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Influence of global rotation and Reynolds number on the large-scale features of a

turbulent Taylor-Couette flow.

F. Ravelet,1 R. Delfos,1 and J. Westerweel1

1Laboratory for Aero and Hydrodynamics, Leeghwaterstraat 21, 2628 CA Delft, The Netherlands.∗

(Dated: Writting in progress: December 17, 2007)

We study the torque scaling and the angular momentum transport mechanisms in a turbulent
flow between two independently rotating cylinders. Depending on the angular velocities ratio, we
identify two different states: one with large scale vortical structures in the secondary mean flow, and
the other one with no large scale features. At constant shear, varying the angular velocities ratio,
we then study the transition between these two states. This transition is smooth and continuous.
It resembles a supercritical bifurcation of the secondary mean flow on a turbulent flow.

Introduction. Turbulent flows are present in many
applied and fundamental problems, ranging from small
scales (engines, mixing) to very large scales (meteorol-
ogy, convection in the earth mantle, and other astrophys-
ical problems such as momentum transport in accretion
disks). One of the several open questions is the emer-
gence of coherent structures in turbulent flows [1]. An-
other interesting problem concerns the bifurcations that
can arise in turbulent regime, for instance the dynamo
instability of a magnetic field in a conducting fluid [2], or
multistability of the mean flow in von Kármán or Taylor-
Couette flows [3, 4].

The Taylor-Couette flow is the flow produced be-
tween differentially rotating coaxial cylinders [5]. When
only the inner cylinder rotates, the first instability takes
the form of toroidal (Taylor) vortices, and with two
independent cylinders, there are a host of interesting
secondary bifurcations, extensively studied in the last
decades [6, 7]. Moreover, it shares strong analogies with
Rayleigh-Bénard convection [8, 9] which are useful to ex-
plain different torque scalings at high Reynolds numbers
[10]. Finally, for some parameters relevant in astrophys-
ical problems the basic flow is linearly stable and can
directly transit to turbulence [11].

The turbulent flow structure is not so well known and
few measurements are available [12]. In the case of in-
ner cylinder rotating alone, recent direct numerical sim-
ulations suggest that vortices-like structures still exist
at high Reynolds number (Re & 104) [13, 14], whereas
for counterrotating cylinders, the turbulent flow is sup-
posed to be featureless [7]. We address hereafter the ques-
tion of the transition between a Turbulent Taylor-Vortex
Flow and this featureless turbulent flow when varying the
global rotation for a constant shear.

Experimental setup. The flow is produced between
two coaxial cylinders (see Fig. 1). The inner one is of
radius ri = 110± 0.05mm, and the outer one is of radius
ro = 120±0.05mm, which gives a gap d = ro−ri = 10mm
and a gap ratio η = ri/ro = 0.917. Both cylinders can
rotate independently. The system is closed at both ends.
Top and bottom lids rotate with the outer cylinder. The
length of the inner cylinder is L = 220mm, i.e. the axial

aspect ratio is L/d = 22. The cylinders are driven by two
independent Brushless DC motors (Maxon, 250W), at a
rotation rate up to 10Hz. The torque T exerted on the
inner cylinder is measured with a rotating torquemeter
(HBM T20WN, 2N.m).

For a newtonian fluid of kinematic viscosity ν, with
the cylinders rotating at an angular speed of ωi,o, we use
the set of parameters defined by Dubrulle et al. [15]: a
Reynolds number Re = 2/(1+η) |ηReo−Rei| and a “Ro-
tation number” Ro = (1− η) (Rei + Reo)/(ηReo −Rei),
where Rei,o = (ri,oωi,od/ν) are the inner and outer
Reynolds numbers. With this choice, Re is based on
the shear, and can be linked to the Taylor number used
by Eckhardt et al. [9]: Ta = σ2Re2, with σ a geomet-
ric parameter. At 10Hz in counterrotation, the shear
rate is around 1400s−1 and Re ≃ 1.4 × 105 for pure
water. The Rotation number compares the mean rota-
tion to the shear and is the inverse of a Rossby number.
The sign of the shear compared to the sign of the an-
gular velocity defines cyclonic (resp. anti-cyclonic) flows
Ro > 0 (resp. Ro < 0). Rotation number is zero in
case of perfect counterrotation (riωi = −roωo). Two
other relevant values are Roi = η − 1 ≃ −0.083 (resp.
Roo = (1 − η)/η ≃ 0.091) for inner (resp. outer) cylin-
der rotating alone. Finally, let us recall that the flow is
linearly unstable for −1 < Ro . Roo [16].
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FIG. 1: Sketch of the experimental setup.

