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Spectral imbalance and the normalized dissipation rate of turbulence
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Ecole Centrale de Lyon - Université Claude Bernard Lyon 1 - INSA de Lyon

69134 Ecully Cedex, France

The normalized turbulent dissipation rate Cǫ is studied in decaying and forced turbulence by
direct numerical simulations, large-eddy simulations and closure calculations. A large difference in
the values of Cǫ is observed for the two types of turbulence. This difference is found at moderate
Reynolds number and it is shown that it persists at high Reynolds number, where the value of
Cǫ becomes independent of the Reynolds number, but is still not unique. This difference can be
explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for
statistically non-stationary turbulence. Phenomenological analysis yields simple analytical models
which satisfactorily reproduce the numerical results. These simple spectral models also reproduce
and explain the increase of Cǫ at low Reynolds number that is observed in the simulations.

I. INTRODUCTION

The normalized dissipation rate Cǫ is a quantity that
has been extensively studied in the literature. Cǫ is de-
fined as:

Cǫ =
ǫL

U3
, (1)

in which ǫ is the viscous dissipation of turbulent kinetic
energy, L is the integral length scale and U is the root-
mean-square velocity. Recently Burattini, Lavoie and
Antonia [1] revisited the behavior of Cǫ and in particu-
lar discussed its dependency with the Reynolds number.
Considerable scatter was observed in the data of vari-
ous experiments. The same scatter was already observed
by Sreenivasan [2]. The Direct Numerical Simulations
(DNS) of isotropic turbulence reported in reference [3]
and [1] (see for a compilation Kaneda et al.[4]) exhib-
ited significantly less scatter at large Reynolds number,
which seemed to corroborate the general belief that, at
high Reynolds numbers, Cǫ tends to a constant value, at
least for isotropic turbulence.

In the present paper we address the issue of the high
Reynolds number universality of the value of Cǫ. We in-
vestigate the case of isotropic turbulence, conceptually
the simplest type of turbulence. Isotropic turbulence, ei-
ther decaying or maintained statistically stationary by
injecting energy at the large scales, is often considered
as being close to spectral equilibrium. This is indeed
true for stationary turbulence, but not for decaying tur-
bulence, and it will be shown in the paper that the dis-
crepancies existing between the two cases are sufficient
to significantly affect the value of Cǫ, even in the limit
of high Reynolds number. The fact that the asymptotic
value of Cǫ will be found not to be unique, even in the
simple case of isotropic turbulence, will therefore provide
an illustration there is no universal value of Cǫ at high
Reynolds number.

We note that high Reynolds number results for freely
decaying fully developed turbulence are hard to obtain
by DNS, because at short times the DNS results are
to a large extent determined by the initial conditions,

whereas at large times the Reynolds number has already
considerably decreased by viscous dissipation. In this
work, we will therefore use DNS exclusively to study the
lower Reynolds numbers. The behavior at large Reynolds
will be investigated by Large Eddy Simulation (LES) and
spectral closure.

We perform LES, DNS and closure calculations of
forced and decaying isotropic turbulence and the results
are presented in section II. In section II A, the influ-
ence of the forcing method, the initial conditions and the
resolution of the computations on the value of Cǫ is in-
vestigated. In II B the results are presented, discussed
and compared to previous studies. In section III, sim-
ple phenomenological models are introduced. They are
found to reproduce the results of the simulations. The
simple phenomenological arguments on which they are
built then provide a possible scenario and a way to ex-
plain the non-universality of Cǫ as well as its Reynolds
number dependency.

II. NORMALIZED DISSIPATION FOR

DECAYING AND FORCED ISOTROPIC

TURBULENCE

A. Method

The calculations in this section are aimed at studying
the Reynolds number dependency of Cǫ and at addressing
the question of a possible difference in the values of Cǫ for
forced and decaying turbulence. DNS, LES and closure
calculations are performed. The code used for the DNS
and LES computations is a classical pseudo-spectral code
with fourth-order Runge-Kutta time integration scheme.
LES are performed at a resolution of 643 and DNS at
resolutions of 1283 and 2563 grid points. Freely decaying
and forced turbulence simulations are performed.

