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Abstract

This paper describes a method to verify safety properties of parameterized networks
of processes defined by network grammars. The method is based on the construc-
tion of a network invariant, defined as a fixpoint. We propose heuristics, based on
Cousot’s extrapolation techniques (widening), which often allow suitable invariants
to be automatically constructed. We successively consider linear and binary tree net-
works. These techniques have been implemented in a verification tool, and several
non-trivial examples are presented.

Key words: model-checking, parameterized networks, synchronous observers,
widening.

1 Introduction

1.1 Parameterized Networks

Parameterized networks are infinite families of processes with regular struc-
ture, finitely generated from a finite number of basic processes. For instance,
a family F of linear networks is generated from a multiset {P;,..., P,} of
processes in one-one correspondence with a multiset {x1,..., X,} of binary
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composition operators over processes, in the following way:
Vi=1...n, P,eF and PeF = Px,P, e F

In [MG91,SG89], contert-free network grammars are used to define more gen-
eral networks. Such a grammar is a tuple ' =< T, N, R, S > where:

T ={P,...,P,} is a finite set of basic processes.

N is a set of non-terminals. Each non-terminal defines a sub-network.

R is a finite set of production rules of the form p : A — B x, C, where
A € N,and B,C € TUN, and x, is a binary composition operator
(depending on the rule p).

e S € N is the start symbol that represents the network generated by the
grammar.

The set F of processes generated by the grammar is the set of processes
generated by the rules from the start symbol.

1.2 Network Invariants

A parameterized network F satisfies a property ¢, if ¢ is fulfilled by any
process in F:

FEp < VPeF, PEy

[AKS86] established the following negative result about the verification of pa-
rameterized networks:

F = ¢ is undecidable, even in the case where each basic process is finite
state, i.e., where P = ¢ is decidable for each P € F.

Decidable subcases have been identified [EN95,EN96|, but they are quite re-
strictive. Several attempts [KM89,WL89,HLR92| were made to extend model-
checking techniques [QS82,CES86]| to verify general networks generated from
finite-state basic processes. These approaches use an induction principle, which
can be expressed as follows in the case of linear networks:

e Let < be a preorder relation over processes, such that
P2QANQREy = PgEy
e Define a network invariant to be a process I satisfying

Vi=1...m, Ix; P =<1



e Find a network invariant I, such that Vi =1...n, P, < I. Then
IEp = VPeF,PEyp

In the general case of networks generated by grammars, an invariant 74 has
to be associated with each non-terminal A, in such a way that, for each pro-
duction rule A — B x, C, one has

IB Xp IC =< IA
(where Ip = P when P is a basic process). Then,

]S)ZQOZ>\V/P€.7:,P)ZQO

1.8 Automatic Verification

Practically, the verification of a parameterized network raises two problems:

(1) How to express the desired property ¢ independently of the number of
component processes?
(2) How to find suitable network invariants (/p)pen, if such invariants exist ?

In [CGJ95], nice solutions were proposed to both of these problems: first, they
solve problem (1) by noticing that a state of a process in F is a multiset of
basic process states (this idea is also used in [KMM™'97,FO97]); they propose
to consider such a state as a word on the alphabet of basic process states, and
to specify a set of states as a language on this alphabet. Then, they consider
the temporal logic VCTL*, where such regular languages are basic propositions.
For this logic, a suitable choice for < is the simulation preorder. For solving
problem (2), they propose a very clever method, based on the construction of
the syntactic monoid [Eil74] of a regular language, to build network invariants

(Ip)pen-

Let us comment about this proposal: the language-based specification tech-
nique is surely well-suited to linear networks of processes, where a state of
a compound process is naturally handled as a tuple of basic process states.
It may be less easy to specify in this way more complex structures, where a
compound state could be, for instance, a tree (as it is generally the case when
the family F is generated by a network grammar). In this paper, we pro-
pose another specification method, based on synchronous observers [HLR93].
A synchronous observer is a process that is able to observe the behavior of
another process without changing this behavior. In our approach, a state prop-
erty is expressed by providing each basic process with an observer, taking as
input the input/output behavior of its associated basic process, together with



observations provided by the observers of its “neighbor processes” in the net-
work. For the time being, we restrict ourselves to safety properties, and we
use trace inclusion preorder.

Concerning the construction of the network invariant, the method proposed in
[CGJ95] can raise the following problem: if the synthesized invariants (I4) s4en
do not satisfy the desired property ¢, the method does not provide any way to
look for better invariants. In this paper, we first state the problem of invariant
synthesis as the resolution of a fixpoint equation. Then we propose a set of
heuristics, based on Cousot’s widening techniques [CC77,CC92], to compute
such fixpoints. The point is that the heuristic can be arbitrarily refined to get
better invariants.

1.4  Summary of the Paper

The paper is organized as follows. In section 2, we define the basic notions,
including network observers. Section 3 states the problem of finding suitable
invariants as the resolution of least fixpoint equations. Since the computation
of these least fixpoints is generally untractable, a greatest fixpoint character-
ization of linear network invariants is introduced in section 4. In section 5,
an extrapolation technique is presented to approximate this greatest fixpoint.
Section 6 and 7 extends the computation of greatest fixpoints to tree networks.

Preliminary  versions  of  this work  have  been  published
in [LHR96,LHR97,Les97].

2 Basic definitions

2.1 Traces, and processes

The model of process we have in mind is that of synchronous languages [Hal93],
like ESTEREL [BG92|, ARGOS [Mar92], STATECHARTS [Har87], or LUSTRE
[HCRPI1]. A behavior of a process is a sequence of steps, each step resulting
in an event, i.e., a set of present signals®. So, if X is a set of signals, we define
a trace on X to be a (finite or infinite) sequence 7 = (79, ... , 7y, - . . ) of subsets
of X. Let ©x denote the set of traces on X.

3 In practice, these signals are partitioned into input signals (emitted by the envi-
ronment) and output signals, emitted by the process, but, in general, we will not
need to make this distinction.



We will not define a very precise notion of process. We just need to define
the semantics of a process P to be the set Tp of its traces. Since we are only
interested in safety properties, we will assume Tp to be prefix-closed. P is
reqular if Tp is a regular language.

Let X and X' be two disjoint sets of signals, and 7 € ©x and 7" € Ox be
two traces of the same length. Then, 7 ® 7’ is a trace on X U X', defined by

! ! !
TOT =(MUTy,... ,TaUT,,...)

This operation is extended to sets of traces: let T'C ©x and 7" C ©x be two
sets of traces, then

ToT = {ror|reT, el |r|=|r}

(where |7| denotes the length of the trace 7). For instance, Tp ® Tp will be
the set of traces of the synchronous composition of two independent (i.e., not
sharing signals) processes P and P’. We will often write 7 ® ©x/ to consider
T as a subset of ©x_xs, where the signals of X' are left unconstrained (i.e.,
any subset of X’ can be added to any term of any trace of T')..