We measure the three components of the velocity by
stereoscopic PIV in a vertical plane normal to the mean
flow (see Fig. 1). The light-sheet thickness is 0.5mm. It is



2

imaged using two double-frame PCO-cameras, mounted
on Scheimpflug adaptors, located at each side of the light
sheet. The time between two pulses is 100µs. The tracer
particles are 20µm spheres coated with rhodamine. The
field of view measures 11mm × 25mm, corresponding to
a resolution of 320 × 1024 pixels. Special care has been
taken concerning the calibration procedure. We use a
thin transparent grid, attached to a rotating and trans-
lating micro-traverse. The PIV-images are processed
with DaVis 7.2 with a final interrogation area of 32× 32
pixels (50% overlap), and normalised median filtering as
post-processing.

Scaling of the torque. We present in Fig. 2 the dimen-
sionless torque G/Re2 where G = T/(ρLν2) as a function
of Re for three particular Rotation numbers, correspond-
ing to inner cylinder rotating alone, exact counterrota-
tion and outer cylinder rotating alone. At low Re, the
three curves collapse on a Re−1 curve. This characterizes
the laminar regime where the torque is proportional to
the shear on which the Reynolds number is based.
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FIG. 2: Dimensionless torque G/Re2 vs. Re for Roi = η − 1
(black ◦), Roc = 0 (blue �) and Roo = (1−η)/η (red ⋄). Rel-
ative error on Re: ±5%, absolute error on torque: ±0.02N.m.
Inset: local exponent α such that G ∝ Reα, computed as
d log(G)/d log(Re), for Roi = η−1 (black), Roc = 0 (blue)and
Roo = (1 − η)/η (red).

For Roi = η − 1, one can then notice a transition to
a different regime at Reci ≃ 140 . This corresponds to
the first instability, and is very close to the theoretical
threshold of Re = 150 [16]. Laminar Taylor vortices
grow, and the dimensionless torque is then supposed to
scale as Re−1/2 (α = 3/2), which is the case here (see
Inset in Fig. 2). For exact counterrotation (Roc = 0),
the first instability threshold is Recc ≃ 400. It is a little
bit lower than the theoretical prediction Re = 515 [16];
which is probably due to our finite aspect-ratio. The
Taylor-Couette flow with outer cylinder rotating alone
(Roo = (1 − η)/η) is linearly stable whatever Re. The
experimental flow is still laminar at Re ≃ 4000.

Increasing further the Reynolds number, the local ex-
ponent increases (see Inset in Fig. 2). For Roi = η − 1,
it varies between α ≃ 1.5 at Re ≃ 200 and α ≃ 1.8 at
Re ≃ 105. The order of magnitude of these values agree
with the results of Lathrop et al [10], though a direct
comparison is difficult, owing to the different gap ratio of
the experiments. The bigger the gap ratio is, the closer
to 2 the local exponent is supposed to be. Dubrulle and
Hersant [8] attribute the increase of α to logarithmic cor-
rections, whereas Eckhardt et al [9] attribute the increase
of α to a balance between a boundary-layer/hairpin con-
tribution in Re3/2 and a bulk contribution in Re2. The
case of perfect counterrotation shows a plateau at α ≃ 1.5
and a sharp increase of the local exponent to α ≃ 1.75
at Retc ≃ 3200, possibly tracing back a secondary transi-
tion. The local exponent then seems to increase gradually
to the asymptotically expected α = 2 value. Finally, for
Roo = (1− η)/η, the flow directly transit from a laminar
state to a turbulent state with a local exponent around
α = 1.77 at 4000 . Reto ≃ 5000. Please note that the
dimensional values of the torque when only the outer
cylinder rotates are very small and difficult to measure
accurately.

Owing to these different first thresholds and to the fact
that the local exponents in “turbulent regimes” (Re ≥
104) are then equal within ±0.1, the torque with inner
cylinder rotating alone is greater than the torque in coun-
terrotation, this latter being greater than the torque for
outer cylinder alone. We now address the question of the
transition between these different states at a constant
Reynolds number.

