Laure Gonnord
email: laure.gonnord@imag.fr

Nicolas Halbwachs
email: nicolas.halbwachs@imag.fr

Pascal Raymond
email: pascal.raymond@imag.fr

From Discrete Duration Calculus to Symbolic Automata

Keywords: Duration Calculus, QDDC, synchronous observers, non-deterministic observers, Lustre

come L'archive ouverte pluridisciplinaire

Introduction

The classical way for showing the decidability of a temporal logic (e.g., [START_REF] Vardi | An automata-theoretic approach to automatic program verification[END_REF][START_REF] Bernholtz | An automata-theoretic approach to branching-time model checking[END_REF]) is to associate with each formula of the logic a finite automaton which accepts exactly the models of the formula. This approach allows also the study of the theoretical complexity of the decision problem. Moreover, the resulting automata can be used for model-checking programs: in order to verify that a program satisfies a formula, one can show the emptiness of the language recognized by the synchronous product of the program (considered as a finite transition system) with the acceptor of the negation of the formula (used as a property checker). Now, for practical program verification, this classical approach should be revisited.

First, decision procedures are not always interesting, in practice. On one hand, their complexity is generally prohibitive, and on the other hand, exact verification is generally not achievable: programs are not finite state or are too complex, so they must be abstracted [START_REF] Graf | A tool for symbolic program verification and abstraction[END_REF][START_REF] Clarke | Model checking and abstraction[END_REF], and their verification is therefore only conservative (i.e., negative results are inconclusive). This means that there is no special reason to limit oneself to logics with finite state acceptors: if we have tools for exact or conservative verification of infinite state systems (e.g., [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], [START_REF] Jeannet | Dynamic partitioning in analyses of numerical properties[END_REF], . . .) they can be applied to the composition of infinite state programs with infinite state property checkers.

Moreover, usual methods translate formulas into explicit automata. While the size of these automata is generally not a problem -since simple formulas produce small automata -it can be useful to get them encoded as symbolic automata, i.e., transition relations or functions over state variables with initial values. On one hand, such a symbolic encoding is more convenient if symbolic model-checking techniques [CBM89,BCM + 90] are applied. On the other hand, the extension to infinite state automata is straightforward, just by considering infinite domains for the state variables. A typical example is provided by many versions of the duration calculus, where the formulas involving durations give rise to bounded counters in the acceptors; the possible values of these counters are enumerated in the explicit automata, while they could stay symbolic and be naturally extended to unbounded counters.

The main purpose of this paper is to illustrate the idea of recognizing models of formulas by symbolic automata, extending the expressive power by considering infinite state acceptors, and using the results for conservative verification by means of abstract interpretation [START_REF] Cousot | Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF]. We consider the "Quantified Discrete Duration Calculus" QDDC introduced by P. Pandya5 in [START_REF] Pandya | Specifying and deciding quantified discrete-time duration calculus formulae using dcvalid[END_REF][START_REF] Pandya | Interval duration logic: Expressiveness and decidability[END_REF][START_REF] Chakravarty | Digitizing interval duration logic[END_REF].

We restrict ourselves to safety properties, which are those that can be verified by examining (an upper-approximation of) the reachable states. We first notice that any formulas of QDDC cannot be recognized by a deterministic symbolic automaton with a finite number of counters. We solve this problem by using non-deterministic acceptors, considered as ∀-automata [START_REF] Manna | Specification and verification of concurrent programs by ∀-automata[END_REF], which can still be used by verification tools: the targeted verification tools proceed by showing that refusing states are not reachable. When the verification is only conservative, it is the only meaningful result we can obtain (since the verdict is inconclusive otherwise). As a consequence, a sequence is considered as accepted if it is accepted by all runs of the automaton on it (it is the acceptance criterion of ∀-automata). With this idea in mind, we identify a significant fragment of QDDC which can be easily translated into symbolic acceptors.

Non-deterministic acceptors are convenient for verification, but cannot be used in other contexts, like property simulation and program testing. This is why we examine also a more restricted fragment of the logic which can be recognized by deterministic acceptors.