Before presenting and analyzing the results, it is neces-
sary to investigate the influence of the initial conditions,
the influence of the forcing scheme and finally the influ-
ence of the resolution and subgrid model. In the case
of decaying turbulence, the influence of the initial con-
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ditions is checked by using four different initial spectra.
The first and second initial spectra correspond to narrow
spectral energy distributions:

E(K, 0) = exp
(

−24(K − KL)2/K2
L

)

E(K, 0) = exp
(

−(K − KL)2/K2
L

)

. (2)

The third initial condition is an equipartition spectrum.
In this case the energy is equally distributed over all
the wavevectors of the domain. The spherically averaged
spectrum is then proportional to K2. This is not a real-
istic energy distribution but it is used as a limiting case.
The last initial spectrum is a von Kármán spectrum

E(K, 0) = A

(

K

KL

)s(

1 +

(

K

KL

)2)−(3s+5)/6

. (3)

Note that this last spectrum behaves as Ks at small K
and as K−5/3 for large K. We use s = 4. The inset in
figure 1 shows the four different initial energy spectra.
As illustrated in figure 1, after a transient period, the
computations starting from all initial spectra yield val-
ues for Cǫ that are nearly identical. A plateau around 1
is found, regardless of the initial spectrum, and all curves
collapse for lower Reynolds number. The results corre-
sponding to the exponentially decreasing initial spectra,
show a transient that starts with a low value for Cǫ be-
cause initially ǫ is small compared to the large scale quan-
tity U3L−1. On the contrary, the equipartition distribu-
tion initially yields a large value for Cǫ, as the energy
density at the high wavenumbers is initially very high.
The von Kármán spectrum adapts fast to an equilibrium
value, as the spectral distribution is initially close to a
spectrum in equilibrium. These results show that the
value of Cǫ is independent of the initial conditions, once
the turbulence has developed. In the following we will
therefore limit the analysis to only one initial spectrum.
We choose to use the von Kármán spectrum (expression
(3)), as it corresponds to the shortest transient.

In the case of forced turbulence, a specific attention is
paid to the way energy is injected in the simulation. Dif-
ferent forcing techniques are used in order to check the
influence of the forcing schemes. The first one is the one
originally proposed by Deutsch [5] that keeps the energy
level in a low wavenumber band constant by compen-
sating what is removed by viscous and non-linear effects
at each time step. In this technique, within a chosen
spectral band [K1, K2], the kinetic energy spectrum is
therefore kept constant. An initial spectrum needs thus
to be defined. The forcing spectrum used in this case is
a von Kármán spectrum. The forced wavenumber band
was varied from 2 to 5 wavenumbers of this spectrum and
this did not change significantly the value of Cǫ. Also us-
ing a K−5/3 forcing spectrum did not significantly change
the results.

In the second technique a forcing term fi( ~K, t) is added
to the Navier-Stokes equations. This force is defined as
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FIG. 1: Evolution of Cǫ, starting from different initial energy
spectra. The inset shows the initial spectral energy distribu-
tions E(K) as a function of the wavenumber.
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FIG. 2: Evolution of Cǫ using different forcing schemes.

the solution of a Langevin equation:

d

dt
fi( ~K, t) = −

fi( ~K, t)

T
+ gi( ~K) for K1 ≤ | ~K| ≤ K2

(4)

where T is a forcing memory time and gi( ~K) is a white
noise stochastic process with constant amplitude.

