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We experimentally study the turbulent flow between two coaxial and independently rotating

cylinders.

We determined the scaling of the torque with Reynolds numbers at various angular

velocity ratios (Rotation numbers), and the behaviour of the wall shear stress when varying the
Rotation number at high Reynolds numbers. We compare the curves with PIV analysis of the mean
flow and show the peculiar role of perfect counterrotation for the emergence of organised large scale
structures in the mean part of this very turbulent flow that appear in a smooth and continuous way:
the transition resembles a supercritical bifurcation of the secondary mean flow.

I. INTRODUCTION

Turbulent shear flows are present in many applied and
fundamental problems, ranging from small scales (such as
in the cardiovascular system) to very large scales (such as
in meteorology). One of the several open questions is the
emergence of coherent large-scale structures in turbulent
flows [[. Another interesting problem concerns bifur-
cations, i.e. transitions in large-scale flow patterns un-
der parametric influence, such as laminar-turbulent flow
transition in pipes, or flow pattern change within the tur-
bulent regime, such as the dynamo instability of a mag-
netic field in a conducting fluid [E], or multistability of the
mean flow in von Karméan or free-surface Taylor—Couette
flows [B, H], leading to hysteresis or non-trivial dynamics
at large scale. In flow simulation of homogeneous turbu-
lent shear flow it is observed that there is an important
role for what is called the background rotation, which is
the rotation of the frame of reference in which the shear
flow occurs. This background rotation can both suppress
or enhance the turbulence [E, ﬂ] We will further explicit
this in the next section.

A flow geometry that can generate both motions, shear
and background rotation, at the same time is a Taylor-
Couette flow, which is the flow produced between dif-
ferentially rotating coaxial cylinders [ﬂ] When only the
inner cylinder rotates, the first instability, i.e. deviation
from laminar flow with circular streamlines, takes the
form of toroidal (Taylor) vortices. With two indepen-
dently rotating cylinders, there is a host of interesting
secondary bifurcations, extensively studied at intermedi-
ate Reynolds numbers, following the work of Coles @] and
Andereck et al. [E] Moreover, it shares strong analogies
with Rayleigh-Bénard convection [@, Ell], which are use-
ful to explain different torque scalings at high Reynolds
numbers , B] Finally, for some parameters relevant
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in astrophysical problems, the basic flow is linearly sta-
ble and can directly transit to turbulence at a sufficiently
high Reynolds number [L4].

The structure of the Taylor-Couette flow while it is
in a turbulent state, is not so well known and only few
measurements are available [@] The flow measurements
reported in [@] and other torque scaling studies only
deal with the case where only the inner cylinder rotates
[@, B] In that precise case, recent direct numerical sim-
ulations suggest that vortex-like structures still exist at
high Reynolds number (Re > 10%) [, [, whereas for
counter-rotating cylinders, the flows at Reynolds num-
bers around 5000 are identified as “featureless states” [[J.
The structure of the flow is exemplified with a flow visu-
alisation in Fig. [l in our experimental set-up for a flow
with only the inner cylinder rotating, counter-rotating
cylinders and only the outer cylinder rotating, respec-
tively.

FIG. 1: Photographs of the flow at Re = 3.6 x 10>. Left, A:
only the inner cylinder rotating. Middle, B: counter rotating
cylinders. Right, C: only the outer cylinder rotating. The
flow structure is vusualized using microscopic Mica-platelets
(Pearlessence).

In the present paper, we extend the study of torques
and flow field for independently rotating cylinders to
higher Reynolds numbers (up to 10°) and address the
question of the transition process between a turbulent
flow with Taylor-vortices, and this “featureless ”turbu-
lent flow when varying the global rotation while main-
taining a constant mean shear rate.

