (in
particular the fact that the ratio of the size of two neighbouring cells is bounded)

and reordering the sums, we get for T
(m)
9 an estimate of the form:

|T
(m)
9 | ≤ c

∑

σ∈E
(m)
int

hdσ |u(m)
σ |

∑

σ′∈Nσ

(σ′=K|L)

|ρ
(m)
K − ρ

(m)
L |,

where the positive real number c only depends on ψ and the regularity of the mesh
and, thanks to this regularity, the set Nσ is such that a given edgeK|L only appears
in this sum a number of times bounded independently of m. Thus, thanks to the
Cauchy-Schwarz inequality, we have:

|T
(m)
9 |2 ≤ c

( ∑

σ∈E
(m)
int

hdσ |u(m)
σ |2

) ( ∑

σ∈E
(m)
int

(σ=K|L)

hdσ

(

ρ
(m)
K − ρ

(m)
L

)2)

.
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By the regularity of the mesh, the first term of this product is controlled by
||u(m)||L2(Ω) and the second one by (h(m))2−β |ρ(m)|T ,β . Consequently, thanks

to estimate (5.1), both T
(m)
8 and T

(m)
9 and thus also T

(m)
6 tend to zero as m tends

to +∞, for any β < 2.

Let us then examine the term T
(m)
7 :

T
(m)
7 =

∑

K∈T (m)

∫

K

∑

σ=K|L

(ρ(m)
σ − ρ

(m)
K )φσ(x)u(m)

σ · ∇ψ(x) dx

Since ∇ψ is bounded in L∞(Ω)d, and since the functions φσ are bounded, we get:

|T
(m)
7 | ≤ cψ

∑

K∈T (m)

|K|
∑

σ=K|L

|ρ(m)
σ − ρ

(m)
K | |u(m)

σ |.

Reordering the summations and using the Cauchy-Schwarz inequality yields:

|T
(m)
7 | ≤ cψ

∑

σ∈E
(m)
int

(σ=K|L)

(|K| + |L|) |ρ
(m)
K − ρ

(m)
L | |u(m)

σ | ≤ cψ

(

T
(m)
10

)1/2 (

T
(m)
11

)1/2

,

with:

T
(m)
10 =

∑

σ∈E
(m)
int

(σ=K|L)

(|K| + |L|) |u(m)
σ |2

T
(m)
11 =

∑

σ∈E
(m)
int

(σ=K|L)

hσ (hK + hL)(1−β) |K| + |L|

|σ| (hK + hL)
(hK + hL)β

|σ|

hσ
(ρ

(m)
K − ρ

(m)
L )2.

Once again reordering the summation, we get:

T
(m)
10 =

∑

K∈T

|K|
∑

σ∈EK

|u(m)
σ |2,

and thus, the term T
(m)
10 is controlled by ||u(m)||L2(Ω) , and T

(m)
11 is controlled by

(h(m))2−β |ρ(m)|T ,β . By the a priori estimate (5.1), T
(m)
7 thus tends to zero for any

β < 2.

We now turn to the terms T
(m)
4 and T

(m)
5 . Since the sequence (ρ(m))m∈N is bounded

in L2(Ω), the term T
(m)
4 tends to zero for any α > 0. Reordering the summation in

T
(m)
5 , we get:

T
(m)
5 =

∑

σ∈E
(m)
int

(σ=K|L)

(hK + hL)β
|σ|

hσ

(

ρ
(m)
K + ρ

(m)
L

) (

ρ
(m)
K − ρ

(m)
L

)

(ψK − ψL) .

By regularity of ψ, |ψK − ψL| ≤ cψ (hK + hL) and thus:

|T
(m)
5 | ≤ cψ

∑

σ∈E
(m)
int

(σ=K|L)

(hK + hL)β+1 |σ|

hσ

(

ρ
(m)
K + ρ

(m)
L

) ∣
∣
∣ρ

(m)
K − ρ

(m)
L

∣
∣
∣ .
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Using the Cauchy-Schwarz inequality, we obtain:

|T
(m)
5 | ≤ cψh

β/2








∑

σ∈E
(m)
int

(σ=K|L)

(hK + hL)2
|σ|

hσ

(

ρ
(m)
K + ρ

(m)
L

)2








1/2

|ρ(m)|T ,β ,

which, once again since the sequence (ρ(m))m∈N is bounded in L2(Ω), tends to zero
by regularity of the mesh for β > 0. The proof is thus complete. �

7. Discussion

To our knowledge, the convergence analysis performed in this paper seems to be
the first result of this kind for the compressible Stokes problem (and, of course, more
widely, for the compressible Navier-Stokes equations). Beside the convergence of the
scheme, it also provides an existence result for solutions of the continuous problem,
which could also be derived from the continuous existence theory ingredients for
the steady Navier-Stokes equations (see [17] and references therein), but does not
seem to be a direct consequence of the published literature: existence of strong
solutions of the Navier-Stokes equations is known only for small data (e.g. [20])
and existence of weak solutions is only proven for a particular class of equations of
state (typically, p = ργ with γ > 3/2), this limitation being due to the presence of
the convection term.

A puzzling fact is that the present theory relies on two ingredients which are
usually not present in actual implementations. Firstly, the stabilisation term Tstab,2

is needed in our proof to ensure the convergence of the discretization of the mass
convection flux div(ρu) and, to our knowledge, has never been introduced elsewhere.
Secondly, the control of the pressure in L2(Ω) relies on the stability of the discrete
gradient (i.e. the satisfaction of the so-called discrete inf-sup condition), which is
not verified by colocated discretizations; note that this argument is not needed for
the stability of the scheme (see the proof of a priori estimates here and [10, 7] for
stability studies of schemes for the Navier-Stokes equations). Assessing the effective
relevance of these requirements for the discretization should deserve more work in
the future.

An easy extension of this work consists in replacing the diffusive term −∆u in
(1.1a) by its complete expression −µ∆u− µ/3 ∇(divu) with µ > 0 (i.e. the usual
form of the divergence of the shear stress tensor in a constant viscosity compress-
ible flow). Another less straightforward issue is the extension to more general state
equations (for instance, p = ργ with γ > 1); it will be the topic of a further pa-
per. Concerning higher order issues, let us note that the fact that the pressure
is approximated by a piecewise constant function appears crucial in both stability
and convergence proofs: extending this study to higher degree finite element dis-
cretizations thus certainly represents a difficult task. Finally, let us remark that
the present scheme relies on the approximation of the whole velocity vector at the
interfaces. A less expensive scheme would be possible with a discretization u ·n at
the interfaces, as in the MAC scheme which is well known for the incompressible
Navier-Stokes equations. However, such a discretization does not seem straightfor-
ward on unstructured meshes.
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