Let X and X’ be two sets of signals of the same cardinality related to
each other by a one-one mapping ¢ = Az.z’. Then, for each trace 7 =
(Toy -+ yTny-..) on X, 7[X/X'] is the trace (7,...,7.,...) on X' defined

7'
by 7/ ={¢(z) | z € 7;}. This operation is also extended to sets of traces.

Let X and X’ be two sets of signals, T'C O, T" C ©x be two sets of traces.
Then

TRT = (T ® @(XI\X)) N (T’ ® @(X\X’))

i.e., T ®T" is the set of traces that agree on signals in X N X'. For instance,
Tp ® Tp: represents the traces of the synchronous product of two processes P
and P’, possibly communicating (by means of shared signals). We define also

ToT = (TOOx\x) U (T ©6wux\x1)
i.e., the union of 7" and T" as subsets of ©(xyx)-

Let T'C Ox be a set of traces, and Y be a subset of X. Then 3Y,T and VY, T
are sets of traces on X \ Y defined by

Y, T = {T S @X\y | J7' € ©y such that 7 © 7' € T}
VWY, T ={r € Ox\y |V € Oy, (7| =|7"]) = (ro1" €T)}

For instance, Y, Tp is the sets of traces of a process P where all signals in Y



are considered internal (hidding). VY, T will be considered for duality, as
VY, T = Oy \ (3Y,0x \ T)

Example 1 Let X = {a,b}. Let us use boolean notations to write sets of
subsets of X — e.g., writing @ for { {},{b} } — and the standard notations
of regular expressions to denote sets of traces on X. Let T = (a)* + (ab.ab)*.
Then

I, T = (a)* + (a.a)" vo,T = (a)*

The computation of Y, Tp and VY, T is detailed in appendix A.

2.2 Properties and Observers

A safety property ¢ on the set of signals X is also a prefix-closed subset of
©x. With such a property ¢, we associate another set of traces T,,, called the
traces of an observer [HLR93] of . Intuitively, an observer of ¢ is a process
with input signals in X, which emits an “alarm signal” o ¢ X whenever the
input trace received so far does not belong to ¢. So, T, C ©xy{a}, Where a is
a new signal, and

TeT if re
V7T = (T0y--- yTp,y---) € Ox, v 4
a(r) € T, otherwise

where a(7) = (70, ..., Ta—1, Tn U{a}, Tnr1 U {a},...) and n is the least index
such that (79,...,7,) € ¢. T, is obviously prefix-closed, and,

VI COx, TCy & T®T,C Ox

i.e., a process P satisfies the property ¢ if and only if its synchronous product
with an observer of ¢ never emits a.

Throughout the paper, we restrict ourselves to regular observers (i.e., regular
languages T,,).

2.8 Network observers

Let us show that the notion of synchronous observer readily provides a way
of expressing properties of parameterized networks: with each process in the
network one can associate an observer, reading the input/output behavior
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Fig. 1. Network observers

of the process together with observations provided by other observers. For
instance, let us consider a linear network Q||Q||...||@ of identical processes,
each of which emitting some signal v when it uses some resource. Assume we
want to express the mutual exclusion property, that at most one process uses
the resource at a given instant.

Each process is given an observer, receiving the u signal of the process and
the signals emitted by its right-neighbor observer in the network (see Fig 1.a).
Each observer emits two signals: a is emitted whenever a violation of the
mutual exclusion is detected, and v is emitted whenever the resource is used
by either the process or one of its right-successors in the network. Such an
observer can be described by the following system of Boolean equations:

a, = oV (yANu) and v, = y;Vu

Now, a network satisfies the mutual exclusion property if and only if the left-
most observer never emits o. Notice that this technique naturally extends to
more complex network structures: for instance, if the network has a binary tree
structure, one can design a suitable observer, receiving the signals emitted by
its “sons” (see Fig 1.b):

a, = Vs V(i Ave)V((nViw)Au) and v, = yVinVu

A network observer is said to be reqular, if each observer of individual processes
in the network is regular.

2.4  Comparison with existing specification languages

In [CGJ95,KMM*97,FO97], properties on networks are specified by regular
specification languages, defined as follows: they consider a network state as a
word on the alphabet of basic process states, and they specify a set of states
as a regular language on this alphabet. We have the following proposition:



Proposition 2 The expression power of reqular network observers is strictly
greater than the one of regular specification languages.

PROOF. We show that any property that can be expressed by means of
a regular specification language, can also be expressed by means of a regular
network observer, and we give an example where the converse is not true.

(1) We show that any regular specification language can be described by a
regular network observer: the proof is similar to showing that the inclusion
of a context-free language in a regular language is decidable. We consider
a network described by a grammar I', and a regular specification language
given by a regular expression e. The observer of a basic process reports
the current state of the process. With each subnetwork, generated by a
non-terminal A, will be associated an observer, telling whether the state
of the subnetwork belongs to some regular expressions: Let o be the
“alarm” signal sent whenever a subnetwork generated by A is not in a
state satisfying e. It is easy, but technically tedious, to define these alarm
signals. We just give some cases:

e Let e = ey + ey, then afzaé/\aé
e We only sketch the complex case of concatenation: let e = e;.e3, where
neither e; nor e; can generate the empty string. For a rule A — P, we
have o' = true, since the state of P is a singleton which cannot satisfy
e. For a rule A — B x, C, we have to consider all the ways e can be
restructured into €].e}, (this set if finite, since it is isomorphic to the set
of states of the automaton recognizing e). Then

o= A (ozf,)l Y% aeclz)

e
e1.ex=¢€.€}

(2) We give an example of property that can be expressed by a regular ob-
server, but not by a regular specification language: The state language
{ a™.b™ | for all n } is not regular, but can be expressed by observers in
constructing the network in the following way:

S — P|S||P, S — P|P

With each S network is associated an observer that checks that the left
P son is in state a and that the right one is in state b.



3 Network invariants as least fixpoints

3.1 Computation of a least fizpoint

Thanks to the preceding section, we can assume that each subnetwork contains
its local observer, and that all the networks in the family have the same set
of external signals, say X (with o € X).

For each binary operator x,, let us define C, C © xyx'ux» to be a set of traces
such that

Tpry,pr =3X",3X",C, @ Tp[X/X'] @ Tpn[ X/ X"

where X’ and X" are two sets of signals in one-one correspondence with X, and
X, X', X" are pairwise disjoint. Intuitively, C' expresses the relation between
the external signals of P’ (renamed as X'), the external signals of P” (renamed
as X") and the external signals X of P’ x, P".