In section ﬂ, we present the experimental device and
the measured quantities. In section , we introduce the
specific set of parameters we use to take into account the
global rotation through a “Rotation number”and the im-
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posed shear through a shear-Reynolds number. We then
present torque scalings and typical velocity profiles in
turbulent regimes for three particular Rotation numbers
in section @ We explore the transition between these
regimes at high Reynolds number varying the Rotation
number in section é, and discuss the results in section

II. EXPERIMENTAL SETUP AND
MEASUREMENT TECHNIQUES
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FIG. 2: Picture and sketch with dimensions of the experimen-
tal setup. One can see the rotating torquemeter (upper part
of picture), the calibration grid displacement device (on top
of the upper plate), one of the two cameras (left side) and the
light sheet arrangement (right side). The second camera is
further to the right.

i n

The flow is generated between two coaxial cylinders
(Fig. E) The inner cylinder has a radius of r; = 110 £
0.05 mm, and the outer cylinder of r, = 120 £+ 0.05 mm.
The gap between the cylinders is thus d = r, — r; =
10 mm, and the gap ratio is n = r;/r, = 0.917. The
system is closed at both ends, with top and bottom lids
rotating with the outer cylinder. The length of the inner
cylinder is L = 220 mm (axial aspect ratio is L/d = 22).
Both cylinders can rotate independently with the use of
two DC motors (Maxon, 250W). The motors are driven
by a home-made regulation device, ensuring a rotation
rate up to 10Hz, with an absolute precision of £0.02 Hz

and a good stability. A LabView program is used to
control the experiment: the two cylinders are simulta-
neously accelerated or decelerated to the desired rota-
tion rates, keeping their ratio constant. This ratio can
also be changed while the cylinders rotate, maintaining
a constant differential velocity.

The torque T on the inner cylinder is measured with
a co-rotating torquemeter (HBM T20WN, 2 N.m). The
signal is recorded with a 12 bits data acquisition board at
a sample rate of 2 kHz for 180 s. The absolute precision
on the torque measurements is +0.01 N.m, and values
below 0.05 N.m are rejected. We also use the encoder on
the shaft of the torquemeter to record the rotation rate
of the inner cylinder. Since that matches excellently with
the demanded rate of rotation, we assume that the outer
cylinder rotates at the demanded rate as well.

Since the torque meter is mounted in the shaft between
driving motor and cylinder, it also records (besides the
intended torque on the wall bounding the gap between
the two cylinders) the contribution of mechanical fric-
tion such as in the two bearings, and the fluid friction in
the horizontal (Kdrmdn) gaps between tank bottom and
tank top. While the bearing friction is consiedered to
be marginal (and measured so in an empty i.e. air filled
system), the Kdrmédn-gap contribution is much bigger:
during laminar flow, we calculated and measured this to
be of the order of 80% of the gap torque. Therefore,
all measured torques were divided by a factor 2, and we
should consider the scaling of torque with the parameters
defined in § [I] as more accurate than the exact numerical
values of torque.

A constructionally more difficult, but also more accu-
rate, solution for the torque measurement is to work with
three stacked inner cylinders and only measure the torque
on the central section, such as is done in the Maryland
Taylor-Couette set-up [, and (under development) in
the Twente Turbulent Taylor-Couette set-up [@]

We measure the three components of the velocity by
stereoscopic PIV @] in a plane illuminated by a double-
pulsed Nd:YAG laser. The plane is vertical (Fig. ), i.e.
normal to the mean flow: the in-plane components are
the radial (u) and axial (v) velocities, while the out-of-
plane component is the azimuthal component (w). It is
observed from both sides with an angle of 60° (in air),
using two double-frame CCD-cameras on Scheimpflug
mounts. The light-sheet thickness is 0.5 mm. The tracer
particles are 20 pum fluorescent (rhodamine B) spheres.
The field of view is 11x25 mm?, corresponding to a res-
olution of 300 x 1024 pixels. Special care has been taken
concerning the calibration procedure, on which especially
the evaluation of the plane-normal azimuthal component
hevaily relies. As a calibration target we use a thin
polyester sheet with lithographically printed crosses on
it, stably attached to a rotating and translating micro-
traverse. It is first put into the light sheet and traversed
perpendicularly to it. Typically five calibration images
are taken with intervals of 0.5mm. The raw PIV-images
are processed using Davis® 7.2 by Lavision [@] They
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FIG. 3: Dimensionless azimuthal velocity profile (w/(rjw;)
vs. (r —ri)/d) for Ro = Ro;, at Res = 90 (see section [I] for
the definition of the parameters). Solid line: measured mean
azimuthal velocity. Dotted line: theoretical profile. Dashed
line: fit of the form w = ar + b/r. The radial component u
which should be zero is also shown as a thin solid line.

are first mapped to world coordinates, then they are fil-
tered with a min-max filter, then PIV processed using
a multi-pass algorithm, with a last interrogation area of
32 x 32 pixels with 50% overlap, and normalised using me-
dian filtering as post-processing. Then the three compo-
nent are reconstructed from the two camera views. The
mapping function is a third-order polynomial, and the
interpolations are bilinear. The PIV data acquisition is
triggered with the outer cylinder when it rotates, in or-
der to take the pictures at the same angular position as
used during the calibration.

