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Dynamics of spectrally truncated inviscid turbulence

W.J.T. Bos (correspondent) and J.-P. Bertoglio
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Ecole Centrale de Lyon - Université Claude Bernard Lyon I - INSA Lyon

69134 Ecully Cedex, France

The evolution of the turbulent energy spectrum for the inviscid spectrally truncated Euler equa-
tions is studied by closure calculations. The observed behavior is similar to the one found in Direct
Numerical Simulations (Cichowlas, Bonäıtiti, Debbasch and Brachet [Phys. Rev. Lett. 95: 264502,
2005]). A Kolmogorov spectral range and an equipartition range are observed simultaneously. Be-
tween these two ranges a “quasi-dissipative” zone is present in the kinetic energy spectrum. The
time evolution of the wavenumber that marks the beginning of the equipartition range is analyzed
and it is shown that spectral nonlocal interactions are governing this evolution.

Recently renewed interest was shown in the evolu-
tion of inviscid turbulence. Cichowlas, Bonäıtiti, Deb-
basch and Brachet [1] (in the following abbreviated as
CBDB), reported results of Direct Numerical Simulations
(DNS) of the spectrally truncated 3-D incompressible Eu-
ler equations, with resolutions of 2563, 5123, 10243 and
16003 wave-modes. In principle, the presence of a high-
frequency spectral truncation allows the flow to reach a
thermal equilibrium, i.e. an equipartition of energy over
wave-vectors. The spherically averaged energy spectrum
E(K) associated to this equilibrium has a K2 wavenum-
ber dependence. This is effectively observed in the CBDB
DNS, where at high wavenumbers the energy spectrum is
found to increase following a K2 dependence. It was also
observed in CBDB that during the transient towards the
equilibrium, E(K) followed a K−5/3 Kolmogorov scaling
in the intermediate range. In between these two power
law regions, a “quasi-dissipative” zone is found in which
the energy spectrum falls off faster than K−5/3 until a
local minimum of the spectrum is reached.

The existence of a K2 range in the spectrum is not
new and equipartition was discussed long ago in the lit-
erature. [2, 3] The observation of a Kolmogorov scaling
in the energy spectrum of the truncated Euler equations
is more interesting as it shows that viscous dissipation is
not mandatory for the build up of an inertial zone but
that a flux of energy to the small scales, where it accu-
mulates, is sufficient. It is also an interesting observation
that between the two coexisting power laws, a dip or
quasi-dissipative zone, is detected.

The Eddy-Damped Quasi-Normal Markovian theory
(EDQNM) [4, 5] is known to be compatible with both
the equipartition of kinetic energy [3, 6] and the exis-
tence of a K−5/3 inertial range. Calculations at higher
resolution than DNS can be performed at a much lower
computational cost. EDQNM therefore appears as an
adequate tool to investigate the high-resolution spectral
dynamics of the incompressible Euler equations.

In the present study it is first shown that the spectral
behavior observed in DNS can be reproduced satisfacto-
rily by this relatively simple statistical closure. Results
for resolutions currently unattainable by DNS are ana-
lyzed. Eventually, it is shown that the dynamics of the

“quasi-dissipative” zone are governed by highly nonlocal
triad interactions.

In the case of the EDQNM closure, the evolution equa-
tion for the energy spectrum corresponding to the Euler
equations is the Lin equation without viscosity:

∂E(K, t)

∂t
= TNL(K, t) (1)

in which the nonlinear transfer TNL is expressed as:

TNL(K, t) =

∫∫

∆

ΘKPQ (xy + z3)
[

K2PE(P, t)E(Q, t)

−P 3E(Q, t)E(K, t)
] dPdQ

PQ
(2)

In equation (2), ∆ is a band in P, Q-space so that the
three wave-vectors K, P , Q form a triangle. x, y, z are
the cosines of the angles opposite to K, P, Q in this tri-
angle. The characteristic time ΘKPQ is defined as:

ΘKPQ =
1 − exp(−(ηK + ηP + ηQ) × t)

ηK + ηP + ηQ
(3)

in which η is the eddy damping, expressed as

ηK = λ

√

∫ K

0

S2E(S, t)dS. (4)

For λ the classical value 0.36 is retained corresponding
to a value for the Kolmogorov constant of 1.4. The
spatial resolution for the computations reported here is
14.2 wavenumbers per octave. This significantly high
wavenumber density was selected in order to satisfacto-
rily capture the nonlocal interactions that will be shown
to play an important role in the following. The effect
of the truncation of the domain at a cut-off wavenumber
Kmax is introduced by omitting in (2) all interactions
involving wavenumbers larger than Kmax.