The last forcing scheme is:

fi( ~K, t) = A0
ui( ~K, t)

|u( ~K, t)|2
for K1 ≤ | ~K| ≤ K2, (5)

with A0 constant. Note that this is a particular case of
the forcing used by Kuczaj et al.[6] in their study of mod-
ulated turbulence. The resulting normalized dissipation
rate, obtained with the three forcing schemes is shown
in figure 2 as a function of time normalized by the ini-
tial eddy turnover time. It can be observed that after a
transient period all three methods yield values for Cǫ(t)
that oscillate around the same constant value. In the
case of the forcing scheme determined by the Langevin
equation, there is considerable oscillation of Cǫ(t), but
the mean value is approximately unaltered. The mean
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FIG. 3: Cǫ as a function of the Reynolds number for decay-
ing DNS and LES at different resolutions. The values of the
Reynolds numbers indicated in the plot correspond to the ini-
tial Reynolds numbers of each simulation.

value of Cǫ being unaffected by the type of forcing, we
will use in the following section only one type, the first
forcing technique (Deutsch [5]). Another important con-
clusion that can be drawn from the results in figure 2 is
that if one wants to eliminate the effect of the instanta-
neous fluctuations on the value of Cǫ, averaging has to
be applied over large time intervals (in some cases up to
10 initial eddy turnover times).

The subgrid model for the LES is the Chollet-Lesieur
[7] eddy viscosity model, modified to account for finite-
Reynolds-number effects (see references 8, 9). The eddy
viscosity in the Chollet-Lesieur model is

νt(K) = 0.267

√

E(Kc)

Kc
f

(

Kc

Kη

)

g

(

K

Kc

)

(6)

The function g( K
Kc

) represents the ‘cusp’ effect:

g

(

K

Kc

)

= 1 + 1.7693

(

K

Kc

)0.372

(7)

with Kc the LES wavenumber cut-off. The function
f(Kc/Kη), absent in the classical version of the model,
corresponds to the low-Reynolds-number correction. It
reads

f

(

Kc

Kη

)

= 1−

(

Kc

Kη

)4/3






1 +

1

a
ln







1 + a
(

Kc

Kη

)−4/3

1 + a













(8)
and a is a constant equal to 0.38. Kη is the Kolmogorov

wavenumber estimated using Kη = (ǫ/ν3)1/4. Use of (6)
instead of the original Chollet-Lesieur [7] model has the
advantage of permitting a smooth transition from LES to
DNS as the Reynolds number decreases during the decay
of the turbulence. This issue was already addressed in

a previous work [10] and good agreement with DNS was
obtained as can also be observed in figure 3. As a matter
of fact, most of the decaying LES computations presented
in the paper are indeed DNS at the end of their evolutions
in time. In order to check the influence of the subgrid
model, comparisons using the CZZS dynamic model [11]
were also performed at high Reynolds number. No sig-
nificant influence on Cǫ was found and consequently only
the results obtained with the Chollet-Lesieur model are
reported in the present paper.

Since the dissipative range of the spectrum is not, or
not entirely, captured by LES, it is not possible to evalu-
ate ǫ directly in this case. Instead, an estimate of ǫ, ǫLES,
is evaluated, ǫLES being the sum of the energy flux to the
small scales and the resolved part of the dissipation. It
was checked by varying the resolution of the LES runs
that the values of Cǫ were not significantly altered by
this approximation. In figure 3 this is illustrated. The
LES and DNS values collapse to one single curve for the
different resolutions.

In addition to LES and DNS, closure calculations
are performed. We use the EDQNM closure [12]. Al-
though this closure was initially developed to study high
Reynolds number turbulence, it has been shown to per-
form very well at low Reynolds numbers. In a recent
work [13] it was shown that the inertial range scaling
exponents obtained by EDQNM compare very well to
wind tunnel measurements of Mydlarski and Warhaft
[14]. Furthermore, in the present paper it is shown that
the EDQNM results are in good agreement with DNS
and LES. The exact formulation of the closure and the
numerical method are the same as in Touil et al.[10] and
for details we refer to this work. The initial condition
for the closure calculations is expression (3), identical to
the one used in the DNS and LES. Also the large scale
forcing is similar to the forcing adopted in DNS and LES
(E(K) being kept constant in the band [K1, Km]). The
spectral resolution is approximately 20 wavenumbers per
decade.