To check the reliability of the stereoscopic velocity
measurement method, we performed a measurement for
a laminar flow when only the inner cylinder rotates at
a Reynolds number as low as Reg = 90, using a 86%
glycerol-water mixture. In that case, the analytical ve-
locity field is known: the radial and axial velocities are
zero, and the azimuthal velocity w should be axisymmet-
ric with no axial dependance, and a radial profile in the
form w(r) = Qri(ry/r — /1) /(1 —1?) [H. The results
are plotted in Fig. B. The measured profile (solid line)
hardly differs from the theoretical profile (dotted line) in
the bulk of the flow (0.1 < (r —7;)/d < 0.7). The dis-
crepancy is however quite strong close to the outer cylin-
der ((r —r;)/d = 1). The in-plane components which
should be zero do not exceed 1% of the inner cylinder ve-
locity everywhere. In conclusion, the measurements are
very satisfying in the bulk. Further improvements to the
technique have been made since this first PIV test, in
particular a new outer cylinder of improved roundness,
and the measurements performed in water for turbulent
cases are reliable in the range (0.1 < (r —r;)/d < 0.85).

III. PARAMETER SPACE

The two traditional parameters to describe the flow
are the inner (resp. outer) Reynolds numbers, Re; =
(rawid/v) (resp. Re, = (rowod/v)), with the inner (resp.
outer) cylinder rotating at rotation rates w; (resp. w,),
and v the kinematic viscosity.

We choose to use the set of parameters defined by
Dubrulle et al. 1]: a shear Reynolds number Reg and
a “Rotation number” Ro:

2|nRe, — Re;
Reg — 2nfico — Rei|
1+7n (1)
RO*(l* ) R€i+R€O
o g nRe, — Re;

With this choice, Reg is based on the laminar shear
rate S: Reg = Sd?/v. For instance with a 20 Hz velocity
difference in counter-rotation, the shear rate is around
1400 s~! and Reg ~ 1.4 x 10° for water at 20°C. A
constant shear Reynolds number corresponds to a line of
slope 7 in the {Re, ; Re;} coordinate system (see Fig. ).

The Rotation number Ro compares the mean rotation
to the shear and is the inverse of a Rossby number. Its
sign defines cyclonic (Ro > 0) or anti-cyclonic (Ro < 0)
flows. The Rotation number is zero in case of perfect
counter-rotation (r;w; = —r,w,). Two other relevant
values of the Rotation number are Ro; =n—1 ~ —0.083
and Ro, = (1 —n)/n ~ 0.091 for respectively inner and
outer cylinder rotating alone. Finally, a further choice
that we made in our experiment was the value of n =
r; /7o, which we have chosen as relatively close to unity,
ie. m = 110/120 ~ 0.91, which is considered a narrow-
gap, and is the most common in reported experiments,
such as [E, E, @, , though a value as low as 0.128 is
described as well [{f]. A high n, ie. (1 —17n) < 1, is
special in the sense that for n — 1 a plane Couette flow
with background rotation; at high 7, the flow is linearly
unstable for —1 < Ro < Ro, [E,E, @]

In the present study we experimentally explore regions
of the parameter space that, to our knowledge, have not
been reported before. We present in Fig. E the parame-
ter space in {Re, ; Re;} coordinates with a sketch of the
flow states identified by Andereck et al. [E], and the loca-
tion of the data discussed in the present paper. One can
notice that the present range of Reynolds numbers is far
beyond that of Andereck, and that with the PTV-data we
mainly explore the zone between perfect counterrotation
and only the inner cylinder rotating.

