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A single-time two-point closure based on fluid particle displacements
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A new single-time two-point closure is proposed, in which the equation for the two-point correla-
tion between the displacement of a fluid particle and the velocity allows to estimate a Lagrangian
timescale. This timescale is used to specify the nonlinear damping of triple correlations in the
closure. A closed set of equations is obtained without ad-hoc constants. Taking advantage of the
analogy between particle displacements and scalar fluctuations in isotropic turbulence subjected to
a mean scalar gradient, the model is numerically integrated. Results for the energy spectrum are in
agreement with classical scaling predictions. An estimate for the Kolmogorov constant is obtained.

Two-point single-time closures are efficient and use-
ful tools for studying homogeneous turbulence. Among
existing single-time theories, the Eddy Damped Quasi-
Normal Markovian theory (EDQNM), originally pro-
posed by Orszag[1] (see also Leith [2]) for isotropic turbu-
lence, has been used to investigate a broad range of fun-
damental problems in turbulence. Examples are: scalar
decay in isotropic turbulence[3, 4], rotating turbulence[5],
stratified turbulence[6], magneto-hydrodynamics [7], rel-
ative dispersion[8], homogeneous shear[9, 10], isotropic
turbulence with a mean scalar gradient[11, 12], decay
of turbulence in a wall bounded domain [13], compress-
ible turbulence[14], 2D turbulence[15], premixed flame
propagation.[16] Without being exhaustive this list illus-
trates the variety of problems that have been adressed
using this single-time closure. EDQNM was also used
to propose subgrid models for Large-Eddy Simulation
[17, 18]. One common feature of all these works is
that they rely on the original heuristic assumption of
EDQNM: the presence of an eddy damping term. The
eddy damping is an essential ingredient of the EDQNM
closure, as it represents the nonlinear damping of the
triple correlations, necessary to obtain inertial range
spectra in agreement with classical Kolmogorov [19] the-
ory. It should be pointed out that in the case of weakly
nonlinear wave-turbulence only the presence of the damp-
ing is mandatory.[5] A convenient specification of its form
is of primary importance as soon as strong turbulence is
considered. In the case of EDQNM, the Eddy-Damping is
specified by dimensional analysis and an ad-hoc constant
is introduced in the model. For other closures like the
Test Field Model proposed by Kraichnan, [20] in which
an auxiliary velocity field that does not respect the in-
compressibility constraint is introduced, the damping is
deduced from a more sophisticated analysis, but an ad-
hoc constant still has to be introduced (of order unity in
the case of the Test Field Model).

More elaborate are the two-point two-time closures
proposed by Kraichnan (DIA, for Direct Interaction Ap-
proximation [21]), obtained by perturbation techniques
applied to the Navier Stokes equations. The Eulerian
formulation of DIA, violating the principle of statisti-
cal Galilean invariance and therefore being incompatible

with a K−5/3 Kolmogorov inertial range, was reformu-
lated in a Lagrangian framework. The Lagrangian His-
tory DIA (LHDIA)[22], its abridged versions,[22, 23] as
well as the version of Kaneda [24] are known to yield pre-
dictions in agreement with Kolmogorov spectra without
introducing any ad-hoc constant. The price one has to
pay is the complexity of the models that depend on the
entire Lagrangian history of the flow in contrast to the
single-time theories.

It is known that the EDQNM equations for isotropic
turbulence can be obtained from two-time theories by as-
suming an exponential decay of both the response func-
tion and the two-time correlations. The eddy damping
then corresponds to the inverse of the correlation time of
the turbulent velocity field. In the framework of a La-
grangian formulation of the theories, this correlation time
has to be defined along fluid particle trajectories and in-
deed a definition, corresponding to LHDIA for isotropic
turbulence, can be found in Kraichnan [22]:

τ(K, t) =

∫ t

0

E(K, t|s)

E(K, t)
ds (1)

with E(K, t) the energy spectrum and E(K, t|s) the La-
grangian two-time energy spectrum (definitions are given
below).

In the EDQNM model, this time is modeled as a func-
tion of E(K, t) and K, yielding by dimensional analysis:

(τ(K, t))−1 = η(K, t) = α
√

K3E(K, t) (2)

Another variant, non-local in wave-number space, is the
expression proposed in Pouquet et al. [15]:

(τ(K, t))−1 = η(K, t) = λ

√

∫ K

0

S2E(S, t)dS. (3)

At high Reynolds number, both formulations lead to

τ(K, t) ∼ K−2/3 (4)

in the inertial range of the spectra, mimicking the scaling
that the Lagrangian correlation timescale is expected to
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follow in agreement with Kolmogorov theory. The con-
stant α (or λ) is specified to obtain the desired value of
the Kolmogorov constant.

