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ABSTRACT. This paper is concerned with fault detection and isolation in nonlinear dynamic

systems. A structural decomposition of the system is made, using the criterion of robustness

to unknown inputs. To achieve this decomposition, special mathematical tools are used. The

algebraic nature of these tools permits a more general formulation of the residual generation

problem. These mathematical tools are presented with illustrations and the unknown input-free

decomposition method is described. Some aspects of the method are discussed, and solutions

are proposed to improve the existing algorithm. An application on an academic example is also

provided.

1. Introduction. Process monitoring is a major concern for the industrial world. The early

detection and localization of faulty elements can help preventing larger failures or even the de-

struction of the monitored plant, by stopping the control of the process or by using an adapted

control law. This is the main task of fault detection and isolation (FDI) in dynamic systems.

Because of the great relevance of this thematic in industrial plants, FDI has become a funda-

mental issue of research for the automatic community during the last two decades.

Model-based FDI rely on analytical redundancy obtained from the mathematical model of the

system to monitor. This redundancy is used to generate fault indicators named residuals. These

signals allow to check discrepancies between the behavior of the system and its mathematical

model. Among the well-established concepts to generate residuals are parameter estimation

approach [4, 5], parity space approach [2, 3] and observer-based approach [1, 11] with the latter

being the most relevant. All of these approaches use traditionally a linear model of the plant,

even if the behavior of the system is nonlinear. The main reason of that issue is the difficulties

encountered when dealing with nonlinear equations. That’s why in the last decade, a conse-

quent amount of researches were initiated to deal with those problems. Two major directions

were investigated : The most common are geometric methods [6, 7] where differential geomet-

ric tools are used. The alternative direction is represented by algebraic methods [17, 9]. While

geometric tools have proved their efficiency , their application is restricted by a certain class

of nonlinearities. From this perspective, algebraic methods provide more general solutions.In
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particular, a set of algebraic tools was developed in [12] to handle discrete model decomposi-

tion with respect to some criteria. In [9], these tools were extended to the continuous-time case

and to the FDI problem. These mathematical tools, referred as algebra of functions, permits

to express function relationship in algebraic terms. The author uses these tools to solve the

problem of unknown input-free decomposition. However, some aspects of the former method

remain unclear, in particular the computational aspect.

The objective of this paper is to investigate the Fundamental Problem of Residual Generation

(FPRG) using an algebra of functions approach. A parallel is made with the classical solution

of this problem [1, 3] which relies on design of residual generators bank. An approach based

on model decomposition is proposed instead. This approach permits to split the solution in two

steps : robust decomposition of the model and stability of the residual generator. This sequen-

tial method makes the solution of the FPRG problem more flexible. Also, some computation

aspects of the decomposition method from [9] are detailed and extended. To summarize, the

contributions of this work are :

• The Fundamental Problem of Residual Generation is solved using model decomposition

with a robustness / sensitivity criterion.

• Computation enhancements of algebra of functions operators are proposed.

• The decomposition algorithm from [9] is revisited. The initialization step is improved in

order to lead to a complete solution.

• An nonlinear example to illustrate initialization problem is provided and a complete solu-

tion is given.

The paper is organized as follows : In section 2, the robust residual generation problem

is expressed. In section 3, the algebra of functions is presented. The decomposition with a

robustness/sensitivity criterion is investigated in section 4. Section 5 addresses the contributions

of this work : the computational aspect as well as an improvement of the decomposition method.

In section 6, an application on an academic example is provided to show the effectiveness of the

proposed computation methods. Conclusions and perspectives on future works close the paper.

2. Problem Formulation. Consider the following system

Σ :

{

ẋ(t) = f (x(t),u(t),γ(t),ρ(t))
y(t) = h(x(t))

(1)

where x ∈ X ⊆ IRn is the state, u ∈ U ⊆ IRm is the input and y ∈ Y ⊆ IRl is the output. The

fault signals to detect are represented by the vector ρ while the other faults will be considered

as perturbations and stacked along with unknown inputs (UI) into the unknown vector γ . In

order to achieve fault detection, a residual r(t) is generated. This signal is related to the fault ρ .

It is equal to zero in the fault-free case and different from zero if the fault ρ occurs.

{

ρ(t) = 0 ⇒ r(t) = 0

ρ(t) 6= 0 ⇒ r(t) 6= 0
∀γ,∀x(t),y(t),u(t) (2)

However, in real-life systems, the residual will not exactly equal zero for the fault-free case.