Example 3 Let us come back to the example of Fig 1.a. Fach network P has
the same interface, i.e., the signals a,, v,. A new network is built by connecting
these signals to the inputs «;,v; of a basic process, say P; (made of Q and its
observer), and considering the outputs a,,v, of Py as the ones of the new
network. The traces of this new network can be expressed in terms of the sets
Tp and Tp, as

[ ! "non
H{ai,yi,ao,l/o},ﬂ{ao,l/o )

C® TP1[ai/a;’Vi/Vz{’ao/a;’VO/Vg] ® TP[ao/a/lol’ I/o/l/g]

where the composition operator C specifies that the outputs of P are connected
to the inputs of Py, and that the global outputs are those of P;:

— [ n — — / — I\*
C=((=d NV=V] N a,=a, N v,=v,)

Let X = Ox\ {4} be the set of traces which never emit the “alarm” signal .. Our
parameterized verification problem consists in showing that for each process P
generated by the network grammar, Tp C X. Following [KM89,WL89,HLR92],



we can look for processes (I4)acn, called network invariants, satisfying

[SAT] T;, C %
[INIT] Foreachrule p: A— P, TpCTy,
[INDUC] For each rule p: A = B x,C, Ti,x,1o €Ty,
or, equivalently, (3X’,3X", C, @ T1,[X/X'| @ T;,[X/X"]) C T,

Let us note V' = (T7,) aen the vector of invariant trace sets. Such vectors are
ordered by componentwise inclusion.

Proposition 4 There is a least vector V™™ of sets of traces satisfying [INIT]
and [INDUC]. V™" s the least fizpoint of a monotone function F.

PROOF. Rewriting/INIT] and [INDUC] as Fi(V) C V, we get that V is a
post-fixpoint of F;. Now, Fi is monotone, since it only involves least upper
bounds and the monotone operators (17,,7,) — T, x,1.- S0, there is a least
solution, V™" which is the least fixpoint of F}.

So, our verification problem is equivalent to showing VI C ¥, where S is
the start symbol of the grammar.

Of course, the undecidability of our verification problem results from the fact
that V™" cannot be computed, in general (the iterations are infinite, and the
limit is a vector of infinite state processes). Notice that V™" is the set of all
possible traces of all the networks in JF; intuitively, it is very unlikely to be

generated by a finite state automaton.

The method proposed in [CGJ95] is an automatic way of computing an upper
approximation of V™" The great advantage of this method is its generality.
It can be applied to general network grammars and can deal with complex
properties. However, in many cases, this method either leads to a state explo-
sion or provides a too rough approximation, i.e., a result which does not fulfill

[SAT].

This is why we will investigate another approach, based on the computation
of a greatest fixpoint. This approach will take into account the property to
check. The computation will be more dependent on the property (which is
usually quite small) than on the system size (which is almost always infinite).

Section 4 will state this problem as the resolution of a greatest fixpoint equa-
tion in the case of linear networks. Section 6 will extend this to binary tree
networks.

10
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Fig. 2. Internal node of the parity tree

We first give an example (taken from [CGJ95]) for which a suitable approxi-
mation of the least fixpoint can be computed.

3.2 Exzample: a parity tree

Let us consider the network grammar I' =< {L},{S}, R, S >, describing a
binary tree network, where L is a leaf process, and R is defined by

R ={S—>S%xS S—L}

Each leaf process has an associated one-bit value. The algorithm computes the
parity of the leaves values as follows [U1184,CGJ95]. The root process initiates
a wave by sending the ready_down signal to its children. Every internal node
transmits this signal to its children. As soon as the ready_down signal reaches
a leaf process, the leaf sends the ready_up signal and its value to its parent.
When an internal node receives the ready_up signal from both its children, it
sends the ready_up signal and the zor of the values of these children to its
parent (see Fig 2). The root cannot send another wave before it receives the
ready-up signal.

The forward computation of invariant does not converge, but in this case, the

limit can easily be extrapolated, using a technique similar to the one presented
in section 5. The invariant has 23 states and 90 transitions.

4 Linear network invariants as greatest fixpoints

In this section, we will restrict ourselves to linear networks of regular processes:
a family F of such linear networks is generated by a finite multi-set of regular
processes {P;,i = 1...k} in correspondence with a multi-set of composition

11



operators {x;,i = 1...k}:

Vi=1...k, (P,€F) and (P€eF= Px;P €F)

4.1  Computation of a greatest firpoint

Thanks to section 2, we can assume that each P; contains its local observer,

and that all the networks in the family have the same set of external signals,
say, X (with a € X).

Recall that ¥ = Ox\(4) is the set of traces which never emit the “alarm”
signal a. A network invariant is a process I, satisfying

[SAT] T;CX

[INIT] Ni=1..k,Tp CT;

[INDUC] Vi = 1...k, Trx,p, C Ty or equivalently
IX',3X", C; @ Ti[X/X"] ® Tp[X/X"] C T;

Proposition 5 There is a greatest set of traces TM satisfying both [SAT] and
[INDUC]. TM is the greatest fizpoint of a monotone function F.

PROOF. [INDUC] can be easily transformed into: Vi = 1...k,
TiX/X7T < (vx,VX”, (Oxuxuxr \ ) @ (Ox \ Tr)[X/X"] @ TI)

or Vi = 1...k, T; C F;(T}). This shows that there is a greatest set of traces
TM satisfying both [SAT] and [INDUC], which is the greatest fixpoint of the
monotone function

k
F, = AT N () F(T)

=1

So, our verification problem is equivalent to showing either 77" C ¥ (see
previous section) or Vi = 1...k, Tp, C TM, where

12



r=J FM@®) and TM = () K™ (Ox)

n>0 n>0

k
Fi=XT.|JTp U (ElX',ElX”, C; ® T[X/X'] ®TP1.[X/X”]>
=1
F,=XT'¥XN
k

N (VX VX", @xuxux\ C) ® (Ox \ Tr)[X/X"] T ) [X'/X]

=1

It happens quite often that the iterative computation of TM converges after
a finite number of steps (in particular, when the property ¢ is already an
invariant!). The following example supports the choice of computing T}V, since
it is a case where T} is regular, and can be computed in a few iterations. This
example is also interesting for several reasons:

e it illustrates the modeling of a linear network by means of observers.

e it shows how the technique can be extended to cope with rings of processes.

e it shows how the iterative computation of T results in a sequence of au-
tomata, and prepares the next section, which is an attempt to extrapolate
the limit of such a sequence.

4.2  Ezample: a simple token ring

We consider a very simple token ring: Let n units Uy, Us, ..., U, share a re-
source in mutual exclusion. They are connected in a ring, along which a token
travels. When a unit receives the token, either it does not request the resource
and transmits the token, or it keeps the token as long as it uses the resource. In
the following description, both signals and states are represented by boolean
variables. If x is a variable, next x represents its value in the next state. All
variables are supposed to be initially false. With these notations, the behavior
of a unit can be represented by the following system of Boolean equations:

use = has_tk N\ req
tkout = has_tk N\ —req
next has_tk = tky, V (has_tk A —tkyy)

Intuitively, the first equation tells that the unit uses the resource whenever it
has the token and requests the resource. The second equation tells that the
unit transmits the token if it has it and does not request it. The last equation
states that the unit will have the token at the next step if either it receives it

13
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Fig. 3. Global network of the simple token ring

now, or it already has it and does not transmit it. The internal signal req is
left unspecified.