Mean flow bifurcation. The presence of vortices-like
structures at high Reynolds number (Re & 104) in tur-
bulent Taylor-Couette flow with inner cylinder rotating
alone is confirmed in our experiment through stereoscopic
PIV measurements [17]. The time-averaged flow show
strong secondary mean flow in the shape of vortices. The
time-averaged angular velocity profile is almost flat and
the angular momentum transport is then mainly ensured
by these coherent structures: their contribution corre-
sponds to 75% of the total transport, the remaining 25%
being done by correlated fluctuations. On the contrary,
in the case of perfect counterrotation, there is no mean
secondary flow and the angular momentum is completely
transported by highly fluctuating structures more simi-
lar to plumes. In that case, the correlation coefficient
between radial and azimuthal fluctuations is 0.4 [17].

To characterize the transition between these two
regimes, we first look at global torque measurements.
We plot in Fig. 3 the dimensionless torque normalised
by the torque for inner cylinder rotating alone as a func-
tion of the Rotation number, for a constant Reynolds
number in the turbulent regimes (Re = 1.4 × 104). We
first recover the hierarchy of torques: torque in counter-
rotation (Roc = 0) is approximately 80% of G(Roi =
η − 1) and the torque with outer cylinder rotating alone
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FIG. 3: Dimensionless torque G normalised by Gi = G(Ro =
η − 1) vs. Ro at a constant Reynolds number Re = 1.4× 104.

(Roo = (1− η)/η) is approximately 50% of it. These val-
ues compare well with the few available data compiled by
Dubrulle et al [15]. The curve shows a plateau of constant
torque from Ro = −0.2, i.e. when both cylinders rotate
in the same direction, the inner cylinder rotating faster
than the outer cylinder, to Ro ≃ −0.035, i.e. with a lit-
tle bit of counterrotation, the inner cylinder still rotating
faster than the outer cylinder. The torque then mono-
tonically decreases when accelerating the outer cylinder.
One can also notice an inflexion at Roc = 0. The transi-
tion is continuous and smooth and the effect of rotating
the outer cylinder starts to be seen on the torque very
close to perfect counterrotation.

We now are going to look at the changes in the mean
flow. To extract quantitative data from the PIV mea-
surements, we use the following model for the stream
function: Ψ = sin(π(r − ri)/d) × (A1 sin(π(z − z0)/l) +
A3 sin(3π(z−z0)/l)), with free parameters A1, A3, l and
z0. This corresponds to alternate rolls, with a wavelength
of 2l and a typical velocity given by π(A1/l + 3A3/l). It
is supposed implicitly that flow is integrated sufficiently
to restore the axisymmetry, which is a posteriori checked.
We have first tried a single mode in axial direction, but it
appears that using also the third harmonic does improve
the matching between the model and the actual velocity
fields, especially close to Roi = η − 1 (see Fig. 4).

We perform several measurements at different Ro, with
a constant shear-based Reynolds number Re = 1.4×104,
corresponding to a velocity of 2Hz for inner cylinder ro-
tating alone. We first give an example of a PIV data set
analysis with a fixed outer cylinder and an inner cylin-
der started from rest and accelerated to 2Hz in 20s. A
sequence of 4000 PIV images at a data rate of 3.7Hz is
taken and 20 consecutive PIV images, i.e. approximately
11 cylinder revolutions are sufficient to obtain a good es-
timate of the mean flow. The length scale of the vortices
for Roi = η−1 is about 1.2 gap width, which is consistent
with data from Bilson et al. [14]. On this peculiar exam-
ple, one can notice that strong vortices grow very fast,

reach a first value at a strength of 0.08 m.s−1, and then
decay to get stabilised at a value around 0.074 m.s−1 af-
ter 400 seconds. It is known that for the first transitions,
the observed flow state can depend on the starting con-
ditions [6]. In the present case, for a slower acceleration
than the given example, the first vortices are less strong
and have a bigger length scale, before reaching the same
final state. Transients are thus also very long in turbulent
Taylor-Vortex flows for inner cylinder rotating alone.
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FIG. 4: Secondary flow amplitude vs. Rotation number, at
constant shear. Black (⋄): model with fundamental mode
only and red (◦): complete model with third harmonic. Solid

line is a fit of the form A = a (−Ro)1/2. Inset: zoom close to
counterrotation, superimposed with a continuous experiment
(see text).