The aim of the present letter is to derive a single-time
closure that does not contain ad-hoc specification of the
damping term nor adjustable constant. The eddy damp-
ing timescale will be determined within the closure, the
key element of the model being the use of equation (1).

The Lagrangian two-time spectral tensor is defined by

Φij(K, t|s) = FTx−x
′

[〈

ui(x, t)uL
j (x′, t|s)

〉]

(s ≤ t),
(5)

in which FTx−x
′ denotes a Fourier transform with re-

spect to x − x′. uL
j (x′, t|s) is defined as the velocity

measured at time s within the fluid element which passes
through the point x′ at time t. In isotropic turbulence
the two-time energy spectrum E(K, t|s) is related to this
tensor by the relation:

Pij(K)
E(K, t|s)

4πK2
= Φij(K, t|s) (6)

with Pij(K) = (δij−KiKj/K2). E(K, t|s) is a key quan-
tity as it appears in equation (1) giving the timescale that
has to be specified in the closure. It is a two-time La-
grangian quantity and is therefore difficult to evaluate in
the framework of a one-time closure. However, only the
time integral of E(K, t|s) is required to express τ(K, t).
This integral satisfies:

Pij(K)

4πK2

∫ t

0

E(K, t|s)ds =

FTx−x
′

[〈

ui(x, t)

∫ t

0

uL
j (x′, t|s)ds

〉]

. (7)

The integral of the Lagrangian velocity along the trajec-
tory in (7) is the displacement of a fluid particle. Calling
aj this displacement:

aj(x, t) = Xj(x, t|t) − Xj(x, t|t = 0)

=

∫ t

0

uL
j (x, t|s)ds (8)

and

Xj(x, t|t) = xj , (9)

(7) can be written as:

Pij(K)

4πK2

∫ t

0

E(K, t|s)ds = Fuiaj
(K, t), (10)

with

Fuiaj
(K, t) = FTx−x

′ [< ui(x, t)aj(x
′, t) >]. (11)

In isotropic incompressible turbulence this quantity can
be expressed as (Lumley [25]):

Fuiaj
(K, t) =

Pij(K)

4πK2
Fua(K, t), (12)

and therefore expression (1) can be recasted as a function
of one-time Eulerian quantities only:

τ(K, t) =
Fua(K, t)

E(K, t)
(13)

This expression forms the basis of the single-time two-
point closure proposed in this paper. In the following,
a way to obtain an expression for Fua(K, t) will be pro-
posed that together with the equation for E(K, t) and
relation (13) leads to a closed set of equations.

From the Navier-Stokes equations and the equation for
the displacement of a fluid particle:

daj(x, t)

dt
= uj(x, t), (14)

a one-time two-point closure for E(K, t) and Fua(K, t)
in isotropic turbulence (and alternatively for Φij(K, t)
and Fuiaj

(K, t) for anisotropic turbulence) can straight-
forwardly be written, by applying the Quasi-Normal ap-
proximation and Markovian assumption and expressing
the relaxation time of the triple correlations using (13).
In the present letter, instead of deriving the evolution
equation for Fua(K, t), we adopt a simpler approach,
taking advantage of the analogy existing between the
fluid particle displacement and an advected non-diffusive
scalar field. This analogy will permit to express the
closure model using only existing published equations.
As pointed out by Batchelor,[26] a non-diffusive passive
scalar in isotropic turbulence with a mean scalar gradi-
ent obeys the same equation as the displacement of a
fluid particle. Considering an isotropic turbulence ini-
tially free from passive scalar fluctuations on which, at
t = 0, a mean scalar gradient is imposed in an arbitrary
direction, ∂Θ/∂xj , the interaction of the velocity field
with the scalar gradient produces a scalar fluctuation θ
governed by:

dθ(x, t)

dt
= −

∂Θ

∂xj
uj(x, t). (15)

Integrating (15) over the Lagrangian trajectory of the
fluid particle that arrives at time t at position x yields:

θ(x, t) = −
∂Θ

∂xj
(Xj(x, t|t) − Xj(x, t|t = 0))

= −
∂Θ

∂xj
aj(x, t) (16)

and the correlation between θ(x′, t) and ui(x, t) can be
expressed as:

< ui(x, t)θ(x′, t) >= −
∂Θ

∂xj
< ui(x, t)aj(x

′, t) > . (17)

For isotropic turbulence without loss of generality, the
direction of the gradient can arbitrarily be specified: for
example x3. Equation (17) then leads to:

Fu3θ(K, t) = −
∂Θ

∂x3

Fu3a3
(K, t) (18)
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with Fu3θ(K, t) defined as the scalar flux spectrum (see
for example O’Gorman and Pullin [27]), or introducing
Fua(K, t) as in equation (13):

