
HAL Id: hal-00198644
https://hal.science/hal-00198644v2

Preprint submitted on 17 Mar 2008 (v2), last revised 25 Jan 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influence of global rotation and Reynolds number on the
large-scale features of a turbulent Taylor-Couette flow

Florent Ravelet, Rene Delfos, Jerry Westerweel

To cite this version:
Florent Ravelet, Rene Delfos, Jerry Westerweel. Influence of global rotation and Reynolds number on
the large-scale features of a turbulent Taylor-Couette flow. 2008. �hal-00198644v2�

https://hal.science/hal-00198644v2
https://hal.archives-ouvertes.fr


ha
l-

00
19

86
44

, v
er

si
on

 2
 -

 1
7 

M
ar

 2
00

8
Influence of global rotation and Reynolds number on the large-scale features of a
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We report on the torque scaling and the angular momentum transport mechanisms in a turbulent
flow between two independently rotating cylinders. Depending on the angular velocity ratio, we
identify two different states in the time-average or mean flow: one with a secondary flow consisting
of large scale roll structures, and one without secondary flow, similar to the two flow states as
found in laminar Taylor-Couette flow. Varying the angular velocity ratio of the two cylinders, while
maintaining a constant shear rate, we study the transition between these two turbulent states in
a quantitative manner. The transition is smooth and continuous, and resembles a supercritical
bifurcation of the secondary mean flow.

Introduction. Turbulent flows are present in many
applied and fundamental problems, ranging from small
scales (engines, mixing) to very large scales (meteorol-
ogy, convection in the earth mantle, and other astrophys-
ical problems such as momentum transport in accretion
disks). One of the several open questions is the emer-
gence of coherent structures in turbulent flows [1]. An-
other interesting problem concerns the bifurcations that
can arise in the turbulent regime, for instance the dy-
namo instability of a magnetic field in a conducting fluid
[2], or multistability of the mean flow [3].

Taylor-Couette flow is the flow produced between dif-
ferentially rotating coaxial cylinders [4]. When only the
inner cylinder rotates, the first instability takes the form
of toroidal (Taylor) vortices, and with two independently
rotating cylinders, there is a host of interesting secondary
bifurcations, extensively studied following the work of
Coles [5] and Andereck et al. [6]. Moreover, it shares
strong analogies with Rayleigh-Bénard convection [7, 8],
which are useful to explain different torque scalings at
high Reynolds numbers [9]. Finally, for some parame-
ters relevant in astrophysical problems, the basic flow is
linearly stable and can directly transit to turbulence [10].

The turbulent flow structure is not so well known and
only few measurements are available [11]. In the case
of inner cylinder rotating alone, recent direct numerical
simulations suggest that vortex-like structures still exist
at high Reynolds number (Re & 104) [12, 13], whereas
for counter-rotating cylinders, the turbulent flow comes
from a featureless state [6]. We extend the study to high
Reynolds numbers and address hereafter the question of
the transition between a turbulent Taylor-vortex flow and
this featureless turbulent flow when varying the global
rotation while maintaining a constant mean shear rate.

Experimental setup. The flow is produced between
two coaxial cylinders (Fig. 1). The inner one has a
radius of ri = 110 ± 0.05 mm, and the outer one of
ro = 120 ± 0.05 mm (gap d = ro − ri = 10 mm and gap
ratio η = ri/ro = 0.917). Both cylinders can rotate inde-

pendently, driven by two DC motors up to 10 Hz. The
system is closed at both ends, with top and bottom lids
rotating with the outer cylinder. The length of the inner
cylinder is L = 220 mm (axial aspect ratio is L/d = 22).
The torque T on the inner cylinder is measured with a
rotating torque meter.

For a Newtonian fluid of kinematic viscosity ν, with the
cylinders rotating at an angular speed of ωi,o, we use the
set of parameters defined by Dubrulle et al. [14]: a shear
Reynolds number Re = 2/(1+η) |ηReo−Rei| and a “Ro-
tation number” Ro = (1− η) (Rei + Reo)/(ηReo −Rei),
where Rei,o = (ri,oωi,od/ν) are the inner and outer
Reynolds numbers respectively. With this choice, Re
is based on the laminar shear rate S (Re = Sd2/ν).
At 10 Hz in counter-rotation, the shear rate is around
1400 s−1 and Re ≃ 1.4×105 for water. The rotation
number Ro compares the mean rotation to the shear
and is the inverse of a Rossby number. Its sign de-
fines cyclonic (Ro > 0) or anti-cyclonic (Ro < 0) flow.
The rotation number is zero in case of perfect counter-
rotation (riωi = −roωo). Two other relevant values are
Roi = η − 1 ≃ −0.083 and Roo = (1 − η)/η ≃ 0.091
for inner and outer cylinder rotating alone, respectively.
Finally, let us recall that at high η, i.e. (1 − η) ≪ 1, the
flow is linearly unstable for −1 < Ro < Roo [14, 15].
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FIG. 1: Sketch of the experimental setup.