Now, this unit is provided with an observer: it has two additional inputs,
telling if the resource is used and if the mutual exclusion is violated, farther
in the network. It transmits the same information as outputs:

otheruse,,; = otheruse;, V use

alarmey, = alarmg, V (otheruse;, A use)

We can connect such extended units in a linear network (see Fig. 3). Each such
network will have a fixed interface, namely the input signal tk;, and the output
signals tkoys, otherusey,; and alarmy,;. Global (rightmost) inputs otheruse;,
and alarm;, are set to false. Adding a new unit can be done simply by a
suitable renaming and hiding of communication signals. Now, we are faced
with a last problem, which concerns the closure of the network as a ring. For
that, we use again an observer: we will show that if the input tk;, is initially
true (first insertion of the token) and then always equal to the output tk,y,
then the network never emits an alarm. This global observer of the network
interface can be specified by the following equation:

alarm = alarmeyy N\ assumption

next assumption = assumption N (tki, = tkou)
where the initial value of assumption is assumed to be (tk;, = 1).

Fig. 3 shows the general structure of the network, and how it can be extended
with one unit.

The computation of the invariant converges in two steps. This shows that,
in this case, TM is a regular language, while T/ is obviously not. In Fig. 4,
the sets of traces considered at each step are represented by their minimal
deterministic acceptors. On these automata, t;, ¢,, a and u respectively stand

14



Step 0

Step 1

Fig. 4. Computation of the simple token ring

for tkin, thkous, alarmey, and otheruse,y,. For simplicity, forbidden transitions
have been removed, so the actual alarm signal does not appear. For instance,
the first automaton describes the set of traces that satisfy the initial property:
it accepts all traces that either never emit a, or violate the closure assumption.

15



5 Computation of network invariants

In this section, we show how to compute under-approximations of T, us-
ing Cousot’s extrapolation technique [CC77,CC92]. Notice that a solution
T C TM can be sufficient to achieve the verification, if it happens that
Vi=1..k,Tp CT.

5.1 Principle of extrapolation

In order to under-approximate greatest fixpoints in a complete lattice L, the
extrapolation method proposed by [CC77,CC92] consists in defining a binary
operator V on L, called “widening”, satisfying the following two properties:

[INCL]: Yz,y € L, zVy Cx Ny

[CHAINJ: for any decreasing chain zy 2 z; 2 ... D z, 2 ... in L, the
sequence (Yo, Y1,--- s Yn,---), defined by yo = xo, Ynt1 = YnVZny1, is not
strictly decreasing (i.e., becomes constant after a finite number of terms).

Then, for each monotone function F' : L +— L, the sequence yo = T (the
supremum of the lattice), y,11 = Yo VF (y,) converges, after a finite number
of steps, towards a limit y, which is smaller than the greatest fixpoint of F'.

Following this approach, we have to define an extrapolation operator on sets
of traces. The design of such an operator is an experimental task, searching
for a compromise between the efficiency of the computation and the precision
of the result: depending on the operator used, one can obtain either a very
long sequence converging towards a solution very close to the fixpoint, or
conversely, a fast convergence towards a rough solution.

5.2 Extrapolation operators

We propose a parameterized extrapolation operator based on automata: if
T C Oy is a prefix-closed set of traces, let Ay denote the (unique, up to
isomorphism) minimal deterministic observer of 7', i.e., a deterministic Mealy
machine with 2% as input alphabet, {(), «} as output alphabet, and returning
a if and only if the trace read so far does not belong to T'.

Now, let T and 7" be two sets of traces, with 7" C T C Ox. We have in
mind that T and 7" are two consecutive steps of the iterative computation
of the greatest fixpoint (i.e., 7" = F(T)). The principle of our extrapolation
is to compare the structure of both Ay and A/, so that the one of the next

16



computation step can be guessed.

Let A, be the synchronous product of Az and Az.. Notice that if we consider
the signal « alone (resp. o), A, recognizes the language T (resp. 7"). Let D
be the set of states (g, ¢') in Ay, from which Ass can complain (i.e., emit )
while A cannot.

Since some behaviors from the states in D have been excluded when changing
T into T”, our first idea is to extrapolate the next computation step by for-
bidding all these states. More precisely, a possible choice would be to define
TVT' as the language accepted by the automaton obtained as follows: remove
from Az all the states ¢ such that there exists ¢’ such that (¢,¢') € D, i.e.,
forbid all the transitions leading into such states. Since the new automaton
has strictly less states than Ar, this operator satisfies the property [CHAIN].
Unfortunately, experimentation shows that this operator is much too rough to
provide interesting results: on most examples, it provides the empty language
as a limit.

The point is that we have to forbid some behaviors passing through the
states in D, but not all these behaviors. Further, experience shows that in-
finite computations often result from the fact that “regular” patterns are
repeated more and more times, which finally produce infinite loops in the
limit language. For instance, the sequence (T});>o whose general term is
Ty = {a".(a +b)*| 0 < n < k} is infinite, but converges towards (a + b)*.
So, the next idea is to create such loops by rerouting non-deterministically
some transitions (g, gj) %(ql, q;) reaching D to other states (go,¢5) & D.

To ensure the trace inclusion [INCL], the language recognized from (go, ¢))
must be included in the one recognized from (g1, ¢}). To create loops, the new
target states (ga, g3) are chosen among (qo, gj) and its predecessors that satisfy
this inclusion. They are searched up to a depth d which is a parameter of the
operator.

Unfortunately, such an operator no longer satisfies the [CHAIN] property: the
number of states of the new automaton decreases, but, since this automaton is
non deterministic, the number of states of its deterministic version can become
larger. In fact, we were not able to define an operator satisfying both [INCL]
and [CHAIN], and providing interesting (i.e., non empty) approximations. So,
we decided to release the property [CHAIN], which ensures termination: our
operator “speeds up” the convergence, but does not ensure its termination.
As a consequence, the computation may not terminate, but if it does, the
solution is a correct under-approximation of the fixpoint. This possibility of
non-termination is discussed in section 5.3.

Example 6 LetT = (a+b).(a+b+c)* andT' = (a+b.(a+b)).(a+b+c)*.
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Intuitively, one can expect that the next computation step will compute the
language T" = (a+b.(a+ (b.(a+0b)))).(a+b+c)*. Automata recognizing T, T
and T" are shown in Fig 5. Fig 6.a shows the automaton Ay (where the grey
state is the only one in D). Fig 6.b shows the rerouting performed, with d = 1
(i.e., the new target state can only be the source); so TVT' = b*.a.(a+b+c)*.
Notice that if the rerouting is not performed (i.e., with d = 0), we obtain
TVT = a.(a+ b+ c)*: this extrapolation is probably too rough because it does
not express the fact that an arbitrary number of events b can occur before an
event a.