The paper is organized as follows: in Section 2 we recall the syntax and semantics of QDDC. In Section 3 we define the symbolic acceptors we consider, which will be described in the language Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF], and we give (Section 4) the intuition of the translation we have in mind. Sections 5 and 6 describe respectively the non-deterministic fragment and the deterministic one, together with the translation into symbolic acceptors and some examples.

The logic QDDC

The "Quantified Discrete Duration Calculus" was proposed by P. Pandya in [START_REF] Pandya | Specifying and deciding quantified discrete-time duration calculus formulae using dcvalid[END_REF][START_REF] Pandya | Interval duration logic: Expressiveness and decidability[END_REF][START_REF] Chakravarty | Digitizing interval duration logic[END_REF]. Let use briefly recall its syntax and semantics:

Syntax:

Let Prop(p) be a finite set of propositional symbols. The set of propositional formulas is classically defined by

P ::= 0 | 1 | p | ¬P | P ∧ P | P ∨ P
Formulas of QDDC are inductively defined by:

D ::= P 0 | P | η op c | ΣP op c | D 1 ∧ D 2 | ¬D | ∃p D | D 1 D 2
where op ∈ {≤, <, =, >, ≥} and c ∈ IN.

Semantics:

Models of propositions are states, i.e., functions from propositional symbols to {true, false}. The meaning of propositions is standard. Models of formulas are finite sequences of states (σ = σ 0 σ 1 . . . σ n). The meaning of a formula is first defined on intervals of such sequences: an interval σ[b, e] = σ b σ b+1 . . .

(q) = σ i (q) σ[b, e] |= D 1 D 2 iff ∃i, b ≤ i ≤ e, σ[b, i] |= D 1 and σ[i, e] |= D 2
The semantics of D 1 ∧ D 2 and of ¬D is as usual. An interval satisfies P 0 if it is reduced to a state which satisfies P ; an interval satisfies P if all of its states (except the last one) satisfy P ; an interval satisfies η op c if its length η satisfies the relation op with c; an interval satisfies ΣP op c if the number of its states which satisfy P satisfies the specified relation; an interval σ[b, e] satisfies ∃p D if each of its states σ i can be changed into a state σ i which differs only in the value of p, in such a way that σ [b, e] satisfies D; finally, an interval satisfies D 1 D 2 if it can be split into two intervals (sharing a junction state) respectively satisfying D 1 and D 2 .

Finally, a finite sequence σ = σ 0 σ 1 . . . σ n satisfies a formula D (noted σ |= D) if and only if σ[0, n] |= D.

Derived operators:

As usual, some useful derived operators are proposed:

• Usual Boolean operators: true, false ∨, ⇒, ⇔,. . .

• P def ≡ P P 0 (right closure of the interval) • 3D def ≡ true D true (eventually D) • 2D def ≡ ¬3¬D (always D) • P 1 c → P 2 def ≡ ¬3 ((P 1 ∧ η ≥ c) [¬P 2] 0
) (whenever P 1 has been continuously true during c steps, P 2 is true). This logic was proven decidable in [START_REF] Pandya | Specifying and deciding quantified discrete-time duration calculus formulae using dcvalid[END_REF]. Here, since we don't bother about decidability, we can also consider an extended version of the logic by allowing:

• the constant c to be symbolic (parameter) in formulas like η op c, ΣP op c, P 1 c → P 2

• the propositions be extended by conditions on parameters (e.g., c 1 ≥ c 2).

Symbolic automata

Our goal is to define symbolic acceptors of formulas. Symbolic acceptors are special cases of symbolic automata, that we define precisely now. If V is a finite set of typed variables, let Val V be the set of valuations of variables in V , i.e., the set of functions from variables to their respective sets of values. Let S (state variables), I (input variables), and O (output variables) be three disjoint sets of variables.

A symbolic automaton on S +I +O is given by an initial state s init ∈ Val S , and two functions next : Val S × Val I → Val S (transition function) and out :

Val S × Val I → Val O (output function). A run of the automaton is a sequence (s 0 , i 0 , o 0), (s 1 , i 1 , o 1), . . . , (s n , i n , o n) of triples from Val S × Val I × Val O ,
such that s 0 = s init and for each , s +1 = next(s , i), and o = out(s , i). Notice that we consider deterministic automata, in the sense that a run is completely determined by the sequence of inputs i 0 , i 1 , . . . , i n .