We measure the three components of the velocity by
stereoscopic PIV [16] in a vertical plane normal to the
mean flow (Fig. 1). The light-sheet thickness is 0.5 mm,
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which is observed from both sides using two double-frame
CCD-cameras on Scheimpflug mounts. The tracer par-
ticles are 20 µm fluorescent (rhodamine) spheres. The
field of view is 11×25 mm2. For the calibration proce-
dure we use a thin transparent grid, attached to a rotat-
ing and translating micro-traverse. The PIV images are
processed with DaVis 7.2.

Scaling of the torque. We present in Fig. 2 the friction
factor Cf = T/(2πρr2

i LU2) ∝ G/Re2, with U = Sd and
G = T/(ρLν2), as a function of Re for three particular
rotation (Ro) numbers, corresponding to inner cylinder
rotating alone, exact counter-rotation and outer cylinder
rotating alone. At low Re, the three curves collapse on a
Re−1 curve. This characterizes the laminar regime where
the torque is proportional to the shear rate on which the
Reynolds number is based.
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FIG. 2: Friction factor Cf vs. Re for Roi = η − 1 (black
◦), Roc = 0 (blue �) and Roo = (1 − η)/η (red ⋄). Rela-
tive error on Re: ±5%, absolute error on torque: ±0.02 Nm.
Inset: local exponent α such that Cf ∝ Reα−2, computed
as 2 + d log(Cf )/d log(Re), for Roi = η − 1 (black), Roc = 0
(blue)and Roo = (1−η)/η (red). Solid green line: fit of Lewis
data, eq. 3 of Ref. [9], for Roi and η = 0.724. Solid magenta
line: eq. 10 of Ref. [17]. Solid black line: laminar friction
factor Cf = 1/(ηRe).

For Roi = η−1, one can notice a transition to a differ-
ent regime at Reci ≃ 140 (theoretical threshold Re = 150
[15]). This corresponds to the linear instability of the
basic flow, leading in this case to the growth of laminar
Taylor vortices. The friction factor is then supposed to
scale as Re−1/2 (α = 3/2), which is the case here (see
inset in Fig. 2). For exact counter-rotation (Roc = 0),
the first instability threshold is Recc ≃ 400. This is some-
what lower than the theoretical prediction Re = 515 [15],
which is probably due to our finite aspect-ratio. The
Taylor-Couette flow with outer cylinder rotating alone
(Roo = (1 − η)/η) is linearly stable whatever Re. The
experimental flow is still laminar at Re ≃ 4000.

Further increase of the shear Reynolds number also

increases the local exponent (see inset in Fig. 2). For
Roi = η − 1, it gradually rises from α ≃ 1.5 at Re ≃ 200
to α ≃ 1.8 at Re ≃ 105. The order of magnitude of
these values agree with the results of Lewis et al [9],
though a direct comparison is difficult, owing to the dif-
ferent gap ratios of the experiments. The local expo-
nent is supposed to approach a value of 2 for increasing
gap ratio. Dubrulle & Hersant [7] attribute the increase
of α to logarithmic corrections, whereas Eckhardt et al

[8] attribute the increase of α to a balance between a
boundary-layer/hairpin contribution in Re3/2 and a bulk
contribution in Re2. The case of perfect counter-rotation
shows a plateau at α ≃ 1.5 and a sharp increase of the
local exponent to α ≃ 1.75 at Retc ≃ 3200, possibly trac-
ing back a secondary transition. The local exponent then
seems to increase gradually. Finally, for Roo = (1−η)/η,
the flow directly transits from a laminar state to a tur-
bulent state with a local exponent around α = 1.77 at
4000 . Reto ≃ 5000. One can finally notice that at the
same shear Reynolds number, for Re ≥ 104 the local ex-
ponents for the three rotation numbers are equal within
±0.1 and that the torque with inner cylinder rotating
alone is greater than the torque in counter-rotation, this
latter being greater than the torque for outer cylinder
alone. Please note that the dimensional values of the
torque when only the outer cylinder rotates are very small
and difficult to measure accurately, and that these be-
come of the same order as the end effect corrections that
we have to take into account.