5.8 The actual algorithm

In practice, we do not simply compute the limit 7' of the sequence Ty = T,
Twi1 = T,VF(T,), as it is generally too rough. Instead, we can arbitrarily
improve the solution by delaying the application of the extrapolation: For
each k > 0, let us define 7% to be the limit of the sequence

18



F(T,) ifn<k
T() == T, Tn+1 -
T,.VF(T,) ifn >k

All the T®) are under-approximations of the fixpoint (the standard approxi-
mation 7' is T(O)), and the greater is k, the more precise is 7). So, the method
consists in computing 7, letting the parameter k increase as long as the in-
variant T®*) is too strong (i.e., does not satisfy [INIT]). These iterations on k
may not terminate, and for each k, the computation of T() may not terminate
(since our extrapolation operator does not satisfy the property [CHAIN]). In
principle, it could happen* that the computation of 7 be infinite, while the
one of T*+1) converges to a suitable approximation.

From a theoretical point of view, if we want to get a semi-decision procedure —
in the following sense: If a suitable approximation 7°%) is finitely computable,
it will be eventually reached by the algorithm — the algorithm has to perform
a breadth-first exploration of the graph of approximations, i.e., letting both n
and k£ grow in turn.

From a practical point of view, as the size of the considered automata grows
rapidly, all the computations either converge rapidly, or saturate the memory!

5.4  Ezramples

Dijkstra’s token ring: This algorithm is adapted from the one used in
[CGJ95]5. Let n units Uy, U,,... U, share a resource in mutual exclusion.
The units are connected in a ring (see Fig 7), along which a token can travel
in the clockwise direction. A unit can use the resource only when it has the
token. To avoid useless token passing, a request signal can travel in the counter-
clockwise direction. Whenever a unit requires the token, it sends the request
signal to its left. When the unit which has the token receives a request signal,
it transmits the token to its right.

Each unit has 2 input signals: ¢; (token arrival) and s; (request signal arrival),
2 output signals: ¢, (token passing) and s, (request signal passing), and two
internal moves req and rel, corresponding to the resource request and release.
With the previous notations, the following system of equations defines this
behavior:

4 although we never encountered such a situation during our experimentations.
® This algorithm has been presented for the first time in [Mar85], under the name
of “reflecting privilege algorithm?”.
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next wait (req V wait) A —t; A —has_tk
next right_req = (right_reqV s;) A —t,

next has_tk = (has_tk Vv t;) A —t,

(
to (right_reqV s;) A (t; V has_tk) A ~wait A —(req V rel)

So —right_req A —(has_tk V t;) A ~wait A (s; V req)

Provided with an observer of the mutual exclusion as in section 4.2, it has two
more input signals: u; (resource used on the right) and «; (mutual exclusion
violated on the right) and two more output signals u, (resource used) and «,
(mutual exclusion violated). The ring is closed by means of an observer as in
section 4.2.

This example shows that proving a strong property is often easier than a weak
one. For instance, to show that there is always one and only one token in the
network, a suitable invariant is computed after 3 steps, in 7 seconds, using
1 extrapolation. The automaton of the computed invariant has 30 states and
1355 transitions. But, to show that there is always at least one token in the
network (a weaker property than above), the invariant computation takes 19
seconds, again with 3 steps and 1 extrapolation. The resulting automaton has
39 states and 1849 transitions.

A hardware arbiter: Our second example comes from [HLR92]: as before,
n units Uy, Us, ... , U, share a resource in mutual exclusion. Units are served
according to a fixed priority policy: whenever the resource is free, and a unit
requires it, a token is emitted (as the rising edge of a condition), which will
travel from unit to unit through the network, until being caught by the first
unit requiring the resource (see Fig. 8 (a)).
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Fig. 8. Hardware Arbiter

Fig. 8 (b) shows the circuit corresponding to an arbitration element: it samples
the requesting status of the unit on the rising edge of the incoming token, by
means of an edge-triggered flip-flop. According to the output of the flip-flop,
the token either raises the grant or is passed to the next unit. The whole unit
is described by the following system of equations:

next flop = (edge N wait) V (—edge A flop)
edge = tk; N was_low

next tk, = tk; A —(next flop)

next grant = tk; A (next flop)

next wait = —(next use) A ((next req) V wait)

next was_low = —tk;

next use = (next grant) V (use A —(next release))

The leftmost token wire is raised whenever the resource is requested and not
used. To describe these computations, each unit is paired with a process rep-
resenting the “or” gates on top of the global network: it receives four wires:
right_requested and right_used form the right part of the network (which are
always false for the rightmost unit), and use and wait from the associated
unit:

requested = right_requested V wait used = right_used V use

Finally, each network has two outputs requested and used and one input
tk. The network is closed by an observer which check properties under the
assumption that

tk = requested N\ —used

The following properties have been verified:
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Mutual exclusion, by providing each unit with an observer as in preceding
examples.

No token lost, i.e., the rightmost token wire is always low. This is done by
a slight change in the global observer.

Priority, which is an example of non trivial temporal property: ideally, the
arbiter should satisfy a priority rule like

grant; = —wait;

for each pair (4, j) such that j < i. But this rule cannot be satisfied by such
a distributed device since it would involve an instantaneous knowledge of all
requests to the resource. Instead, the arbiter ensures the following weaker
priority rule: if the resource is granted to U; at time ¢, no unit U, (j <
i) was waiting for the resource at the last arbitration request preceding t,
where an arbitration request is a rising edge of the leftmost token wire.
This property can be expressed by providing each unit observer with an
instantaneous knowledge of the arbitration request (arb_req). Of course,
this is for specification only, and does not change the circuit itself. The
observer samples the waiting status of its associated unit on each arbitration
request, and transmits it to the next observer in the network. So, each
observer receives a wire telling if a more prioritary unit was waiting at the
last arbitration request, and can evaluate the property:

Q = «; V (prio; A grant)
Prio, = prio; V prio

next prio = (arb_req A wait) V (—arb_req A prio)

We tried to verify each combination of these 3 properties. Results are shown in
Table 1: for each combination of properties (where “E”, “N”  “P”, respectively
stand for “exclusivity”, “no token lost”, and “priority”), the table gives the
number of applications of the extrapolation operator, the number of steps,
the numbers of states and transitions of the final invariant, and the total
computation time. We were able to verify all combinations of properties but
one: when considering “no token lost” alone, the computation does not seem
to converge (it runs out of memory after several hours).

6 Tree Network invariants as greatest fixpoints

Let us now consider the case of binary tree networks. Let {P,..., P} be
a finite multi-set of processes on a common set X of signals, and X be a
binary composition operator over processes, defined by a set C of traces on
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Nb. Nb. Nb. Nb.

Properties | extrapolations | steps | states | transitions | Time
E 2 4 31 556 35”
E N 1 3 6 121 117
E N P 1 3 9 313 9”
E 1 3 9 313 127
N * * * * *

N P 1 3 11 224 157

2 4 16 312 49”7

Table 1
Results of the Verification of the Hardware Arbiter

XUX'UX". A simple binary tree network is a family F of processes generated
by:

Vi=1...k, b€ F) and (P,P"eF= P x P"€F)

In this framework, we have to search a network invariant I such that

[SAT]  I=¢
[INIT] Yi=1...k P <1
[INDUC] I x I < I or equivalently
IX',3X", C @ Ty[X/X'| @ TI{X/X"] C T;

This case can easily be extended to more general networks generated by net-
work grammars.