IV. STUDY OF THREE PARTICULAR
ROTATION NUMBERS

In the experiments reported in this section, we main-
tain the Rotation number at constant values and vary
the shear Reynolds number. We compare three partic-
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The horizontal axis Re;
— Re, corresponds to counter—rotatlon i.e. Ro= Ro. = 0. The PIV data taken at a constant shear Reynolds number of

= 0 corresponds to Ro = Ro, = 0.091. The line

Res = 1.4x10* are plotted with (o). Torque data with varying Ro at constant shear for various Regs ranging from Res = 3 x 10°
to Res = 4.7 x 10* are plotted as blue lines. We also plot the states identified at much lower Res by Andereck et al. [E] as

color patches: red corresponds to laminar Couette flow, green to “spiral turbulence”

to an “unexplored”zone.

ular Rotation numbers. Ro;, Ro. and Ro,, correspond-
ing to rotation of the inner cylinder only, exact counter-
rotation and rotation of the outer cylinder rotating only,
respectively. In section A we report torque scaling mea-
surements for a wide range of Reynolds numbers —from
base laminar flow to highly turbulent flows— and in sec-
tion B we present typical velocity profiles in turbulent
conditions.

A. Torque scaling measurements

We present in Fig. @ the friction factor c; =
T/(2mpriLU?%) o« G/Re*, with U = Sd and G =
T/(pLv?), as a function of Reg for the three Rotation
numbers. A common definition for the scaling exponent
a of the dimensionless torque is based on G: G x Reg.
We keep this definition and present the local exponent
« in the inset in Fig. ﬂ We compute « by means of a
logarithmic derivative, a = 2 4 dlog(cs)/dlog(Res).

At low Re, the three curves collapse on a Re™" curve.
This characterizes the laminar regime where the torque
is proportional to the shear rate on which the Reynolds
number is based.

For Ro; = n — 1, one can notice a transition to a dif-
ferent regime at Re.; ~ 140 (the theoretical threshold is
computed as Re = 150 [@]) This corresponds to the
linear instability of the basic flow, leading in this case to
the growth of laminar Taylor vortices. The friction fac-
tor is then supposed to scale as ¢y oc Re™/2 (a = 3/2),

, grey to “featureless turbulence”and blue

100 10° 100 __ 100 100 10o°
Re

FIG. 5: Friction factor ¢y vs. Res for Ro; =n —1 (black o),
Ro. = 0 (blue O) and Ro, = (1 —1)/n (red ©). Relative error
on Res: £5%, absolute error on torque: #0.01 Nm. Inset:
local exponent o such that Cy oc ReS_Q, computed as 2 +
dlog(Cy)/dlog(Res), for Ro; = n—1 (black), Ro. = 0 (blue)
and Ro, = (1 —n)/n (red). Solid green line: Lewis’ data,
(Ref. [E | eq. 3), for Ro; and n = 0.724. Solid magenta line:
Racmas data (Ref [@], eq. 10). Solid black line: laminar
friction factor ¢y = 1/(nRe).



which is the case here (see inset in Fig. [). For exact
counter-rotation (Ro. = 0), the first instability threshold
is Re.. >~ 400. This is somewhat lower than the theoret-
ical prediction Re.. = 515 [@], which is probably due to
our finite aspect-ratio. Finally, the Taylor-Couette flow
with only the outer cylinder rotating (Ro, = (1 —1)/n)
is linearly stable whatever Re. We observe the experi-
mental flow to be still laminar up to high Re; then in a
rather short range of Re-numbers, the flow transits to a
turbulent state at 4000 < Ret, ~ 5000.

Further increase of the shear Reynolds number also
increases the local exponent (see inset in Fig. []). For
Ro; =n — 1, it gradually rises from «a ~ 1.5 at Re ~ 200
to a ~ 1.8 at Re ~ 10°. The order of magnitude of
these values agree with the results of Lewis et al [B]7
though a direct comparison is difficult, owing to the dif-
ferent gap ratios of the experiments. The local expo-
nent is supposed to approach a value of 2 for increas-
ing gap ratio. Dubrulle & Hersant attribute the in-
crease of « to logarithmic corrections, whereas Eckhardt
et al @] attribute the increase of o to a balance be-
tween a boundary-layer/hairpin contribution (scaling as
o Re*?) and a bulk contribution (scaling as o< Re?).
The case of perfect counter-rotation shows a plateau at
a ~ 1.5 and a sharp increase of the local exponent to
a ~ 1.75 at Rey. ~ 3200, possibly tracing back to a
secondary transition. The local exponent then seems to
increase gradually. Finally, for outer cylinder rotating
alone (Ro,) the transition is very sharp and the local ex-
ponent is already around o = 1.77 at Re 2 5000. Note
that the dimensional values of the torque at Ro, are very
small and difficult to measure accurately, and that these
may become smaller than the contributions by the two
Kéarman layers (end-effects) that we simply take into ac-
count by dividing by 2 as described in § []. One can fi-
nally notice that at the same shear Reynolds number, for
Re > 10* the local exponents for the three rotation num-
bers are equal within +0.1 and that the torque with the
inner cylinder rotating only is greater than the torque in
counter-rotation, the latter being greater than the torque
for only the outer cylinder rotating.