We now address the question of the transition be-
tween these different turbulent states at a constant shear
Reynolds number.

Mean flow bifurcation. The presence of vortex-like
structures at high Reynolds number (Re & 104) in turbu-
lent Taylor-Couette flow with the inner cylinder rotating
alone is confirmed in our experiment through stereoscopic
PIV measurements [18]. The time-averaged flow shows
strong secondary mean flow in the form of vortices. The
time-averaged angular velocity profile is almost flat and
the angular momentum transport is then mainly deter-
mined by these coherent structures; their contribution
corresponds to 75% of the total transport, with the re-
maining 25% being done by correlated fluctuations. On
the contrary, in the case of perfect counter-rotation there
is no mean secondary flow, and the angular momentum is
completely transported by strong fluctuating structures
more similar to those in plane turbulent Couette flows.
In that case, the correlation coefficient between radial
and azimuthal fluctuations is 0.4 [18].

To characterize the transition between these two
regimes, we first consider the global torque measure-
ments. We plot in Fig. 3 the friction factor normalised
by the torque for inner cylinder rotating alone as a
function of the rotation number (Ro), for a constant
shear Reynolds number in the turbulent regime (Re =
1.4 × 104). We first identify the hierarchy of flow states:
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FIG. 3: Cf , normalized by Cfi = Cf (Roi), vs. Ro at a
constant shear Reynolds number Re = 1.4 × 104. (⋆: data
from Wendt [19] at various η ≥ 0.85).

the torque in counter-rotation (Roc) is approximately
80% of Cf (Roi), and the torque with outer cylinder rotat-
ing alone (Roo) is approximately 50% of Cf (Roi). These
values compare well with the few available data, com-
piled by Dubrulle et al [14]. The curve shows a plateau
of constant torque from Ro = −0.2, i.e. when both cylin-
ders rotate in the same direction with the inner cylinder
rotating faster than the outer cylinder, to Ro ≃ −0.035,
i.e. with a small amount of counter-rotation with the in-
ner cylinder still rotating faster than the outer cylinder.
The torque then monotonically decreases when acceler-
ating the outer cylinder, with an inflexion point at Roc.
The transition is continuous and smooth, and the effect
of rotating the outer cylinder starts to be seen on the
torque very close to perfect counter-rotation.

We now focus on the changes observed in the mean
flow. To extract quantitative data from the PIV mea-
surements, we use the following model for the stream
function of the secondary flow: Ψ = sin[π(r− ri)/d] ×
{A1 sin[π(z−z0)/ℓ] + A3 sin[3π(z−z0)/ℓ]}, with free pa-
rameters A1, A3, ℓ and z0. This corresponds to alter-
nating rolls, with a wavelength of 2ℓ and a maximum
radial velocity given by π(A1/ℓ + 3A3/ℓ). It is implic-
itly assumed that the flow is developed sufficiently to
restore the axisymmetry, which is a posteriori checked.
We previously tried a single mode in axial direction, but
it appears that using also the third harmonic improves
the matching between the model and the actual velocity
fields, especially close to Roi (see Fig. 4).

We first discuss the case {Ro = Roi; Re = 1.4×104}.
A sequence of 4,000 PIV images at a data rate of 3.7 Hz
is taken, and 20 consecutive PIV images, i.e. approx-
imately 11 cylinder revolutions, are sufficient to obtain
a reliable estimate of the mean flow [13]. It is known
that for the first transition the observed flow state can
depend on the initial conditions [5]. When starting the
inner cylinder from rest and accelerating it to 2 Hz in
20 s, the vortices grow very fast, reach a value with a
velocity amplitude of 0.08 ms−1, and then decay to be-

come stabilized at a value around 0.074 ms−1 after 400
seconds. Transients are thus also very long in turbulent
Taylor-vortex flows. For slower accelerations, the first
vortices are weaker and have a larger length scale, before
reaching the same final state. The final length scale of
the vortices for Roi is about 1.2 times the gap width,
consistent with data from Bilson et al. [12].
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FIG. 4: Secondary flow amplitude vs. rotation number (Ro)
at constant shear rate. Black (⋄): model with fundamental
mode only, and red (◦): complete model with third harmonic.

Solid line is a fit of the form A = a(−Ro)1/2. Inset: zoom
close to counter-rotation, combined with results from a con-
tinuous experiment (see text).