6.1 Geatest firpoint doesn’t erist

Let us rewrite [INDUC] as

Ti € (VXX @xuvox \C) ® (Ox \TIX/X] 0 T ) [X"/X]

or

Ti € (VX X", (Oxuxun: \C) ® (Ox \ T)X/X" & T; ) [X'/X]
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Fig. 9. Intuition about the absence of a greatest invariant

i.e., Ty C F(Ty). Unfortunately, the function F' is no longer monotone, because
of the complement taken on 7;. Thus, one cannot conclude to the existence
of a greatest fixpoint, as in the linear case.

An intuitive explanation is the following (see Fig 9): The induction consists
in finding a condition on the children processes of a node implying a given
property of their paent node. Now, it is possible to strongly constrain the
left son, while letting the right son more loosely constrained, or conversely.
The ideal solution would be to find a unique property for the two sons. In
practice, this seems to be impossible, since the problem is generally not exactly
symmetrical: the sons are not symmetrically connected to their father, or the
father does not behave completely symmetrically with respects to its children
(e.g., it transmits a token first to its left son, and then to its right son, ... ).

In the next section, we will take into account the fact that properties of the
left and right sons have to be distinguished.

6.2 Induction principle with two invariants

Let us consider the induction inequation I x I < I. This inequation means
that if the left and the right sons of the node both satisfy the invariant 7, then
the whole subtree must satisfy the invariant I. Now, if we consider separately
the left and right sons, it is enough to find two invariants L (for left child)
and R (for right child) such that

[SAT] L E ¢ and R E ¢
[INIT] Yi=1.k, P, <L and P < R
[INDUGJLxR < L and LxR < R
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Recall X = ©x\{q;} is the set of traces which never emit the “alarm” signal c..
In our traces semantics, these inequations can be written as

[SAT] TL g ¥ and TR Q b))
[INIT] Vz=1k, TPz’ g TL and Tpi g TR

[INDUC] (3X',3X",C ® To[X/X'] ® Te[X/X"]) C T, and
(AX',3X",C @ T [X/X')| ® Tp[X/X"]) C Tg

Let us note [PROOF]=[SATIN[INITIN[INDUC] the set of all these inequa-

tions.

6.3 Vector of invariants

The use of two invariants instead of one follows intrinsically from the prob-
lem of binary tree networks. However, a greatest fixpoint computation is only
possible with only one invariant. In order to overcome this difficulty, let us
assume that our problem is solved i.e., we know two invariants L and R satis-
fying the previous inequations, and let us define V' C © x/x» as the following
composition of T7[X/X'| and Tr[X/X"]:

V =Ty [X/X'] © Tp[X/X"]
Notice that Ty, and T can be easily retrieved from V' by projection
T, = 3X"V)[X'/X] and Tr = 3X',V)[X"/X]
Let us now rewrite inequations [PROOF] using V.

Proposition 7 If V' can be written V = Ti[X/X'| © Tr[X/X"], then
[PROOF]is equivalent to [PROOF’|=[SAT’|A[INIT’]A[INDUC’] where

[SAT’] V C X[X/X']oX[X/X"

[INIT] Vi=1...k Tp®V CV[X'/X]® V][X"/X]

[INDUC | C®V C VIX'/X]|®V[X"/X]

PROOF. We show that, under the assumption on V, inequations [SATY,
[INIT], and [INDUC] are respetively equivalent to [SAT’], [INIT’], and [IN-
DucC’].

[SAT]: The rewriting of [SATfinto [SAT’] is straightforward.
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[INIT]: First, rewrite the first inequation of [INIT]on X U X' U X":
Vi=1...k Tp ®Ox ®Oxn C T, ®Ox @ Oxn
Since Tp[X/X'] C ©xr and Tr[X/X"] C Oxn, this is equivalent to
Vi=1...k Tp ®Th[X/X'| © Tr|X/X"] C T;, ®Ox ®Oxn
The first inequation of /[INIT] can be rewritten® into
Vi=1...k Tp, ® T,[X/X']|© TelX/X"] C T, ® Te[X/X"] 0 Ox
ie, Vi=1...k, Tp OV C V[X'/X]©Ox

In the same way, the conjunction of the two inequations of [INIT] can be
rewritten into

Vi=1...k, Tp, OV C V[X'/X]|QV[X"/X]
[INDUC]: In a similar way, [INDUC] is rewritten into

C X TL[X/XI] X TR[X/X”] g TL ® TR[X/X”] ® @X, and
C®Ty[X/X®Tr[X/X"] C Tr[X/X']O®Tr® Oxn

ie, C®V C V[X'/X]® V[X"/X]

Proposition 8 There is a greatest set of traces V™ satisfying [PROOF’].

PROOF. It is easy to show that [INIT’] and [INDUC’] can be rewritten as
[INIT’] VYi=1..k, V CVX, ((@X \Tp)® (VIX'/X]® V[X”/X])>
[INDUC] V C VX,  (Oxuxoxs \ O) & (VIX'/X] @ VIX"/X]) )

This means that V is a pre-fixpoint of the (monotone) function
F = AV.VX, (E[X/X’] o E[X/X”]) ®

((@XUX,UX,, \(CoUTn) e (VIX/X]& V[X"/XD)

=1

There is a greatest solution, V™% which is the greatest fixpoint of F.

Proposition 9 If V™ s empty, some processes generated by the binary tree
network do not satisfy the property ¢.

6 Using a trivial property on sets: VA, B,C, (ANBCC) & (ANBCCNB)
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PROOF. Proposition 4 shows that there exists a minimal set of traces 17"
satisfying both [INIT] and [INDUC]. Suppose that the tree network satisfies
the property . Since 1" represents the set of traces of all possible tree net-
works, T7" must satisfy the property ¢. Let V = T7"[X/X'|@T["[X/X"]. Then
V' is non empty and must satisfy the inequations [PROOF’], i.e., V C V™maz,
This contradicts the hypothesis.

As before, in general, V™% cannot be exactly computed. Heuristics proposed
in section 5 can be used to get under-approximations V' of V™% gatisfying

[PROOF"].

Now, does the existence of such a non-empty vector V imply that ¢ is satisfied
by the binary tree network? It is only the case if V' can be decomposed into two
invariants L and R, since inequations [PROOF] are equivalent to [PROOF’]
only if V' can be written V = T [X/X'] © Tg[X/X"] (which is not generally
the case). In section 7, we will propose heuristics to find two languages 77, and
Ty such that the vector Tp[X/X'| ® Tr[X/X"] satisties [PROOF’].

6.4 FEzramples

6.4.1 A token tree

Let n units P, P, ... ,P, share a resource in mutual exclusion. They are
connected in a binary tree, along which a token travels in depth. A process P;
is defined as in section 4.2. It can only use the resource when it has the token.
It has one input signal tk;, (token in) and two output signals tk,; (token out)
and use (resource used).