B. Results

In figure 4 the results of LES, DNS and closure are
represented. Cǫ is plotted as a function of the Reynolds
number RL, RL being directly accessible in the present
calculations, including the case of the LES. In figure 4
and the following figures, D stands for decaying and F
for forced turbulence. The crosses correspond to LES
results of decaying turbulence using the subgrid model
with a Reynolds number correction which, as explained
previously, allows for a smooth transition from LES to
DNS. All results for Reynolds numbers smaller than 200
can be considered to be DNS. At large RL all calculations
of decaying turbulence tend to a value of approximately
1.

The simulations of forced turbulence yield a value
around 0.6 for large Reynolds number. The results for
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FIG. 4: Top: DNS and LES results for the normalized dissi-
pation rate as a function of the Reynolds number. Bottom:
Closure results.
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Reynolds number range.
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FIG. 6: DNS, LES and Closure results for the normalized
dissipation rate as a function of the Taylor-scale Reynolds
number.

forced turbulence show less scatter because they corre-
spond to numerically stationary situations and therefore
they can be easily averaged. In Figure 5 the results are
shown for low Reynolds numbers. For very small RL, the
difference between the values of Cǫ for forced and decay-
ing turbulence vanishes and all simulations yield results
that tend to a aR−1

L dependence with a ≈ 20. The re-
sults of the closure calculations show a very similar pic-
ture. There is no scatter in these results, because the
closure approach is based on statistically averaged quan-
tities and so does not take into account instantaneous
turbulent fluctuations.

In the present paper, Cǫ is plotted as a function of
RL = UL/ν, the Reynolds number based on the integral
length scale. In experiments, the integral length scale is
not an easily accessible quantity, so that in most studies
the Reynolds number Rλ, based on the Taylor micro-scale
is used. The relation between RL and Rλ is

Rλ =

√

15

Cǫ
RL. (9)

For comparison with other works on the subject, in fig-
ure 6 the present results were replotted as a function of
Rλ. Comparison of the results in this figure shows that,
as noted before, at high Reynolds numbers, decaying tur-
bulence and forced turbulence do not yield the same value
for Cǫ, even though the value might slightly differ when
changing the method.

At this point a discussion of the results of earlier stud-
ies on the value of Cǫ is appropriate. First, in the case of
Direct Numerical Simulations of statistically steady tur-
bulence, most works are in overall agreement as can be
seen for example in Kaneda et al.[4]. The values vary
between 0.41 and 0.69. This relatively high dispersion
might be explained by the time over which the results
are averaged, as noted in our discussion of the results in
figure 2. For example, the study of Jiménez et al.[15] re-
ports a value around 0.7 for large Reynolds. However the
largest Reynolds number calculation was run only for 0.3
turnover times, and it can be suspected that the results
were influenced by time fluctuations. Furthermore the
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statistics were based on the time interval between 0.05
and 0.3 turnover times which might not be enough for
the large scales to achieve a steady state. In the results
of the DNS of decaying turbulence of Wang et al.[16] the
value of Cǫ (0.62 for RL = 725) is relatively low com-
pared to the present results. However, only one value
was reported for each decaying DNS simulation and it is
therefore difficult to conclude about the value of Cǫ by
using their data.

The agreement with experimental works is also difficult
to assess. The results for decaying turbulence reported in
Sreenivasan [2] seem to be in agreement with our conclu-
sion, as are the results of Mydlarski and Warhaft [17] who
found in their decaying grid-generated turbulence a value
of 0.9. However it should be noted that the dissipation
and integral length scale in experiments are difficultly
accessible[1] and are not always evaluated in a uniform
way. The experimental data by Pearson et al.[18] are
perhaps most in disagreement with the present study. A
relatively low value for Cǫ is found for decaying grid tur-
bulence. The reason for this needs further investigation.
A possible explanation could be the presence of regions
with shear or inhomogeneities due to the finite domain
size.