This issue is caused by by noise and modelization errors. To deal with this case, decision meth-

ods must be used to state if a fault is occurring or not when the residual is not exactly null. This
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topic is discussed in [8].

In the multiple fault case, fault detection and isolation is traditionally achieved by design-

ing a residual generators bank using the complete model [18]. Each residual is sensitive to

specific faults and robust to the unknown inputs and to all the other faults. It means that each

residual generator corresponds to a particular configuration of the vectors ρ and γ . Multiple

configurations are obtained by permutation of vector components of ρ and γ .

FIGURE 1. Robust residual generator bank

This traditional structure is represented in figure (1). Every residual ri(t) must fulfill the

following conditions

• Robustness to the perturbation vector γi

• Sensitivity to the fault vector ρi

• Asymptotic convergence in the fault free case. if ρi = 0 , ∀ γi limt→∞ri(t) = 0

where ρi, γi are respectively the fault vector and the perturbation vector corresponding to the

fault i. This set of conditions is known as the Fundamental Problem of Residual Generation

(FPRG).

It must be noticed that the FPRG constraints are applied in one single step in the traditional

RG design method. This usually leads to solve a multiple constraint problem which is often

challenging.

As an alternative, to reduce design complexity, we propose to decompose the design process

in two steps. First of all, the decomposition of the complete model with respect to the robust-

ness/sensitivity constraint is performed. The model Σ is decomposed in two parallel dynamics

Σ∗ and Σ′ as shown in figure (2)

The subsystem Σ∗ is the part of Σ which is robust to the perturbation vector γ and sensitive to

ρ .

Σ∗ :

{

ẋ∗(t) = f∗(x∗(t),y(t),u(t),ρ(t))
y∗(t) = h∗(x∗(t))

(3)

The decoupling is performed using an output injection which must be determined. In order to

keep a link with the real system y, the outputs y∗ must be expressed as a combination measured
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FIGURE 2. Parallel decomposition of Σ

outputs y.

y∗(t) = h∗(x∗(t)) = c(y(t)) (4)

The system Σ′ represents the complementary subsystem of Σ∗. To determine the decoupled

subsystem Σ∗ a decomposition function is applied on Σ.

Let φ be a differentiable function that is defined as follows

φ : X → X∗

: x(t) 7→ x∗(t)
(5)

where X and X∗ are respectively the state spaces of Σ and Σ∗. The function φ determines the

subsystem Σ∗ upon Σ

Σ
φ

−→ Σ∗

φ(x(t)) = x∗(t)
(6)

To achieve fault detection, a residual generator is designed upon the robust subsystem Σ∗.

The corresponding residual will inherit naturally the robustness property.

Σ0 :

{

˙̂x∗(t) = f0(x̂∗(t), ŷ∗(t),y(t),u(t))
r(t) = c(y(t))−h∗(x̂∗(t))

(7)

where c is the function from (4). The function f0 is obtained from f∗ 3 using a feedback. The

determination of the feedback function is a classical problem of observer design [19] and is not

be addressed here.

In the case of multiple faults, a bank of robust subsystems is designed ( see fig. (3)). Each

subsystem is robust to a given subset of faults and sensitive to remaining faults.

In comparison with the methodology illustrated figure (1), the residual generators are easier

to design due to the two steps synthesis. At the same time, the decomposition process is simpler

because of reduced constraints.

In this section, we have shown that the FPRG problem can be expressed as a problem of

decomposition with respect to a robustness/sensitivity criterion. This is not a new result and
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FIGURE 3. Robust subsystems bank + RG

it is similar to the formulations suggested in [6, 9]. However, a slight difference exist : the

proposed formulation emphasis the independent role of the robust subsystem instead focusing

on the subsystem as a part of a residual generator.

Consider the following relation

dφ

dx
f (x,u,γ ,ρ) = f∗(φ(x),h(x),u,ρ) (8)

obtained from relation (6) using derivation and substitution of ẋ∗, ẋ with their expressions

in (1) and (3). Equation (8) expresses mathematically the problem of robust decomposition,

and serves as a beginning point to many Residual generators bank-based approaches [6, 16].

However, authors use geometric tools to determine the transformation, and consequently are

limited to a class of nonlinear systems. In order to solve (8) in the general case, a set of algebraic

tools is introduced : the algebra of functions (AF).