To emphasize the fact that states as well as transition and output functions are given symbolically, we will describe these automata using the syntax of Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF]: Each output variable, say x, will be described by an equation "x = exp" where the expression "exp" is made of constants, input variables, usual arithmetic, Boolean, conditional operators, and references to previous values of variables (noted "pre(y)"). Since the previous value of a variable is undefined at the very first step (initial state), expressions can be given an initial value: "e0 -> e1" has initially the value of "e0", and then the value of "e1" forever. With respect to the model of symbolic automata defined above, previous variables are state variables and the first argument of each "->" operator contributes to the definition of the initial state. Here are some examples of definitions that we will use in the rest of the paper (other examples can be found in the appendix):

• Let us define an output after p which is true if p is true or has been true in the past:

after p = p or (false -> pre(after p))

• Now, we want the output nb q since p to be the number of times q has been true since the last time p was true:

nb q since p = if p then (if q then 1 else 0) else if after p then (pre(nb q since p)) + (if q then 1 else 0) else 0

We will often use functional versions of these programs, thus writing after(p) and nb since(q,p), in order to apply them to various arguments (this is allowed by the notion of node in Lustre). Now, a symbolic acceptor is a symbolic automaton with only one, Boolean, output variable, say a. In general, input variables are Boolean, and represent the values of atomic propositions. An acceptor of a formula D will be such that (i 0 , i 1 , . . . , i n) |= D if and only if the output sequence (a 0 , a 1 , . . . , a n) returned by the automaton in response to inputs (i 0 , i 1 , . . . , i n), is such that a n = true.

Recognizing models of formulas with symbolic acceptors

In this section, we illustrate the kind of translation we want to perform, and the way we intend to use it. With each formula we will associate an acceptor, taking as inputs the values of the atomic propositions, possibly the numerical parameters when the extended version of the logic is considered, and an additional Boolean input, say b, which is true at the beginning of the interval of interest. The output of the acceptor is true whenever the formula is satisfied by the interval elapsed since the last step when b was true (by convention, it is also true before the first occurrence of b). We first consider some examples of such translations. (ii) The formula D = p c → q states that q is true whenever p has been true during c steps. Intuitively, an acceptor of this formula should manage a counter (an integer state variable), say x, which is set to 0 when p is false, incremented whenever p is true, and reset when b is true (beginning of the interval). Then the output becomes false when the counter is greater or equal to c and q does not hold; it can only come back to true when a new interval starts: a = not after(b) or ((b or (true -> pre(a)) and (age p < c or q))); age p = if p then (if b then 1 else (0 -> pre(age p)+1)) else 0;

An important remark is that, in this automaton, the counter is an integer variable, and that the delay c can be symbolic. To expand it into an explicit automaton would require the value of c to be fixed and known, and the counter to be expanded into c explicit states. But if we use a verification tool dealing with numbers, the automaton can remain symbolic, and we can even try to prove properties parameterized by c. (iii) Now, consider the formula 2((η > c) ⇒ (Σp ≥ d)) stating that p occurs at least d times in any interval longer that c. We can use counters, like above, to measure the length of an interval and count the number of occurrences of p. The problem is that fresh counters should be created, at least after each occurrence of p (since one can easily see that each step after an occurrence of p can start a "worst case" interval for the formula), and these counters should be managed until the counter of p's occurrences reaches the value d. As a consequence, the standard approach would need d pairs of counters, and would not work if d is symbolic.

To solve this problem, for this kind of formulas, we will use non deterministic acceptors. Instead of using an unbounded number of counters, such an acceptor freely chooses to start an observation (in the specific case above, this choice could be restricted to the initial step and the steps after each occurrence of p, but this restriction is useless for verification). Now the semantics is that the formula is satisfied if the acceptor accepts the input whatever be its non deterministic choices (it can be seen as a ∀-automaton [MP87]). split into J + K, where variables in J are classical inputs, while those in K are additional Boolean inputs called "oracles". Now, an input sequence (j 0 , j 1 , . . . , j n) (j ∈ Val J) will be accepted if and only if, for any sequence (k 0 , k 1 , . . . , k n) (k ∈ Val K), the output sequence (a 0 , a 1 , . . . , a n) returned by the automaton in response to inputs ([j 0 , k 0], [j 1 , k], . . . , [j n , k n]), is such that a n = true.