B. Velocity profiles at a high shear-Reynolds
number

The presence of vortex-like structures at high shear-
Reynolds number (Res = 10%) in turbulent Taylor-
Couette flow with the inner cylinder rotating alone is con-
firmed in our experiment through stereoscopic PIV mea-
surements [@] As shown in Fig. E, the time-averaged
flow shows a strong secondary mean flow in the form
of counter-rotating vortices, and their role in advecting
angular momentum (as visible in the colouring by the az-
imuthal velocity) is clearly visible as well. The azimuthal
velocity profile averaged over both time and axial posi-
tion, w, as shown in Fig. ﬂ, is almost flat, indicating that
the transport of angular momentum is due mainly to the
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FIG. 6: Secondary flow for Ro = Ro; at Re = 1.4 X 10%.
Arrows indicate radial and axial velocity, color indicates az-
imuthal velocity (normalized to inner wall velocity).

time-average coherent structures, rather than by the cor-
related fluctuations as in regular shear flow.
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FIG. 7: Profiles of the mean azimuthal velocity component
for three Rotation numbers corresponding to only the inner
cylinder rotating (x, black), perfect counterrotation (o, blue)
and only the outer cylinder rotating *, red), at Re = 1.4 X
10*. Thin line (-, black) : axial velocity v (for Ro = Ro;),
averaged over half a period. The velocities are presented in a
dimensionless form : w/(Sd) with Sd = 2r;(wo — ws)/(1+ 7).

We then measured the counter rotating flow, at the
same Reg. The measurements are triggered on the outer
cylinder position, and are averaged over 500 images. In
the counter rotating case, for this large gap ratio and at



this value of the shear-Reynolds number, the instanta-
neous velocity field is really desorganised and does not
contain obvious structures like Taylor-vortices, in con-
trast with other situations [Pg]. No peaks are present
in the time spectra, and there is no axial-dependency
of the time-averaged velocity field. We thus average in
the axial direction the different radial profiles; the az-
imuthal component w is presented in Fig. ﬁ as well. In
the bulk it is low, i.e. its magnitude is below 0.1 between
0.15 < (r —r;)/d < 0.85 that is 75% of the gap width.
The two other components are zero within 0.002.

We finally address the outer cylinder rotating alone,
again at the same Reg. These measurements are done
much in the same way as the counter-rotating ones, i.e.
again the PIV system is triggered by the outer cylin-
der. As in the counter-rotating flow, this flow does not
show any large scale structures. The gradient in the av-
erage azimuthal velocity, again shown in Fig. ﬂ, is much
steeper than in the counter-rotating case, which can be
attributed to the much lower turbulence, as it also man-
ifests itself in the low c¢ value for Ro,.

V. INFLUENCE OF ROTATION ON THE
EMERGENCE AND STRUCTURE OF THE
TURBULENT TAYLOR VORTICES

10°% x C,

-0.1 -0.05 0 0.05 0.1

Ro
FIG. 8: The friction factor c; as a fucntion of Ro at various
constant shear Reynolds numbers: (blue) 0 Re = 1.1 x 10%,
(red) o Re = 1.4 x 10*, (green) o Re = 1.7 x 10*, (black)
x Re = 2.9 x 10*, (magenta) x Re = 3.6 x 10*, (cyan) v
Re = 4.7 x 10*.