3. Algebra of Functions. The algebra of functions is a set of mathematical tools that can

express function relationship. These tools were developed initially by Zhirabok and Shumsky

[9, 10] as an extension to the continuous-time and infinite sets cases of the pair algebra [12]

used to describe the behavior of sequential automata. The principal feature of the algebra of

functions is versatility. It permits to keep the same notations and methods to process different

types of models : linear and nonlinear, continuous-time and discrete-time.

Algebra of functions is a set of operators and operations applied on vector functions defined

on a subset X ⊆ IRn. The set of all functions on X is denoted DX . Three types of operators

and operations are involved: ordering, interaction and advanced ones. These operators and

operations are defined in the following and a geometrical illustration is given for clearness sake.

3.1. Ordering : Relations ≤ and ∼=. Consider the functions α : X → S and β : X → T with

S,T ⊆X . We denote α ≤ β if and only if there is a function ν : S→ T such as ν(α) = ν ◦α = β .

α ≤ β ∧β ≤ α,⇒ α ∼= β (9)

Remark 3.1. The elements of DX are ordered by the relation ≤. The smallest element of DX is

the element generating all the remaining elements. On the opposite, the greatest element is the

element which can be generated by any other element of DX .
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Illustration

Let α : X −→ S and β : X −→ T be two differentiable vector functions. Assume that

A = span{dα1, · · · ,dαk}

B = span{dβ1, · · · ,dβl} (10)

where αi,βi are the components of α and β respectively. The functions α and β correspond

geometrically to the co-distributions A and B. In a similar manner, the following statements

correspond

A ⊇ B ←→ α ≤ β

A = B ←→ α ∼= β (11)

3.2. Interaction : Operations × and ¤. These operations define respectively the greatest (in

the sense of the operation ≤) function generating α and β and the smallest function which can

be generated by α and β simultaneously.

Let Ω = { f | f ≤ α , f ≤ β} and Ψ = {l|α ≤ l,β ≤ l}. We denote

α ×β = g ⇔ g ∈ Ω∧∀ f ∈ Ω : f ≤ g (12)

α¤β = s ⇔ s ∈ Ψ∧∀l ∈ Ψ : s ≤ l (13)

The main properties of these operators are

• α ≤ β ⇔ α ×β ∼= α ⇔ α¤β ∼= β
• if α ≤ δ and β ≤ δ then α¤β ≤ δ

Illustration

Let α : X −→ S and β : X −→ T be two differentiable vector functions. A and B are the

co-distributions spanned respectively by dα and dβ . The following statements correspond

A ∩ B ←→ α ×β

A ∪ B ←→ α¤β (14)

Figure (4) illustrates the presented concepts

FIGURE 4. Geometric illustration
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3.3. Advanced : Pair relation ∆, operators m and M. Consider the differentiable function β
and some function g. A function α forms a pair with β with respect to g i.e. (α ,β ) ∈ ∆ f if and

only if there is a function ν : S → T such as

ν(α(x),u) =
dβ

dx
f (x,u) (15)

with x ∈ X and u ∈U

m(α)(x) is the smallest function (in the sense of the operation ≤) forming a pair on the right

with α , i.e.

(α ,m(α)) ∈ ∆ f and ∀(α ,β ) ∈ ∆ f : m(α) ≤ β (16)

By analogy, M(β ) is the greatest function forming a pair on the left with β

(M(β ),β )) ∈ ∆ f and ∀(α,β ) ∈ ∆ f : α ≤ M(β ) (17)

The main properties of these two operators are

• if α ≤ β then m(α) ≤ m(β ) ⇔
if α ∼= β then m(α) ∼= m(β )

• M(α ×β ) ∼= M(α)×M(β )
• α ≤ M(m(α)), m(M(β )) ≤ β

Remark 3.2. The operator m(α) represents the maximum amount of available information on

the next state of the system, knowing a certain amount of information in the actual state α . The

operator M(β ) represents the minimum amount of information necessary to express the next

system state β . These operators are useful to determine the behavior of a subsystem inside the

system. For example, if some state vector components are influenced by an unknown input, it is

possible to determine if these components are necessary or not to determine the next state of a

perturbation-free subsystem , and to guarantee its decoupling properties.

Illustration Let α : X −→ S and β : X −→ T be two differentiable vector functions. A and B

are the co-distributions spanned respectively by dα and dβ . Consider the following system

{

ẋ = f (x)+g(x)u
y = h(x)

(18)

where x ∈ X , u ∈ U and f ,g are some functions. Some specificities of the system (18) can

be expressed using differential geometric operators like Lie derivative. Notations concerning

Lie algebra and differential geometric operators can be found in [13]. Exact correspondance

between the Algebra of function operators and Lie algebra operators is difficult to show in a

short paragraph, nevertheless a parallel can be made on how the characteristics of the system

(18) are expressed using the two sets of operators.