Fu3θ(K, t) = −
2

3

∂Θ

∂x3

Fua(K, t). (19)

since isotropy implies that Fu1a1
= Fu2a2

= Fu3a3
=

2

3
Fua.
One can also arbitrarily specify the value of the gra-

dient, since the scalar equation is linear. Choosing
∂Θ/∂x3 = −3/2 simplifies the formulation. With this
particular value of the gradient, equation (19) simply ex-
presses the identity between the spectrum of the scalar
flux of the non-diffusive scalar and the spectrum of the
velocity-displacement correlation. Hence it is straight-
forward to use the EDQNM model proposed by Herr
et al.[11] or Bos et al. [12] for the scalar flux spectrum to
calculate Fu3θ(K, t) = Fua(K, t) (in this work we use the
formulation of Bos et al.). The equations for E(K, t) and
Fua(K, t) will be solved simultaneously to calculate the
energy spectrum in isotropic turbulence and to evaluate
the damping term using (18) that now takes the form:

η(K, t) = (τ(K, t))−1 =
E(K, t)

Fu3θ(K, t)
. (20)

The evolution equation for the energy spectrum is:

[

∂

∂t
+ 2νK2

]

E(K, t) = TNL(K, t), (21)

in which the expression for the nonlinear transfer TNL

is the classical single-time two-point closure expression
(Orszag [1]):

TNL(K, t) =

∫∫

∆

Θ(K, P, Q) (xy + z3)
[

K2PE(P, t)E(Q, t)

−P 3E(Q, t)E(K, t)
] dPdQ

PQ
,(22)

where ∆ is a band in P, Q-space so that the three wave
vectors K, P , Q form a triangle. x, y, z are the cosines
of the angles opposite to the sides K, P, Q of the tri-
angle formed from K, P , Q. The characteristic time
Θ(K, P, Q) is defined as:

Θ(K, P, Q) =
1 − exp(−µKPQ × t)

µKPQ
(23)

with

µKPQ = ν(K2+P 2+Q2)+η(K, t)+η(P, t)+η(Q, t) (24)

The difference with the EDQNM model[1] is that the
eddy damping in the equations is not anymore heuristi-
cally specified, but is calculated using relation (20).

The equation for Fu3θ(K, t) is:

[

∂

∂t
+ νK2

]

Fu3θ(K, t) = P (K, t) + T NL
u3θ (K, t) + Π(K, t),(25)

which is the equation of reference (12) in the particu-
lar case of a non-diffusive scalar. In (25), P (K, t) is a
term that in this case can be interpreted as the produc-
tion of scalar flux by the mean scalar gradient, such that

P (K, t) = − 2

3

∂Θ

∂x3

E(K, t) = E(K, t). The expressions for

the nonlinear terms T NL
u3θ (K, t) and Π(K, t) are not repro-

duced here (Equations (14) and (15) of reference (12)).
These closed terms are exactly the same as in the case of
the EDQNM model, except that the eddy damping is de-
termined by equation (20). More specifically, in relation
(16) of reference (12),

µF
KPQ = µ′(K) + µ′(P ) + µ′′(Q) + ν(K2 + P 2), (26)

µ′ is replaced by η and µ′′ is still zero as in Bos [12].

The model is applied to the decay of isotropic turbu-
lence by numerically integrating equations (21) and (25).
The energy spectrum is initialized by:

E(K, 0) = BK4e−2K2/K2

L , (27)

with K0 = 1, KL = 10 and B determined so that the ini-
tial kinetic energy is equal to 1. The energy spectrum was
evaluated during the period of self-similar decay. Spec-
tra are shown at Rλ = 150, 500 and 1500. The results
in figure 1 show that a K−5/3 inertial range is obtained
for the energy spectrum. The value of the Kolmogorov
constant is estimated to be 1.73 as can be seen when the
spectrum is shown in compensated form. It has to be re-
minded that in the case of the EDQNM closure this value
is not a prediction of the model but has to be specified by
choosing the constant λ. The value of CK = 1.73 can be
obtained with EDQNM by choosing the value λ = 0.49
in expression (3). A detailed comparison between the
EDQNM model and the present closure deserves further
attention.

The results in figure 1 suggest that the present model
yields a reasonable estimate of the Lagrangian timescale
in isotropic turbulence. It would be useful to compare
the present results to estimations of the timescale pro-
vided by Direct Numerical Simulation using the method
proposed in Lee et al.[28] (see also Gotoh et al.[29]) or to
higher Reynolds number data provided by Large Eddy
Simulation.[30]
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