In a subsequent measurement we start from {Ro =
Roi; Re = 1.4×104} and vary the rotation number in
small increments, while maintaining a constant shear
rate. We allow the system to spend 20 minutes in each
state before acquiring PIV data. We verify that the fit
parameters are stationary, and compute them using the
average of the full PIV data set at each Ro. The results
are plotted in Fig. 4. Please note that Ro has been varied
both with increasing and decreasing values, to check for
a possible hysteresis. All points fall on a single curve; the
transition is smooth and without hysteresis. For Ro ≥ 0,
the fitted modes have zero or negligible amplitudes, since
there are no flow structures in the time-average field [18].
One can notice that as soon as Ro < 0, i.e. as soon as
the inner cylinder starts to rotate faster than the outer
cylinder, vortices begin to grow. We plot in Fig. 4 the ve-
locity amplitudes associated with the simple model (sin-
gle mode ⋄), and with the complete model (modes 1 and
3, ◦). Very close to Ro = 0, the two models coincide:
A3 ≃ 0 and the secondary mean flow is well described
by pure sinusoidal structures. For Ro . −0.04, the vor-
tices start to have elongated shapes, with large cores and
small regions of large radial motions in between adjacent
vortices; the third mode is then necessary to adequately
describe the secondary flow. The first mode becomes sat-
urated in this region. Finally, we give in Fig. 4 a fit of the
amplitudes close to Ro = 0 of the form: A = a (−Ro)1/2.
The velocity amplitude of the vortex behaves like the
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square root of the distance to Ro = 0, a situation remi-
niscent to a classical supercritical bifurcation, with A as
order parameter, and Ro as control parameter.

We also performed a continuous experiment, i.e. vary-
ing the rotation number quasi-statically from Ro=0.004
to Ro=–0.0250 in 3000 s. The amplitude of the mean
secondary flow, computed on sequences of 20 images, is
plotted in the inset of Fig. 4. The curve follows the static
experiments (given by the single points), but some down-
ward peaks can be noticed. We checked that these are not
the result of a fitting error, and indeed correspond to the
occasional disappearance of the vortices. They could cor-
respond to the Eckhaus instability of the pattern wave-
length. Still, the measurements are done at a fixed posi-
tion in space. Though the very long time-averaged series
lead to well-established stationary axisymmetric states,
it is possible that the instantaneous whole flow consists
of different regions. Further investigation including time-
resolved single-point measurements or flow visualizations
need to be done to verify this possibility.

Conclusion The rotation has some obvious effects on
the torque scaling. Whereas the local exponent evolves
in a smooth way for inner cylinder rotating alone, the
counter-rotating case exhibits two sharp transitions, from
α = 1 to α ≃ 1.5 and then to α ≃ 1.75. We also notice
that the second transition for counter-rotation Retc is
close to the threshold Reto of turbulence onset for outer
cylinder rotating alone. A way to analyze the flow is to
decompose it into two regions, dominated by each cylin-
der and separated by a neutral surface [15]. For Roc, we
could thus infer that at low Re, the inner zone dominates,
and at higher Re, the outer zone dominates.

The rotation number (Ro) is thus a secondary con-
trol parameter. It is very tempting to use the classical
formalism of bifurcations and instabilities to study the
transition between featureless turbulence and turbulent
Taylor-vortex flow at constant Re, which seems to be su-
percritical; the threshold for the onset of coherent struc-
tures in the mean flow is Roc. For anticyclonic flows
(Ro < 0), the transport is dominated by large scale co-
herent structures, whereas for cyclonic flows (Ro > 0),
it is dominated by correlated fluctuations reminiscent to
thermal plumes, with no viscous contribution at all for
Ro ≤ 0 but a few 10% at Roo [18]. Counter-rotation Roc

corresponds to an inflexion point in the torque curve.
The perfect counter-rotating case thus seems to be a pe-
culiar boundary for the turbulent Taylor-Couette flow.
One last remark is that rotation number Ro = 0 is also
the threshold for linear instability for rotating plane Cou-
ette flow, which exactly corresponds to the limit of a
Taylor-Couette flow with vanishing curvature [20].

We are particularly indebted to J.R. Bodde, C. Gerrit-
sen and W. Tax for building up and piloting the experi-
ment. We have benefited of very fruitful discussions with
A. Chiffaudel, F. Daviaud, B. Dubrulle and B. Eckhardt.
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