• A is invariant (involutive) under the dynamics f ⇔ L f (A) ⊂ A ←→ (α ,α) ∈ ∆ f

• A is (h, f ) invariant ←→ (α ×h,α) ∈ ∆ f

• L f (αi) ←→ M(αi)
where αi are the row components of α

It must be noticed that the application of the presented algebraic operators isn’t restricted to

systems such as (18), as in the case with differential geometric operators.
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4. Decomposition with robustness/sensitivity criterion. The decomposition problem with

robustness/sensitivity criterion problem is expressed using algebra of functions. The provided

solution is sequential and is based on the determination of a robust and invariant subsystem.

An algebraic reformulation of the decomposition criteria is made. These condition are used

to design a sequential decomposition method.

Consider the relation (8). This equation expresses mathematically the decoupling problem.

The decomposition problem will be solved if a function φ that verifies (8). However, taken

alone this condition alone do not guarantee the robustness of the resulting subsystem.

4.1. Decomposition conditions. Invariance

The equation 3 is rewritten using the operation ×

f∗(x∗,y,u,ρ) = f∗(φ(x),h(x),u,ρ)

= f∗((φ ×h)(x),u,ρ) (19)

Equation (8) becomes

f∗((φ ×h)(x),u,ρ) =
dφ

dx
f (x,u,γ,ρ) (20)

This relation corresponds to a pair (15) : (φ × h,φ) ∈ ∆ f . From here, using the definition

(17), the following relation can be written

φ ×h ≤ M(φ) (21)

This relation expresses the invariance condition in algebra of function . The output function

h means that the decoupling is obtained by an output injection i.e. that f∗ is (h, f∗) invariant

(involutive). We will see later how to implement this condition in the decomposition.

4.2. Robustness. The subsystem Σ∗ is robust to the unknown input vector γ

∂

∂γ
f∗(x∗,y,u,ρ) = 0 ⇒

∂

∂γ

dφ

dx
f (x,u,γ ,ρ) = 0 (22)

Let φ 0 a function from DX that verifies the condition (22)

φ 0 ≤ φ ⇔ φ ∈ DX ∧
dφ

dx

∂ f

∂γ
= 0 (23)

The function φ 0 is the greatest function dimension-wise that achieves the decoupling. Every

single function that verifies (22) is necessarily a part of φ 0.

φ 0 ≤ φ (24)

Remark 4.1. It must be noticed that the subsystem obtained using φ 0 is structurally free from

the unknown input vector γ but by no means it means that this system is feasible or designable.

To obtain a designable subsystem, the function φ 0 must verify the invariance condition.
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4.3. Sensitivity. The decoupled system Σ∗ is sensitive to the fault vector ρ

∂

∂ρ
f∗(x∗,y,u,ρ) 6= 0 ⇒

∂

∂ρ

dφ

dx
f (x,u,γ ,ρ) 6= 0 (25)

Let β 0 a function from DX that do not verify the condition (25)

β 0 ≤ β ⇔ β ∈ DX ∧
dβ

dx

∂ f

∂ρ
= 0 (26)

The subsystem Σ∗ will be sensitive to faults if the decomposition function phi is not entirely

part of β 0

β 0 � φ (27)

or completely independent from β 0

β 0
¤ φ = const (28)

4.4. Residual generation capability. When performing the decomposition of the system, if

dim(Y )/leqdim(X), the link with the measured outputs y may disappear . If it is the case,

residual generation is impossible. To avoid this particular case, the subsystem output y∗ must

be a combination of the measured outputs.

y∗ = c(h(x)) = h∗(φ(x)) ⇒

{

φ ≤ c◦h

φ¤h 6= const
(29)

for some function c.

The residual will be robust to the perturbation if φ 0 ≤ φ . The transformation φ must be

generated by φ 0. This basic function φ 0 must be determined. It will also need to be invariant.