To characterize the transition between the three flow
regimes, we first consider the global torque measure-
ments. We plot in Fig. E the friction factor or dimen-
sionless torque as a function of Rotation number Ro
at six different shear Reynolds numbers, Reg, as indi-
cated in Fig. E We show three series centered around
Reg = 1.4 x 10%, and three around Reg = 3.8 x 10%. As
already seen in Fig. E, the friction factor reduces with
increasing Res. More interesting is the behavior of cy
with Ro: the torque in counter-rotation (Ro.) is ap-
proximately 80% of cy(Ro;), and the torque with outer

cylinder rotating alone (Ro,) is approximately 50% of
¢f(Ro;). These values compare well with the few avail-
able data, compiled by Dubrulle et al [@] The curve
shows a plateau of constant torque especially at the larger
Reg from Ro = —0.2, i.e. when both cylinders rotate in
the same direction with the inner cylinder rotating faster
than the outer cylinder, to Ro ~ —0.035, i.e. with a
small amount of counter-rotation with the inner cylinder
still rotating faster than the outer cylinder. The torque
then monotonically decreases when increasing the angu-
lar speed of the outer cylinder, with an inflexion point
close or equal to Ro., It is observed that the transition
is continuous and smooth everywhere, and without hys-
teresis.

We now address the question of the transition between
the different torque regimes by considering the changes
observed in the mean flow. To extract quantitative data
from the PIV measurements, we use the following model
for the stream function ¥ of the secondary flow:

U = sin (@) X

T (FE2) gy ()

with as free parameters Ay, A3, and zo. This model
comprises of a flow that fulfills the kinematic boundary
condition at the inner and outer wall, r;, 7; +d, and in be-
tween forms in the axial direction alternating rolls, with
a roll height of ¢. In this model, the maximum radial
velocity is formed by the two amplitudes and given by
Ur, Maz = (8\11/82)]\4@1 = W(Al/g + 3A3/€) It is im-
plicitly assumed that the flow is developed sufficiently
to restore the axisymmetry, which is checked a posteri-
ori. Our fitting model comprises of a sinusoidal (funda-
mental) mode, and its first symmetric harmonic (third
mode), the latter which appears to considerably improve
the matching between the model and the actual average
velocity fields, especially close to Ro; (see Fig. )

We first discuss the case Ro = Ro;. A sequence of
4,000 PIV images at a data rate of 3.7 Hz is taken, and
20 consecutive PIV images, i.e. approximately 11 cylin-
der revolutions, are sufficient to obtain a reliable esti-
mate of the mean flow [[[7. It is known that for the
first transition the observed flow state can depend on the
initial conditions [E] When starting the inner cylinder
from rest and accelerating it to 2 Hz in 20 s, the vortices
grow very fast, reach a value with a velocity amplitude
of 0.08ms~!, and then decay to become stabilized at a
value around 0.074ms~! after 400 seconds. Transients
are thus also very long in turbulent Taylor-vortex flows.
For slower acceleration, the vortices that appear first are
much weaker and have a larger length scale, before reach-
ing the same final state. The final length scale ¢ of the
vortices for Ro; is about 1.2 times the gap width, consis-
tent with data from Bilson et al. [Lf].

In a subsequent measurement we start from Ro = Ro;
and vary the rotation number in small increments, while

(2)
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FIG. 9: Overlay of measured time-average velocity field at
Ro = Ro; (in red), and the best-fit model velocity field (in
black). The large third harmonic makes the radial flow be-
ing concentrated in narrow bands, rather than sinusoidally
distributed.

maintaining a constant shear rate. We allow the system
to spend 20 minutes in each state before acquiring PIV
data. We verify that the fit parameters are stationary,
and compute them using the average of the full PIV data
set at each Ro. The results are plotted in Fig. E Please
note that Ro has been varied both with increasing and
decreasing values, to check for a possible hysteresis. All
points fall on a single curve; the transition is smooth and
without hysteresis. For Ro > 0, the fitted modes have
zero or negligible amplitudes, since there are no struc-
tures in the time-average field [@] One can notice that
as soon as Ro < 0, i.e. as soon as the inner cylinder
wall starts to rotate faster than the outer cylinder wall,
vortices begin to grow. We plot in Fig. the veloc-
ity amplitude associated with the simple model (single
mode ¢), and with the complete model (modes 1 and 3,
o). Close to Ro = 0, the two models coincide: A3 ~ 0 and
the mean secondary flow is well described by pure sinu-
soidal structures. For Ro < —0.04, the vortices start to
have elongated shapes, with large cores and small regions
of large radial motions in between adjacent vortices; the
third mode is then necessary to adequately describe the
secondary flow. The first mode becomes saturated (i.e.
it does not grow in magnitude) in this region. Finally,
we give in Fig. E a fit of the amplitudes close to Ro =0
of the form: A = a(—Ro)'/2. The velocity amplitude of
the vortex behaves like the square root of the distance to
Ro = 0, a situation reminiscent to a classical supercrit-
ical bifurcation, with A as order parameter, and Ro as
control parameter.