This discussion stresses the importance of the present
study in which decaying and forced turbulence are in-
vestigated using the same numerical methods, in which
the different quantities are uniquely defined, evaluated in
the same manner, and in which the effects of initial con-
ditions and statistical averaging are carefully accounted
for.

III. ANALYSIS

The aim of this section is to propose a possible scenario
which explains the observation in the previous section
that Cǫ is larger in decaying turbulence than in forced
turbulence using a simple spectral analysis. The analysis
will lead to analytical expressions for Cǫ as a function
of the Reynolds number. As a starting point we use the
simple model spectrum (c.f. Comte-Bellot and Corrsin

[19]),

E(K) =











AKs for K < KL

CKǫ2/3K−5/3 for KL ≤ K ≤ Kη

0 for K > Kη

(10)

where CK is the Kolmogorov constant. A is assumed
to be constant which can be considered valid for s < 4,
and a reasonable assumption for s = 4 (see Lesieur and
Schertzer [20]).

This spectrum corresponds to the sketch in figure 7.
Taking into account a more realistic shape of the turbu-
lent spectrum, accounting for the rounding of the spec-
tra around KL or a more refined dissipation range, does
not considerably change the following results but yields
rather complicated expressions. For simplicity’s sake we
use the simple form (10).

The kinetic energy, dissipation, root-mean-square ve-
locity and integral length scale are defined by:

k =

∫ ∞

0

E(K)dK

ǫ = 2ν

∫ ∞

0

K2E(K)dK

U =

√

2

3
k

L =
π

2U2

∫ ∞

0

K−1E(K)dK (11)

Assuming power law decay for the kinetic energy and
dissipation:

k ∼ t−n ǫ ∼ nt−(n+1) (12)

and using the relation

k,t = −ǫ (13)

one can, by substituting the model spectrum (10) in the
expressions (11), derive the usual decay exponent for
isotropic turbulence:

n =
2(s + 1)

s + 3
. (14)

For the integral length scale and timescale, defined as
T = LU−1, it is found

L ∼ t1−n/2

T ∼ t1. (15)

A. Influence of the cascade time

We will now analyze why the value of Cǫ is different
for the cases of decaying and forced turbulence. This
point can be made clear by considering the schematic
picture of the ’perfect’ energy cascade, which is energy
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conserving in between the large scales and the dissipation
range, i.e. no energy is added or dissipated in between
the beginning of the cascade at wavenumber KL and the
exit of the wavenumber at Kη. We introduce a cascade
time corresponding to the time it takes for an amount of
energy initially at KL to reach the dissipative scale Kη =
βKL. Following a reasoning by Lumley [21], stating that
the local energy transfer at a wavenumber K is entirely
determined by K and the local spectral energy density
(see also Pope [22]) this time Tc will be proportional to
the integral time T :

Tc ∼ T (1 − β−2/3) (16)

The rate at which energy is leaving the large scales and
entering the cascade at time t is governed by the large
scale dynamics. It is therefore assumed to be:

ǫf (t) = Cf
ǫ

U3
(t)

L(t)
(17)

where ǫf has not to be viewed as a dissipation, but as an
energy flux, evaluated at the beginning of the cascade.
Note that for statistically stationary turbulence, the flux
is constant in time so that

ǫf (t) = ǫ(t) (18)

and consequently that Cf
ǫ = CF

ǫ , where CF
ǫ is the value of

Cǫ for forced turbulence, whose expression will be given
in the next section.

In the case of decaying turbulence (18) is not hold-
ing, as the energy entering the cascade at time t is not
dissipated instantaneously. It only will be once it has
reached the dissipative range of the spectrum, at time
t + Tc. Therefore instead of (18) one has to write:

ǫf (t) = ǫ(t + Tc) (19)

which together with (17) yields:

ǫ(t + Tc) = CF
ǫ

U3
(t)

L(t)
. (20)

It is important to point out that since Tc is proportional
to t (expressions (15) and (16)), ǫ(t + Tc) will still follow
a power law decay proportional to t−(n+1). The presence
of the cascade time will only influence the prefactor in
the decay law. The introduction of a cascade delay time
remains therefore compatible with the concept of self-
similar decay.