The following theorem, introduced in [14], permits to determine the invariant part of φ 0

Theorem 4.1. Consider the following recurrence

φ i+1 = m(φ i ×h)¤φ i

with i = 0,1, . . . ,n. When φ k+1 ∼= φ k for some step k, then φ∗ = φ k is the smallest function

fulfilling

{

φ 0 ≤ φ∗

m(φ∗×h) ≤ φ∗ (30)

Using this theorem, a function φ∗ is obtained. This function is robust and invariant. It is the

first candidate to achieve the decomposition. In some particular cases, one can use φ∗ to obtain

the decoupled system.
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4.5. The decomposition method. The set of decomposition conditions can be summarized as

follows

Decomposition conditions















φ ∗ ≤ φ
φ¤h 6= const

φ¤β 0 = const

φ ×h ≤ M(φ)

(31)

Using these condition, an algorithm to build of the transformation φ can be designed. It must

be noticed that the decomposition condition is the stopping rule and must be checked at every

step ; if sensitivity is not verified, the subsystem Σ∗ is robust to γ and ρ
Decomposition methodology

Initialization

The first step is to determine the greatest (dimension-wise) decoupling function φ 0. In the

literature [9], phi0 is directly determined from (22) and is always linear. This point will be

discussed in the next section. The sensitivity condition must be checked β 0 � φ 0 in order to

continue the decomposition

Finding the invariant and robust part

The following theorem, introduced in [14], computes the largest (dimension-wise) invariant

part of φ 0

Theorem 4.2. Consider the following recurrence

φ i+1 = m(φ i ×h)¤φ i

with i = 0,1, . . . ,n. When φ k+1 ∼= φ k for some step k, then φ∗ = φ k is the smallest function

fulfilling

{

φ 0 ≤ φ∗

m(φ∗×h) ≤ φ∗ (32)

Using this theorem, a function φ∗ is obtained. This function is robust and invariant. It is the

first candidate to achieve the decomposition. In some particular cases, one can use φ ∗ to obtain

the decoupled system.

Designing the robust subsystem

In some cases, the robust and invariant decomposition function φ ∗ may lead to an infeasible

subsystem. To determine the largest part of φ∗ which guarantees a feasible subsystem Σ∗ the

following algorithm is used

Algorithm 1

BEGIN

1. φ1 = c0 ◦h , j = 1

2. if h×φ1 × . . .×φ j ≤ M f (φ j) then k = j, go to step 4
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3. Find the greatest φ j+1 such as φ∗ ≤ φ j+1 and h×φ1 × . . .×φ j+1 ≤ M f (φ j)
inc(j)

go to step 2

4. φ = φ1 ×φ2 × . . .×φk

END

Row functions φ1,φ2, . . . ,φ3 are the components of φ . The function c0 is the largest function

(dimension-wise) verifying (29). The resulting function φ will give us the largest feasible robust

subsystem Σ∗. It must be noticed that the use of another function c replacing c0 will result in a

different decomposition function.

5. Implementation problems. In the previous sections, the different steps of the unknown

input-free decomposition were given. The purpose of the previous publications on that topic

[10, 9] were leading clearly to a theoretical description of algebraic decomposition method-

ology . However, many points remain unclear especially the implementation. In particular,

the computation of the different operators needs to be detailed. Also, an important step of the

decomposition algorithm - the initialization - is not sufficiently discussed. This paper’s contri-

bution is the clarification of these two particular points.

5.1. Computation of the operators of Algebra of functions. In the following, methods to

calculate algebra of function operators are provided. Some ideas are taken from [10] and an

enhanced method to compute the operator m is proposed.

Computing the operation × : Consider the following independent functions α : X → S and

β : X → T

α ×β =

[

α
β

]

(33)

Computing the operation ¤ : Consider the functions α : X → S and β : X → T . Let a

function g exist such as g = α¤β . It means the functional components of g; namely gi will

satisfy the following equalities

rank

[

dα
dx
dgi

dx

]

= rank

[

dα

dx

]

rank

[

dβ
dx
dgi

dx

]

= rank

[

dβ

dx

]

(34)

where d
dx

are the Jacobian matrices. These equalities gives partial differential equations con-

cerning each component gi of the function g i.e.

g = g1 ×·· ·×gi (35)

Computing the operator M : Let remind the formal definition of the operator M

(M(β ),β ) ∈ ∆ f and ∀(α,β ) ∈ ∆ f : β ≤ M(β ) (36)
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for some vector function f . In the context of this paper, the function f is the state function of

the system to process.

Assume the following statement

dβ

dx
f (x,u) = Ψ(a1(x),a2(x), · · · ,ap(x),u) (37)

If Ψ = ∑ai(x)bi(u) and all the bi are linearly independent then

M(β ) = a1 ×a2 ×·· ·×ap (38)

If the function Ψ has a more general form, an additional condition must be fulfilled to use the

relation (38) : the existence of control values c1,c2, · · · ,cp such as

dβ

dx
f (x,c1)×·· ·×

dβ

dx
f (x,cp) ≤ ai (39)

with i = 1..p.