In the present paper we analyze a freely evolving invis-
cid velocity field (the term decaying would be misleading
since no energy is dissipated). The initial spectral en-
ergy distribution is localized at small wavenumbers. The
initial energy spectrum is:

E(K, 0) = BKse−2K2/K2

L , (5)
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with s = 4 and B determined so that the total kinetic en-
ergy is equal to unity. In this spectrum KL is a wavenum-
ber characterizing the initial integral length scale, and
the computations are run on a spectral domain extending
from a minimum wavenumber K0 to the high frequency
cut-off Kmax. These initial conditions are different from
the ones used by CDBD, who started from a Taylor Green
vortex, so that the short time evolutions may be differ-
ent in the two studies. A first set of computations was
performed with K0 = KL. In this case the maximum of
the energy spectrum is situated at the first wavenumber
and the Ks part of the spectrum is absent. This set has
the advantage of permitting comparisons with the DNS
of CBDB in which the energy maximum is also located at
the low wavenumbers at the beginning of the computa-
tions. Calculations are performed with ratios of smallest
to largest wavenumbers Kmax/K0 = 85, 171, 341, 533.
These resolutions are equivalent to the 2563, 5123, 10243

and 16003 DNS calculations of CBDB respectively. Cal-
culations were also performed at higher resolutions, that
would correspond to DNS on 40963, 81923, 163843 and
327683 grids. In the following the different calculations
will be denoted by 256, 512, etc. Finally we report the
results of a calculation starting with a spectrum having a
K4 low wavenumber zone. In this case KL/K0 = 10 and
Kmax/K0 = 104. In the following the time is normalized
by an initial eddy turnover time defined by (UKL)−1, in

which U =
(

2

3

∫

E(K)dK
)1/2

.
The results for the time evolution of the 1600 calcula-

tion are shown in figure 1. Also shown are the spectra at
t = 2.4 for different resolutions. Comparison with Figure
1 of reference [1] shows that the present closure results
are very similar to the DNS results. The results of the
calculation starting from an initial spectrum with a K4

low wavenumber range are shown in figure 2.
In all calculations the nonlinear interactions create a

K−5/3 inertial range. The existence of the inertial range
is particularly clear in the results at high resolutions. In
this range the energy spectrum scales as:

E(K, t) = CKǫ(t)2/3K−5/3, (6)

in which ǫ(t) should not be interpreted as a molecular dis-
sipation which would be zero in the present case, but as
an energy flux in the spectral cascade. This range elon-
gates with time towards higher wavenumbers until the
end of the inertial range meets the maximum wavenum-
ber of the truncated domain Kmax. Then a thermalized
range, or equipartition spectrum,

E(K, t) = A(t)K2, (7)

starts to build up at large wavenumbers. This thermal-
ized range later extends from large to smaller wavenum-
bers, and A(t) is an increasing function of time. The
thermalized energy eth associated with this range is also
increasing with time. By integrating the equipartition
range it is found that A(t) is related to eth by the expres-
sion A(t) ≈ 3eth/K3

max. For long times the thermalized
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FIG. 1: Top: time evolution of the energy spectrum E(K) for

calculation 1600. The solid lines indicate the K
−5/3 and K

2

spectral slopes. Middle: spectra for the calculations 256, 512,
1024 and 1600 at t = 2.4. Bottom: spectra for the calculations
4096, 8192, 16384 and 32768 at t = 2.4.
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energy approaches the (invariant) total energy and A(t)
tends to a constant value.

The coexistence of a Kolmogorov range and of an
equipartition zone was already observed by Connaughton
and Nazarenko [7] using the diffusion approximation
of turbulence proposed by Leith [8]. The “quasi-
dissipative” zone is however absent in their results. In
agreement with the DNS results of CBDB, the ”dissipa-
tive” range is present in the EDQNM results. Leith’s
model was shown to be a useful and easily maneagable
model to obtain understanding of various problems re-
lated to turbulence (e.g. scalar mixing, two-dimensional
turbulence [9, 10]). Its character is however spectrally
local. EDQNM, on the contrary, basically relies on the
triadic interaction between wave-modes and is therefore
by essence nonlocal. The fact that the ”dissipative” range
is reproduced by the EDQNM closure, while it is absent
in the results obtained with Leith’s diffusion model [7],
indicates that the nonlocal interactions between the ther-
malized modes and the modes in desequilibrium might be
responsible for the existence of this zone. This issue will
now be addressed.