We also performed a continuous transient experiment,
in which we varied the rotation number quasi-statically
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FIG. 10: Secondary flow amplitude vs. rotation number (Ro)
at constant shear rate. Black (¢): model with fundamental
mode only, and red (o): complete model with third harmonic.
Solid line is a fit of the form A = a(—Ro)"/?. Inset: zoom
close to counter-rotation, combined with results from a con-
tinuous transient experiment (see text).

from Ro=0.004 to Ro=-0.0250 in 3000 s, always keeping
the Reynolds number constant at Reg = 1.4 x 10%. The
amplitude of the mean secondary flow, computed on se-
quences of 20 images, is plotted in the inset of Fig. .
The curve follows the static experiments (given by the
single points), but some downward peaks can be noticed.
We checked that these are not the result of a fitting error,
and indeed correspond to the occasional disappearance of
the vortices. Still, the measurements are done at a fixed
position in space. Though the very long time-averaged
series leads to well-established stationary axisymmetric
states, it is possible that the instantaneous whole flow
consists of different regions. Further investigation in-
cluding time-resolved single-point measurements or flow
visualizations need to be done to verify this possibility.

VI. CONCLUSION

The net system rotation as expressed in the Rota-
tion number Ro obviously has strong effects on the
torque scaling. Whereas the local exponent evolves in
a smooth way for inner cylinder rotating alone, the
counter-rotating case exhibits two sharp transitions, from
a=1to a~1.5 and then to a ~ 1.75. We also notice
that the second transition for counter-rotation Rey. is
close to the threshold Re;, of turbulence onset for outer
cylinder rotating alone.

The rotation number Ro is thus a secondary control
parameter. It is very tempting to use the classical formal-
ism of bifurcations and instabilities to study the transi-
tion between featureless turbulence and turbulent Taylor-
vortex flow at constant Reg, which seems to be super-
critical; the threshold for the onset of coherent structures
in the mean flow is Ro.. For anticyclonic flows (Ro < 0),
the transport is dominated by large scale coherent struc-



tures, whereas for cyclonic flows (Ro > 0), it is domi-
nated by correlated fluctuations reminiscent to those in
plane Couette flow.

In a considerable range of Reg, counter-rotation (Ro.)
is also close or equal to an inflexion point in the torque
curve; this may be related to the cross-over point, where
the role of the correlated fluctuations is taken over by
the large scale vortical structures. The mean azimuthal
velocity profiles show there is only a marginal viscous
contribution for Ro < 0 but of order 10% at Ro, [@]
The role of turbulent vs. large-scale transport (of angular
momentum) should be further investigated from (exist-
ing) numerical or PIV velocity data. Since torque scaling
with Ro as measured at much higher Reg that that used

for PIV does qualitatively not change, these measure-
ments suggests that the large scale vortices are not only
persistent in the flow at higher Reg, but that they also
dominate the dynamics of the flow. An answer to the
persistence may be obtained from either more detailed
analysis of instantaneous velocity data or from torque
scaling measurements at still higher Reynolds numbers
i?Ef aylor-Couette systems such as are under development
Ly
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sen and W. Tax for building up and piloting the experi-
ment. We have benefited of very fruitful discussions with
A. Chiffaudel, F. Daviaud, B. Dubrulle, B. Eckhardt and
D. Lohse.

[1] P. J. Holmes, J. L. Lumley, and G. Berkooz. Turbulence,
Coherent Structures, Dynamical Systems and Symmetry.
Cambridge University Press, 1996.

[2] R. Monchaux et al. Generation of magnetic field by dy-
namo action in a turbulent flow of liquid sodium. Phys.
Rev. Lett., 98:044502, 2007.