Using the decay laws (12) and (15) to express U and
L in (20) at the same time as ǫ leads to:

ǫ(t + Tc) = CF
ǫ

U3
(t+Tc)

L(t+Tc)

(

t

t + Tc

)−(n+1)

(21)

and therefore one immediately gets:

Cǫ

CF
ǫ

=

(

1 +
Tc

t

)n+1

. (22)

A finite cascade time yields then Cǫ/CF
ǫ > 1, i.e. Cǫ is

not equal to and larger than CF
ǫ for decaying turbulence.

Replacing Tc by its expression as a function of the in-
tegral time (16), which during the decay process scales
as t, leads to:

Cǫ

CF
ǫ

=
(

1 + Ac(1 − β−2/3)
)n+1

, (23)

with Ac a constant and n defined in expression (14). The
value of Ac determines then Cǫ/CF

ǫ . For large RL expres-
sion (23) simplifies to:

Cǫ

CF
ǫ

= (1 + Ac)
n . (24)

A value of Ac = 0.2 agrees with the value for Cǫ/CF
ǫ

observed in figure 4 at high RL.

B. Influence of the Reynolds Number

After analyzing the effect of the turbulent cascade time
in the case of non-stationary turbulence, we now address
the problem of the influence of the Reynolds number on
Cǫ, starting with the case of stationary turbulence. Sta-
tionary turbulence is a case where the spectrum is in
strict equilibrium so that the value of the Kolmogorov
constant is directly related to the value of Cǫ as stated
in Lumley [21]. We will propose an analytical expression
for Cǫ as a function of the Reynolds number and of s,
characterizing the large scales. This expression will then
be coupled with the idea in the previous section.

We recall that we defined β = Kη/KL. We will first
consider the case β > 1, corresponding to the presence of
an inertial range. The case of smaller β, corresponding
to the case where viscous effects are more important than
nonlinear transfer will be discussed later.

Calculating the relevant quantities defined in (11) us-
ing the model spectrum (10), one obtains after some
straightforward calculation:

CF
ǫ =

π
(

3s+5
5s − 3

5β−5/3
)

2C
3/2
K

(

3s+5
3(s+1) − β−2/3

)5/2
(25)

RL =
πC

3/2
K

(

3s+5
s − 3β−5/3

)

(

3β4/3 − 3s+5
s+3

)

20
(

3s+5
3(s+1) − β−2/3

)1/2
(26)

(25) and (26) form a closed expression for the Reynolds
number dependency of Cǫ in stationary forced turbulence
and depend on the parameters s, β and the Kolmogorov
constant CK . In the case of large β, and thus large RL,
expression (25) simplifies to:

[CF
ǫ ]∞ =

π(3(s + 1))5/2

10C
3/2
K s(3s + 5)3/2

(27)
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FIG. 8: Top: comparison of DNS and LES results for the
normalized dissipation rate with a simple phenomenological
model. Bottom: comparison of closure results for the normal-
ized dissipation rate with the same phenomenological model.
The straight lines correspond to the low and high Reynolds
number asymptotic limits, given by expressions (27) and (29).

yielding with CK = 1.5 and s = 4 the value [CF
ǫ ]∞ =

0.53. As mentioned before, in stationary turbulence Cǫ

is directly related to CK . In addition to predicting the
asymptotic value for Cǫ, expression (25) also predicts the
low Reynolds number behavior of Cǫ and the influence of
the large scale topology, by including the parameter s.
The influence of s is relatively small. Varying s from 2
to ∞ results in a variation of Cǫ from 0.57 to 0.51.

In figure 8 it is shown that both the asymptotic value
and the full expression (25) describe the results of the
simulations of forced turbulence quite well.