In the following experiment, where we start from
{Roi = η − 1 ; Re = 1.4 × 104} and vary the Rotation
number step by step, keeping a constant shear, we there-
fore let the system spend 20 minutes in each state before
acquiring PIV data sets. We then check that the fit pa-
rameters are stationary, and compute them on the aver-
age of the whole PIV data set for each Ro. The results
are reported in Fig. 4. Please note that Ro has been var-
ied both with increasing and decreasing values, to check
a possible hysteresis.

All the points fall on a single curve: the transition
is smooth and non-hysteretic. For Ro ≥ 0, the fitted
modes have zero amplitude, as expected [17]. One can
notice then that as soon as Ro < 0, i.e. as soon as
the inner cylinder starts to rotate faster than the outer
cylinder, vortices start to grow. We plot in Fig. 4 the ve-
locity strengths associated with the simple model (only
one mode, ⋄) and with the complete model (modes 1 and
3, ◦). Very close to Ro = 0, the two models coincide:
A3 ≃ 0 and the secondary mean flow is well described
by pure sinusoidal structures. For Ro . −0.04, the vor-
tices starts to have elongated shapes, with large cores and
small regions of large radial motions inbetween adjacent
vortices: the third mode is then necessary to describe well
the secondary flow. The first mode gets saturated in this
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region. Finally, we give in Fig. 4 a fit of the amplitudes
close to Ro = 0 of the form: A = a (−Ro)1/2. The am-
plitude of the vortex behaves like the square root of the
distance to Ro = 0, a situation reminiscent to a classical
supercritical bifurcation, with A as order parameter, and
Ro as control parameter.

We also performed a continuous experiment, varying
the Rotation number from Ro = 0.004 to Ro = −0.0250
in 3000s. The experiment is thus quasistatic. The ampli-
tude of the mean secondary flow, computed on sequences
of 20 images is plotted in the inset of Fig. 4. The curve
follows the single points experiments, but some down-
ward peaks can be noticed: we have checked that they
are not a fitting error. They indeed correspond to disap-
pearance of the vortices from times to times. They could
correspond to Eckhaus instability of the pattern wave-
length. Still, the measurements are done at a fixed posi-
tion in space. Though the very long time-averaged series
lead to well stationary axisymmetric states, it is possible
that the instantaneous whole flow consists of different
regions. Further investigations including time-resolved
single-point measurements or flow visualizations need to
be done to check this possibility.

Conclusion The rotation has some effects on the
torque scaling. Whereas the local exponent evolves in
a smooth way for inner cylinder alone, the counterrotat-
ing case exhibits two sharp transitions, from α = 1 to
α ≃ 1.5 and then to α ≃ 1.75. We also notice that the
second transition for counterrotation Retc is close to the
threshold Reto of turbulence onset for outer cylinder ro-
tating alone. A way to analyse the flow is to decomposed
it into two regions, dominated by each cylinder and sep-
arated by a neutral surface [16]. For Roc = 0, we could
thus infer that at low Reynolds number, the inner zone
dominates, and at higher Re, the outer zone dominates.

The Rotation number is thus a secondary control pa-
rameter. It is very temptful to use the classical formalism
of bifurcations and instabilities to study the transition
between featureless turbulence and Turbulent Taylor-
Vortex Flow at constant Re, which seems to be super-
critical: the threshold for the onset of coherent struc-
tures in the mean flow is Roc = 0. For anticyclonic flows
(Ro < 0), the transport is dominated by large scale co-
herent structures, whereas for cyclonic flows (Ro > 0),
it is dominated by correlated fluctuations reminiscent to
thermal plumes, with no viscous contribution at all for
Ro ≤ 0 but a few 10% at Roo [17]. Counterrotation
Roc = 0 corresponds to an inflexion point in the torque
curve. The perfect counterrotating case thus seems to
be a peculiar boundary for the turbulent Taylor-Couette
flow. One last remark is that Rotation number Ro = 0 is
also the threshold for linear instability for rotating Plane
Couette Flow, which exactly corresponds to the limit of
a Taylor-Couette flow with vanishing curvature [18].

We are particularly indebted to J. R. Bodde, C. Gerrit-
sen and W. Tax for building up and piloting the experi-

ment. We have benefited of very fruitful discussions with
A. Chiffaudel, F. Daviaud, B. Dubrulle and B. Eckhardt.
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