Each node has 4 input signals and 4 output signals, corresponding to the
communication with its father, its left child, its right child and its associated
unit. When a node receives the token from its father, it transmits it to its left
child. When it receives the token from its left child, it transmits it to its right
child. And finally, when it receives the token from its right child, it gives it
back to its father. Each time the token reaches the node, it is transmitted also
to the unit associated to the node, which can keep it for some time in order
to use the resource (see Fig 10).

The mutual exclusion observer of a node has 5 input signals: use (the resource
is used by the associated unit), v; (the resource is used in the left branch), o
(mutual exclusion is violated in the left branch), v, (the resource is used in
the right branch) and «, (mutual exclusion is violated in the right branch).
It emits the two signals a (the mutual exclusion property is violated) and v
(the resource is used by its unit or one of its children).
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Fig. 11. Network in petals

The forward computation of invariant saturates the memory after 2 steps tak-
ing several hours. In contrast, the invariant VV™%* is exactly computed back-
ward in 5 iterations in 19’15”. It has 928 states and 72379 transitions.

6.4.2 A network in petals

This second example shows that the technique of invariant computation on
binary tree networks can be applied to asymmetrical networks (where left and
right children are defined differently).

Let us consider a main ring, composed of nodes (called main nodes) which are
associated with secondary rings (see Fig 11). This kind of networks can be
generated by the following grammar (see Fig 12):

S—)Lle L—)LXQP R-)Lle
L—P R— P

As soon as a process of a secondary ring needs the resource, it sends a request
signal to the corresponding main node. Then the token is received by a main
node:

e Either a request signal has been received (i.e., a process of the ring asks for
the resource), and the token is sent in this secondary ring.
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Fig. 12. Construction of a network in petal by a binary tree grammar

e Or no request signal has been received, and the token is transmitted to the
following main node.

Each process has 1 input signal tk;,, for “token in” (the process receives a
token), and 2 output signals tk,,;, for “token out” (the process emits a to-
ken) and $goy;, for “signal out” (the process emits a request signal). It has 2
internal signals req and rel for the token request and the token release. The
composition operator X is defined in such a way that the token is sent in a
secondary ring only if a request signal has been received.

The forward computation of invariant saturates the memory after 2 steps tak-
ing several hours. In contrast, we were able to compute the greatest invariant
Vm™maT on an abstract network, where the request signal is abstracted. The
computation takes 3h18’. V™" has 612 states and 50782 transitions.

7 Computation of invariants L. and R

Let V be a vector satisfying [PROOF’]. V expresses a property that the tuple
(L, R) must satisfy to verify equations [PROOF]. Intuitively, the fact that it
cannot be decomposed in the form V = T,[X/X'] ® Tg[X/X"], means that
L and R are dependent (some behavior of L implies a specific reaction of R).
The goal of this section is to find independent L and R.
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7.1 Approximations of L and R

7.1.1 Upper-bound

Let TM and T be two sets of traces defined by
T = (3xrv ) IXYX] and TY = (3x,v ) (X/X)

All solutions (7%, Tr) of inequations [PROOF] will be such that T;, C TM and
Tr CTH. (TM,TH) can be considered as a upper-bound.

7.1.2 Lower-bound

If we choose T, = TM in order to satisfy the inequation T.[X/X'] ®
Tr[X/X"] CV one has to choose

Te 2 (VX' (0x \ T [X/X] @V ) [X"/X)

Thus, let 77" and T3 be two sets of traces defined by

7y = (VX" (05 \ T X/X" @ v ) [X'/X] U U Ty

i=1

1y = (v, (0x \ TP)IX/X @V ) [X"/X] U UTr,

=1

All solutions (7, Tg) of inequations [PROOF] will be such that 77" C 17,
and T C Tg. (17", TF') can be considered as a lower-bound. Generally, 77",
TM, TH and T do not satisfy [PROOF]. The next section will propose an
algorithm based on heuristics to compute suitable invariants.

7.2 Decomposition of V' with respect to a lower-bound

Our goal is to compute two sets of traces Ty, and T, satisfying

T [X/X'] 0 TR[X/X"|CV (1)

This problem has no maximal unique solution. Intuitively, in order that 717,
and Ty satisfy [PROOF], the product T;,[X/X'] ® Tr[X/X"] must be as close
as possible to V. This section proposes heuristics allowing the computation of
a solution of (1) which satisfies also [PROOF].
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7.2.1 Principle

We propose an algorithm based on automata: if A is a process, i.e., a de-
terministic Mealy machine with 2% as input alphabet, let us note 7, the
set of traces of A. Now, let AY and A% be two automata on X such that
Tho [X/X'] © Ty [X/X"] € V. The principle of our algorithm is to remove
some transitions of AY or of A% in such a way to obtain two new automata

AL and Apg such that Ty, [X/X'| © T [ X/X"] C V.

This way, if Txo [X/X'|©To [X/X"] € V, there exist two traces 7L, TR € Ox
accepted respectively by AY and AY%, and such that 7L[X/X'| © TR[X/X"] is
not element of V. We can then, either remove a transition of A? in order that
7L is refused, or remove a transition of A% in order that 7R is refused. One
can remove any transitions, as long as inclusions Tp, C Ty, and Tp, C T}, are
satisfied. More generally, following inclusions must be preserved:

Tin g TAL and Tﬁn g TAR (2)

7.2.2  Choice of A} and A%,

Theoretically, any automata A3 and A% verifying Tyo [X/X'|0To [X/X"] £ V
are suitable. In practice, these automata structures must be derived from the
one of V. Automata AY and AY which recognize respectively T and T,
satisfy these properties.

In order to preserve inclusions (2), we propose moreover to mark transitions
of AY and of A} which cannot be removed. Thus, one can choose A? as the
automaton recognizing TH such that any trace of Tt is recognized by marked
transitions, and any trace of (T4 \ T™) is recognized by transitions at least
one of which is not marked. A% will be chosen in the same way. Let AT and
AR be automata recognizing respectively 77" and T7'. Let us assume that
each of them has a sink state such that the alarm signal « is emitted only
by transitions reaching this state, and let us mark all transitions of A7 and
A™. Thus, one states AY = AT||AY and AY = AT||AY, where || denotes the
synchronous product and where alarm signals of A% and AY% are respectively
the one of AY and the one of A¥.