At low RL viscous effects become important even at the
large scales. The eddy turnover time T ∼ L/U is now not
the only relevant timescale anymore at the large scales
and so the value of Cǫ changes. As can be seen in figure 5,
this effect becomes noticeable at values of RL < 103. In
the case of very low Reynolds number, the above analysis
can not hold as there exists no inertial range. In this
range we propose the analysis of a simplified spectrum:

E(K) =

{

AKs for K < Kη

0 for K > Kη
(28)

Note that this is a very rough representation of reality.
A more realistic dissipation range will be considered be-
low. Calculating Cǫ using (28) yields a R−1

L scaling, in

101

102

100 101

C
ε

t

t1/4

t3/4

s=2
s=4

FIG. 9: Time dependence of the viscous decay of the nor-
malized dissipation rate for initial spectra with a K

2 and K
4

small wavenumber range.
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FIG. 10: Viscous decay of the energy spectrum with a K
2

small wavenumber range.

agreement with Gebhardt et al.[23]. It is found:

[CF
ǫ ]ν =

27π2(s + 1)3

16s2(s + 3)
R−1

L . (29)

For s = 4 one finds [CF
ǫ ]ν ∼ 19 R−1

L ,

for s = 2 one finds [CF
ǫ ]ν ∼ 23 R−1

L .
Expression (29) is also shown in figure 8.
To obtain an expression for the Reynolds number de-

pendency of Cǫ in the case of decaying turbulence we
multiply (25) by the right hand side of (23) yielding:

Cǫ =
π

(

3s+5
5s − 3

5β−5/3
)

2C
3/2
K

(

3s+5
3(s+1) − β−2/3

)5/2

(

1 + Ac(1 − β−2/3)
)n

(30)

In figure 8 it can be seen that the prediction for Cǫ in
decaying turbulence is also satisfactory. Taking into ac-
count the simplicity of the form of the model spectrum
(10), the agreement is fairly good.

A more realistic study of the very low Reynolds num-
ber behavior can be proposed. It also provides a way to
estimate the evolution of Cǫ as a function of time. Cǫ can
be evaluated by assuming the time dependent spectrum,

E(K, t) = E(K, 0)e−2νK2t (31)
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and using E(K, 0) = AKs. After some straightforward
calculation one finds:

Cν
ǫ (t) ∼ t(s−1)/4 (32)

In figure 9 this is checked by DNS for s = 2 and s = 4.
The corresponding spectra are shown in figure 10 in the
particular case where s = 2. Note that for this more
realistic dissipation range expressions are found for the
asymptotically low Reynolds number behavior close to
the ones obtained by using (29). For s = 4 one finds
[CF

ǫ ]ν ∼ 24 R−1
L and for s = 2 one finds [CF

ǫ ]ν ∼ 32 R−1
L .

IV. CONCLUSION

The behavior of the normalized dissipation rate Cǫ was
investigated in decaying and forced isotropic turbulence
by DNS, LES and closure theory. It was shown that at
moderate Reynolds numbers decaying turbulence yields
a value for Cǫ different from, and higher than its value

in forced turbulence. This difference persists at high
Reynolds numbers and the value for Cǫ in decaying tur-
bulence is about two times as high as its value in forced
turbulence. It was shown by a simple phenomenological
model that this difference is satisfactorily reproduced by
introducing a finite cascade time to account for the imbal-
ance between the large scales and the dissipation range.
The Reynolds number dependency of Cǫ was shown to
be correctly predicted by analytically integrating a sim-
ple model spectrum. The time dependence of Cǫ during
the viscous decay was also estimated and agrees with re-
sults of low Reynolds number DNS.

An interesting direction for future work would be the
investigation of other non-equilibrium situations such as
shear flow in which the kinetic energy grows or rotating
turbulence, in which the inertial range behavior is con-
siderably modified [24]. Recent developments in subgrid
modeling [25, 26] open perspectives to address these top-
ics.
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la turbulence inhomogène. Résolution par une méthode
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