As in CBDB we introduce Kth(t) as the wavenum-
ber corresponding to the minimum of the energy spec-
trum. Kth(t) characterizes the beginning of the absolute
equilibrium zone. From the equations (6) and (7), it is
straightforward to calculate the intersection of the two
zones, yielding a first estimate for Kth(t):

Kpl(t) ∼
(

ǫ(t)

eth(t)3/2

)2/11

K9/11

max , (8)

The subscript pl indicates that a K−5/3 power law iner-
tial range is presumed reaching the equipartition range
at K = Kth(t). This estimate was first proposed in Ci-
chowlas et al.[11]. Another possible estimate is:

Kd(t) ∼
(

ǫ(t)

eth(t)3/2

)1/4

K3/4

max. (9)

It was also proposed in reference [11] (see also CBDB).
The physical argument behind this estimation is the ex-
istence of a “quasi-dissipative” region in the spectrum,
occurring between the Kolmogorov and equipartition
ranges. A simple way to find Kd by dimensional argu-
ments is to postulate that Kd is the inverse of a Kol-
mogorov scale

1

Kd
∼

(

ν3
t

ǫ

)1/4

(10)

built on the energy flux ǫ and an eddy viscosity νt. As-
suming νt determined by the thermalized energy and the
wavenumber bound of the spectral domain Kmax,

νt ∼
√

eth

Kmax
, (11)

(9) is immediately found. Introducing K−1
max as the

lengthscale on which to build the effective viscosity νt

is an assumption typically nonlocal in wave-space.
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FIG. 3: Evolution of the parameter Kth(t). Top: Kth com-
pared to Kpl (equation (8)). Bottom: Kth compared to Kd

(equation (9)).

The nonlocal nature of estimate (9) can be enlightened
using the EDQNM equations and performing a nonlocal
expansion à la Lesieur and Schertzer [12]. Developing the
nonlinear transfer (2) with respect to K/Ki and assuming
K << Ki and E(K) < E(Ki) yields:

TNL(K) = −2νtK
2E(K)

+
4

15
K4

∫ Kmax

Ki

ΘKPP
E(P )2

P 2
dP + O [KE(K)]3/2 (12)

Focusing on the first term that has the form of an eddy
viscous term with:

νt =
1

15

∫ Kmax

Ki

ΘKPP

[

5E(P ) + P
∂E(P )

∂P

]

dP

(13)

and assuming E(Ki) in the equipartition range, it is read-
ily found that νt is given by expression (11). The fact
that expression (11), and therefore estimate (9), can be
found by a non local expansion of the tranfer term, un-
derlines the non local nature of the physical mechanisms
associated with this estimate. It has to be noted that ex-
pression (9) was proposed by CBDB following a different
argument.

While in DNS it is not easy to decide which estimator
for Kth is the more appropriate, the relative cheapness
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FIG. 4: Evolution of Kth(t), compared to the two estimates
Kpl(t) and Kd(t) (equations (8) and (9) respectively) for the
K

4 case.

of EDQNM calculations allows for high resolution calcu-
lations that help to choose between the two estimates.
In figure 3 the values of Kth found with the closure are
compared to the estimates (8) and (9). The dissipative
estimate is clearly found to be the more appropiate since
it leads to a better collapse of the results on the different
runs as well as to a more pronounced horizontal plateau
of the plotted ratios. In figure 4 it is confirmed that also
in the K4 case the dissipative estimate of Kth(t) is supe-
rior to the power-law estimate. It is interesting to point
out here that the opposite conclusion would be obtained

with a model that excludes the nonlocal interactions as
in Connaughton and Nazarenko [7].

The main results of the study can be summarized as
follows. The EDQNM closure reproduces the behavior
observed in DNS, i.e. an energy spectrum containing a
Kolmogorov inertial range, a dissipation range and an
equipartition range. The dissipation range was shown to
be created by nonlinear interactions with the modes in
equipartition. An effective eddy viscosity can be defined,
based on the most energetic modes in the equipartition
zone and the cut-off wavenumber. The non local charac-
ter of this eddy viscosity was verified by expanding the
non-local contributions to the nonlinear transfer in the
EDQNM formulation as a function of the wavenumber
ratio and retaining the leading order term.

Although the problem of truncated inviscid turbulence
remains somewhat artificial and far from real world ap-
plications, some of the spectral behaviors studied here
may help understanding mechanisms that are connected
to Navier-Stokes turbulence. It is for example interest-
ing to note, in the framework of Large-Eddy Simulation,
that the turbulent cascade of energy at large scales is not
significantly altered by the fact that energy is not, or not
properly, dissipated.

We acknowledge stimulating interaction with Marc-
Etienne Brachet in the framework of the GDR “Structure
de la Turbulence et Mélange” of the Centre National de
la Recherche Scientifique (CNRS), which provided the
starting point for the present work.
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