Computing the operator m : Let remind the formal definition of the operator m

(α,m(α)) ∈ ∆ f and ∀(α ,β ) ∈ ∆ f : m(α) ≤ β (40)

To calculate the operator m, the partial differential equations deduced from the following

equality must be solved

rank

[

dα

dx

]

= rank

[

dα
dx

dmi(α)
dx

d f
dx

+ f T
(

d
dx

(

dmi(α)
dx

))T

]

(41)

mi(α) is the corresponding row component of the function mi. The equality (41) is immedi-

ately deduced from

ν(α(x),u) ≤
dm(α)(x)

dx
f (x,u) (42)

for some vector function ν .

This type of differential equations is not obvious to solve for the general case. The assumption

of

d

dx

(

dmi(α)(x)

dx

)

= 0 (43)

can be made to obtain a linear solution if it exists, and will lead to the following equalities

dmi(α)

dx

d f

dx
= N

dα

dx
(44)

for some matrix N.

Remark 5.1. The computations are far from simple if the function α has a general form. In the

context of this paper, α = φ 0 × h. And φ 0 is determined using the relation (23). Disregarding

the dimension problems discussed in the fifth section, this form do not simplify the computations

as well.
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However, we can add the knowledge of the system we had to simplify the computations. If

the model of the system is polynomial, these particular polynomials can be used to compute the

operator m by using the following property

α ∼= β ⇒ m(α) ∼= m(β ) (45)

The basic idea is to substitute the function α which gives a complicate result when computing

m(α), with the function β which gives a simpler solution. The substitution function must be

chosen with consideration to the state function f (x,u). If f (x,u) has the following form

fi(x,u) = a(i,1)(x)b(i,1)(u)+ · · ·+a(i,w)(x)b(i,w)(u) (46)

where fi(x,u) are the row components of f (x,u), then the function β is obtained as follows

β = a(1,1)(x)×·· ·×a(i,v)(x) (47)

with a(1,1)(x), · · · ,a(i,v)(x) being independent and the relation α ≤ a(i, j)(x) being fulfilled for

i = 1..n and j = 1..v.

Example 5.1. A simple illustration of function substitution is provided. The function f (x,u) is

the same as in (57).

α =





x1

x4

x5




∼= β =





x4
2

x4x5

x1x4x5



 ⇒ m









x1

x4

x5








∼= m









x4
2

x4x5

x1x4x5









m(α) =













x1

x2x3
1

x1x5x5

x4













,m(β ) =





x1 − x2

x1 − x2 − x3

x4





(48)

5.2. An enhanced initialization of the decomposition algorithm. While algebraic tools give

us a proper formalization to the decomposition problem, the definition of the set of transforma-

tion candidates φ 0 remains inadequate. If no candidate function exists to fulfill the robustness

condition (23), it will not necessarily imply that the robust decomposition is impossible. The

model must be rewritten in an adequate form to allow the decomposition. If the decomposi-

tion remains impossible even with the transformation, we can say that the decomposition using

algebra of function is really impossible.

The first step is to check the transformability of the system into adequate form. We need

to know if the influence of the unwanted signals could be reduced. The following relation is

checked

rank

[

∂ f (x,u,ρ,γ)

∂γ

]

= n (49)

If the condition (49) is verified, then the system is already in adequate form, so the straightfor-

ward use of the decomposition algorithm is possible. Otherwise, a transformation is required.

This transformation aims the elimination of the perturbation from a maximal number of states.

The variables to eliminate are the components of perturbation vector γ . The system is trans-

formed as follows
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f (x,u,ρ ,γ) −→ f̃ :

{

f̃1(x̃,u,ρ,γ)
f̃2(x̃,u,ρ)

(50)

Several cases are considered, according to the type of unwanted signals injection, linear or

nonlinear. In this paper, the linear injection case is processed. In the general case, nonlinear

elimination techniques [15] are applied to reduce the influence of perturbation, using Groebner

bases algorithm for example. This topic is one of the future works of the authors.