7.2.8 Heuristics

In this section, we propose heuristics to remove some transitions of A? or of
AY% in order to satisfy the inclusion (1). Let 7L and 7R be two traces on X
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Fig. 13. Example of an automaton recognizing the language V. The grey state has
to be removed to make this automaton symmetrical

such that
TLIX/X'|©TR[X/X"] € (TA%[X/X'] ® TA%[X/X"]) \V

There are two paths 7, and 7 respectively in A9 and AY corresponding to
traces 7L and TR. In order to satisfy the inclusion (1), one has to choose
two indexes k;, and kg such that, either the k%h transition on the path 7,

or the k%h transition on the path mg, is removed. One can choose either kj,
or kg mazimal (intuitively, this comes to remove all traces with a particular
suffix), or k;, or kg minimal (intuitively, this comes to remove all traces with a
particular prefix). Experiments showed that only the second choice gives good
results. In order to formalize the algorithm, let us introduce the function f,,
taking as argument a trace 7 and returning the minimal index k£ such that
the kB transition of the path corresponding to 7 is not marked. Thus, our
decomposition algorithm is the following:

Algorithm 1
Ap = AD|IAL; Ar = AR|IAE;
While Ty, [ X/ X' © Ta,[X/X"| Z V
Let TLO TR € (T), [ X/X'| O Ta,[X/X")\V
Let k, = fn(TL) and kg = frn(TR)
if kr < kg then one removes the k}:h transition on the path of A,
corresponding to 7L
else one removes the kfzh transition on the path of Ag

corresponding to TR

End of while

Let us consider the set of signals {a,b}. The automaton of Fig 13 recognizes
the language V' defined by

V o= ab'.(bb.ad")* + (ad'.bb')*

The word (aa'.bb')* is symmetrical, in that if the prime and non prime variables
are exchanged, the obtained words belong to the language V. In the opposite, if
ab'.(bb'.aa’)* belongs to V', the symmetrical word ba'.(bb'.aa’)* does not. This
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word is “removed” in forbidding the transition 0 — 1. Thus, we obtain as
invariant the language (a.b)*.

The previous algorithm is not exactly symmetrical with respect to L and R,
since the tests k;, < ki and kr < k;, are computed. A dual algorithm can be
defined, where the tests k;, < ki and ki < k;, would be computed. It is not
possible a priori to find the best solution.

7.8 FExamples

7.3.1 First example: the token tree

Let us come back to the example of section 6.4.1. In the first case where
the processes are connected with the leaves, the greatest fixpoint V™% is
decomposed in two invariants L and R which have respectively 32 states and
276 transitions, and 7 states and 57 transitions. In the second case where the
processes are connected to the nodes, V™" is decomposed in two invariants
L and R which have respectively 27 states and 266 transitions, and 15 states
and 111 transitions. Thus, we can conclude that any process generated by the
grammar satisfies the property.

7.8.2  Second example: the network in petals

Let us come back to the example of section 6.4.2. In the first case without
arbitration device, the greatest fixpoint V™%* is decomposed in two invariants
L and R which have respectively 32 states and 284 transitions, and 16 states
and 127 transitions. In the second case with an arbitration device, V™" is
decomposed in two invariants It has 777 states and 51711 transitions. This in-
variant is then decomposed in two invariants I. and R which have respectively
28 states and 219 transitions, and 22 states and 157 transitions. Thus, we can
conclude that any process generated by the grammar satisfies the property.

8 Conclusion

We have proposed a way to specify safety properties of parameterized networks
of processes and a method and a tool to verify such properties by synthesizing
network invariants. To avoid the non convergence of the least fixpoint com-
putation, a technique of computation of greatest fixpoint is proposed, which
takes care of the two children of a node at the same time in the case of tree
networks. Heuristics have been proposed to
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(1) under-approximate the greatest fixpoint;
(2) decompose a vector of invariants.

All these techniques have been implemented in a tool. Since the synthesis
method may not terminate, and often requires the user to adjust some extrap-
olation parameters, it should be viewed as a mechanical help for constructing
invariants, rather than as an automatic model-checker.

Compared with the approach proposed in [CGJ95], we think that, in our
framework, our approach could be more practical: on one hand, the specifica-
tion of properties by synchronous observers appears to be very flexible, and
on the other hand, one can improve the precision of the result by playing with
parameters. For the time being, we have only very few elements for comparing
the precision of the generated invariants. In fact, we believe that the least and
the greatest fixpoint are complementary. For the parity-tree example of section
3 (which is the only one used in [CGJ95]), the computation of the greatest
fixpoint is much longer than the one of the least fixpoint. In contrast, in all
the examples of sections 5.4 and 6.4, the least fixpoint computation saturates
the memory after only two steps, while the one of greatest fixpoint converges
rapidly.

Notice that, in all our examples, the resulting automata are very small. This
is due to three reasons:

e Of course, the extrapolation operator generally simplifies the computations
and reduces the size of automata.

e We compute greatest fixpoints “backward”, starting from the automaton
of the property, which is generally simple. This should be compared with
a “forward” method, computing least fixpoints from the basic processes: as
a matter of fact, all our examples show that the backward computation is
less “explosive” than the forward one. Typically, we are able to compute
up to 20 exact steps in the backward sequence, while the forward method
explodes after 3 or 4 steps.

e At each step, the automata are minimized. However, the abstraction op-
eration performs a determinization followed by a minimization: the deter-
minization often produces large automata, which are then highly reduced
by the minimization. This explains the rather long execution time of our
experiments.
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A Computation of abstractions

The complexity of the algorithms presented in this paper is mainly due to
the computation of abstractions 3Y, 7T and VY, T (see §3). Let us detail these
computations.

Let T C ©x be a regular, prefix-closed, set of traces on X and Ay =
(Qr,q0r, X,{ar}, ér,0%) be the minimal deterministic observer of T', where

Qr is the (finite) set of states.

q0r € Q is the initial state.

X is the set of input symbols.

ar is the alarm signal (the only output symbol).

O : Qr x 2% — Qr is the total transition function.
6% : Qr x 2% — {0, ar} is the total output function.

Let Y C X. Let us suppose that there exists a sink state, noted ¢; such that
the alarm signal ag is emitted only by transitions reaching this state. That’s

6%(q,z) = ar & é7(q, ) = ¢

To compute the observer of Y, T, first remove from At labels all signals which
are in Y. We obtain a non-deterministic automaton which can be determinized
by the following classical algorithm

Asyr = (2°7,{q07}, X \ Y, {azr}, bav,r, 03y.r)

where dayp: 297 x 2X\WY) — 297 and 05, ¢ 297 x 25V) 5 {( {ar}}

Savir(q,z) ={d'|F¢ € ¢,y €Y, ¢ =dr(q,zUy)}

{ar} if 53Y,T(‘77 r) = {qr}

5§Y,T(§a T) =
0 otherwise
i.e., the alarm signal ar is only emitted when reaching the state {¢5}.
The observer of VY, T accepts a trace 7, € Ox\y if and only if, for all traces
Ty € Oy, 7, © T, € T'. Thus, it complains if and only if there exists a trace 7,

such that Ay complains on 7, ® 7, i.e., if Agy,r reaches a state which contains
the sink state ¢7. Then

AVY,T = (2QT, {QOT}, X \ Y, {OZT}, 5EIY,Ta 5\3‘}@)
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Fig. A.1. Abstraction algorithm
where

o {ar} if ¢ € dayr(q, z)
5VY,T(Q7 T) =
0 otherwise

i.e., the alarm signal oy is emitted when reaching any state containing the
sink state ¢7.

Fig A.1 illustrates these constructions.
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