[3] F. Ravelet, L. Marié, A. Chiffaudel, and F. Daviaud.
Multistability and Memory Effect in a Highly Turbulent
Flow: Experimental Evidence for a Global Bifurcation.
Phys. Rev. Lett., 93:164501, 2004.

[4] N. Mujica and D. P. Lathrop. Hysteretic gravity-wave
bifurcation in a highly turbulent swirling flow. J. Fluid
Mech., 551:49, 2006.

[5] D.J. Tritton. Stabilization and destabilization of tur-
bulent shear flow in a rotating fluid. J. Fluid Mech.,
241:503-523, 1992.

[6] G. Brethouwer. The effect of rotation on rapidly sheared
homogeneous turbulence and passive scalar transport.
linear theory and direct numerical simulation. J. Fluid
Mech., 542:305-342, 2005.

[7] M. Couette. Etude sur le frottement des liquids. Ann.
Chim. Phys., 21:433, 1890.

[8] D. Coles. Transition in circular Couette flow. J. Fluid
Mech., 21:385, 1965.

[9] C. D. Andereck, S. S. Liu, and H. L. Swinney. Flow
regimes in a circular Couette system with independently
rotating cylinders. J. Fluid Mech., 164:155, 1986.

[10] B. Dubrulle and F. Hersant. Momentum transport and
torque scaling in Taylor-Couette flow from an analogy
with turbulent convection. FEuro. Phys. J. B, 26:379,
2002.

[11] B. Eckhardt, S. Grossmann, and D. Lohse. Torque scal-
ing in Taylor-Couette flow between independently rotat-
ing cylinders. J. Fluid Mech., 581:221, 2007.

[12] D. P. Lathrop, J. Fineberg, and H. L. Swinney. Transition
to shear-driven turbulence in Couette-Taylor flow. Phys.
Rev. A, 46:6390, 1992.

[13] G. S. Lewis and Harry L. Swinney. Velocity struc-
ture functions, scaling, and transitions in high-Reynolds-

number Couette-Taylor flow. Phys. Rev. E, 59:5457,
1999.

[14] F. Hersant, B. Dubrulle, and J.-M. Huré. Turbulence in
circumstellar disks. A&A, 429:531, 2005.

[15] S. T. Wereley and R. M. Lueptow. Spatio-temporal char-
acter of non-wavy and wavy Taylor-Couette flow. J. Fluid
Mech., 364:59, 1998.

[16] M. Bilson and K. Bremhorst. Direct numerical simula-
tion of turbulent Taylor-Couette flow. J. Fluid Mech.,
579:227, 2007.

[17] S. Dong. Direct numerical simulation of turbulent Taylor-
Couette flow. J. Fluid Mech., 587:373, 2007.

[18] D. Lohse. The Twente Taylor Couette Facility. Presented
at 12th European Turbulence Conference, September 7-10
2009, Marburg, Germany, 2009.

[19] A. K. Prasad. Stereoscopic particle image velocimetry.
Ezp. Fluids, 29:103, 2000.

[20] Davis® 7.2 , by Lavision GmbH. 2006.

[21] B. Dubrulle et al. Stability and turbulent transport in
Taylor-Couette flow from analysis of experimental data.
Phys. Fluids, 17:095103, 2005.

[22] F. Wendt.  Turbulente Stréomungen zwischen zwei
rotierenden konaxialen Zylindern. Arch. Appl. Mech.,
4:577-595, 1933.

[23] A. Racina and M. Kind. Specific power input and lo-
cal micromixing times in turbulent Taylor-Couette flow.
Ezxp. Fluids, 41:513, 2006.

[24] A. Esser and S. Grossmann. Analytic expression for
Taylor-Couette stability boundary. Phys. Fluids, 8:1814,
1996.

[25] F. Ravelet, R. Delfos, and J. Westerweel. Ex-
perimental studies of turbulent Taylor-Couette
flows. In Proc. 5th Int. Symp. on Turbulence and

Shear Flow Phenomena, Munich, page 1211, 2007.
http://arxiv.org/abs/0707.1414.

[26] L. Wang, M. G. Olsen, and R. D. Vigil. Reappearance
of azimuthal waves in turbulent Taylor-Couette flow at

large aspect ratio. Chem. Eng. Sci., 60:5555, 2005.