Consider the following system for the linear case

Σ :

{

ẋ = f (x,u,ρ)+Eγ
y = h(x)

(51)

where E is a linear matrix. According to condition (22), the initial set of transformation

candidates φ 0 will be larger if the influence of γ on the state equation is reduced. Consider now

a linear matrix T which transforms the fault injection matrix E

T E = É =

[

D

0

]

(52)

where D is a diagonal matrix. The system (51) is transformed in consequence

f (x,u)+Kρ +Eγ
T

⇛ Σ̃ :

{

f̃1(x̃,u,ρ)+Dγ
f̃2(x̃,u,ρ)

(53)

Considering that rank[E] = rank[D] = r, the transformation T will generate n− r states that

are free from the influence of the unwanted signal γ . This transformation must be determined

by using variable elimination techniques on the matrix E. If E is linear, Gaussian elimination is

performed.

The determination of the matrix T is not always obvious. When performing Gaussian elimina-

tion algorithm on the matrix E, the matrix É is obtained. In the general case, the matrix E is

rectangular so the straightforward

T = ÉE−1 (54)

cannot be used. The solution in this case is the use of the pseudo-inverse of E

E+ =
(

ET E
)−1

ET (55)

under the condition that E is a full column rank matrix. The matrix T is given by

T = ÉE+ (56)

The purpose of the transformation T is to give us a system which improves the determination

of the set of candidate functions φ 0

6. An illustrative example. To illustrate the method, an academic example is processed. The

system Σ to monitor is influenced by two faults and no perturbations. A sign function appears in

the first state equation restricting the use of geometric approaches to decomposition. Consider

the following system :
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





















ẋ1 = x2x3 + sign(x1)u1 +ρ2

ẋ2 = x4
2 +ρ1 +ρ2

ẋ3 = x4x5 +ρ2

ẋ4 = x1x4x5 + x2x3u2

ẋ5 = x4 + x3u3

,







y1 = x1

y2 = x4

y3 = x5

(57)

Where ρ1 and ρ2 represent the faults. To achieve detection and isolation of ρ1 and ρ2 a bank

of two subsystems Σ∗1 and Σ∗2 is created. The subsystems Σ∗1, Σ2 are robust respectively to ρ2

and ρ1. The determination of Σ1 is detailed below and Σ2 is given.

The determination of Σ∗1

The robust function φ 0 is determined using the relation (23) with γ = ρ2

φ 0 = [x4|x5]
T

(58)

φ 0(x) represents the states decoupled from the fault ρ2. By analogy, the states free from the

fault ρ1 form β 0(x) (26)

β 0 = [x1|x3|x4|x5]
T

(59)

The determination of the invariant part of φ 0; namely the function φ∗, is achieved by the

application of the theorem 1.

The first iteration gives

φ 1 = φ 0
¤m(φ 0 ×h)

= [x4|x5]
T
¤m

(

[x1|x4|x5]
T
)

= [x4]
T

(60)

Since φ 1 ≇ φ 0, a second iteration will be initiated

φ 2 = φ 1
¤m(φ 1 ×h)

= [x4]¤m
(

[x1|x4|x5]
T
)

= [x4] (61)

Since φ 1 ∼= φ 2, φ∗ = [x4]. Unfortunately, it is clear that β 0 ≤ φ∗. It means that the decoupled

system will be insensitive to the fault ρ1.

The solution lies in the transformation of the state equations discussed in section 5. The objec-

tive is to minimize the influence of γ = ρ2 without transforming the outputs. In this particular

case, Gaussian elimination is performed on the states x1, x2 and x3. Using the method described

in the previous section on the initial system, the following matrix T is obtained

T =













1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 0 1 0

0 0 0 0 1













(62)
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Consider now the system transformed using T : x̃ = T x























˙̃x1 = x̃2x̃3 + sign(x̃1)u1 +ρ2

˙̃x2 = x̃2x̃3 − x̃2
4 + sign(x̃1)u1 −ρ1

˙̃x3 = x̃2
4 − x̃4x̃5 +ρ1

˙̃x4 = x̃1x̃4x̃5 + x̃2x̃3u2
˙̃x5 = x̃4 + x̃3u3







ỹ1 = x̃1

ỹ2 = x̃4

ỹ3 = x̃5

(63)

The decomposition method is applied on (63). The new functions φ 0 and β 0(x) are deter-

mined

φ 0 = [x̃2|x̃3|x̃4|x̃5]
T

(64)

β 0 = [x̃1|x̃4|x̃5]
T

(65)

β 0¤φ 0 6= const, so a decoupled system may exist.

The new function φ∗ is determined using the theorem 1

The first iteration gives

φ 1 = φ 0
¤m(φ 0 ×h)

= [x̃2|x̃3|x̃4|x̃5]
T
¤m

(

[x̃1|x̃2|x̃3|x̃4|x̃5]
T
)

= [x̃2|x̃3|x̃4]
T

(66)

Since φ 1 ≇ φ 0, a second iteration will be initiated

φ 2 = φ 1
¤m(φ 1 ×h)

= [x̃2|x̃3|x̃4]
T
¤m

(

[x̃1|x̃2|x̃3|x̃4|x̃5]
T
)

= [x̃2|x̃3|x̃4]
T

(67)

Since φ 1 ∼= φ 2, φ∗ = [x̃2|x̃3|x̃4]
T

. It is clear that β0 � φ∗, so the decoupled system can be

sensitive to the fault.

The next step is to apply the decomposition algorithm to obtain the decoupled system Σ∗

BEGIN

1. φ1 = φ∗¤h = [x̃4]

2. h×φ1 = [x̃1|x̃4|x̃5]
T � M(φ1)

with M(φ1) = [x̃1x̃4x̃5|x̃2x̃3|x̃1x̃3|x̃1x̃2|x̃
2
1|x̃

2
2]

T
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3. Let φ2 = [x̃2|x̃3]
T . It is clear that

φ2 ≤ φ∗ and h×φ1 ×φ2 ≤ M(φ1)

4. h×φ1 ×φ2 = [x̃1|x̃2|x̃3|x̃4|x̃5]
T ≤ M(φ2)

with M (φ2) =
[

x̃2x̃3|x̃1x̃3|x̃1x̃2|x̃
2
1|x̃

2
2|x̃

2
4|x̃4x̃5

∣

∣sign(x̃1)]
T .

The condition is satisfied and φ is given by

5. φ = φ1 ×φ2 = [x̃2|x̃3|x̃4]
T .

END

Since φ¤β 0 = x̃4 6= const ⇔ β 0 � φ , the subsystem Σ∗1 is sensitive to the fault ρ1.

The description of Σ∗1 robust to ρ2 and sensitive to ρ1 is given by :







ẋ∗11 = x∗11x∗12 − y2
2 + sign(y1)u1 −ρ1

ẋ∗12 = y2(y2 − y3)+ρ1

ẋ∗13 = y1y2y3 + x∗11x∗12u2

(68)

with y∗11 = x∗3 and c1(y) = y2

The system (69) is robust to the fault γ and sensitive to the fault ρ . To synthesize a residual

generator a feedback is added to the system Σ∗1 ( see fig. 2). The feedback gain matrix can

found using well known methods [19]. The obtained residual generator is structurally robust.

The subsystem Σ∗2 robust to ρ1 and sensitive to ρ2 is determined in the same manner :

{

ẋ∗21 = y2y3 +ρ2

ẋ∗22 = y2 + x∗21u3
(69)

with y∗21 = x∗22 and c2(y) = y3

This is an alternative to the classical synthesis of robust residual generator based on the

complete model 57 which is more difficult to design from a computational perspective.

7. Conclusion. Classical residual generator design approaches are bound to the type of model

to monitor. The discussed algebraic approach is not limited by this point and may be used int

the same manner on different types of models. Its principal feature appears : versatility. A

general formulation of the model decomposition with robustness/sensitivity criterion is possible

which leads as shown in section 2 to a solution of the FPRG problematic. This is especially

useful for nonlinear systems where no such general formulations exist.

Differential geometry-based methods are usually employed in this particular case. However,

geometric methods are limited to a certain class of nonlinear systems. Also, the computation of

the transformation is not clearly given . This transformation is delimited by a set of geometrical

constraints. A particular solution is chosen, usually in an empirical way, to fulfill the con-

straints. A lot of research has been done on ways to eliminate or to accommodate this problem

[7, 11, 16, 17, 18], and the present paper is aiming to the same direction.

An adapted formulation of the FPRG problem is proposed. Based on this formulation, the

problem of model decomposition with robustness/sensitivity criterion is presented. The alge-

braic approach presented in [9] is discussed and extended. In particular, the implementation
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aspects are detailed and the decomposition method is enhanced, especially the linear perturba-

tion injection case. Our future works are summarized in the following points:

• The nonlinear perturbation injection case

• Extending the application of the algebra of functions by processing other problems : lin-

earization using input/output injection with robustness criterion and decomposition of sys-

tems with mixed dynamics (continuous/discrete).

• The use of the robust subsystems is not bound by (FPRG) problematic. These subsystems

may be employed for control purposes. Applications on Fault Tolerant Control (FTC) may

be considered also.
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