Non deterministic acceptors

Coming back to the previous example, an acceptor of the formula 2((η > c) ⇒ (Σp ≥ d)) is given by the following code, where k is an oracle: Of course, in the finite state case, deterministic acceptors have the same expressive power as non deterministic ones, but if we want to keep them symbolic, non-deterministic automata cannot be determinized. As a consequence, while deterministic acceptors can easily be complemented (simply by negating their output), it is not the case of non-deterministic ones.

Use in verification

The verification tools we have in mind (e.g., those dedicated to Lustre programs: Lesar [START_REF] Ratel | Programming and verifying critical systems by means of the synchronous data-flow programming language Lustre[END_REF] or NBac [START_REF] Jeannet | Dynamic partitioning in analyses of numerical properties[END_REF]) are specialized for safety properties: they consider the synchronous composition of the program and the acceptor of the property (as in Fig. 1.a), and explore the reachable states set (or an upper approximation of this reachable set) of this composition to show that bad states cannot be reached. In other words, they try to show that, whatever be the inputs, the output is always true.

In this framework, non deterministic acceptors can easily be used: oracles are just additional free inputs (Fig. 1.b), and the verification tools will work as before as long as oracles are universally quantified.

Example: Let us consider the following QDDC formula, which is obviously a tautology:

p c → q ∧ d ≥ c ⇒ (p d → q)
A way of proving this property is to submit the following acceptor -where we use the acceptor of p c → q given in Section 4.1, and where the oracle b, represents the beginning of an interval of interest -to a verification tool (here, there is no program to verify), with the goal of showing that the output is always true: a1 = not after(b) or ((b or (true -> pre(a1)) and (age p < c or q))); a2 = not after(b) or ((b or (true -> pre(a2)) and (age p < d or q))); age p = if p then (if b then 1 else (0 -> pre(age p)+1)) else 0; a = not(a1 and d≥c) or a2;

As a matter of fact, both Lesar and NBac prove it quite instantly, in spite of the fact that the property is parameterized by c and d. (end of example)

A fragment recognizable by non-deterministic acceptors

In this section, we present a fragment of QDDC for which we can build non deterministic acceptors, and use these acceptors in program verification as shown in the previous section. A said before, oracles can only be universally quantified. Now, in QDDC, there are two constructs which would need existentially quantified oracles, namely ∃p D and D 1 D 2 . As a consequence, the fragment will be restricted to negations of formulas containing such constructs.

Syntax

The propositions are as before: As second class of formulas will give rise to existentially quantified oracles:

E ::= N | E 1 ∨ E 2 | E 1 ∧ E 2 | ∃p E | E 1 E 2
Finally, the properties are: C ::= ¬E

Translation into non-deterministic acceptors

Our goal is to associate with each formula C an acceptor A C , which will take as inputs I the sequences J of values of the propositional formulas, a Boolean b indicating the beginning of the interval of interest, and a set of oracles K.

The output is considered as a function a = A C (b, J , K). It is important to assume that the acceptor is triggered only once, since it is not reentrant. So the oracles used to start formulas will be transformed into starters: a starter is a Boolean which is true only once.

σ |= D, |σ| = n ⇔ ∀ K, A D (b, J , K) = true n
, where

• b = true.(f alse) n-1 , the flow being true only at the initial instant;

• J are the values imposed by σ to the variables of the set J .

Examples

Let us first consider the formula ¬(p q). From our rules, we get

• A p q (b, p, q, b) = A q (starter(b) ∧ A p (b, p, q), p, q, b) • A p (b, p, q) = strict after(b) and pre(always since(p,b))

• A q (b , p, q, b) = strict after(b") and pre(always since(q,b"))

(where b' is an oracle used to start the counters nb since. Finally, the whole example of "mine pump" given in [START_REF] Pandya | Specifying and deciding quantified discrete-time duration calculus formulae using dcvalid[END_REF] falls into our fragment, showing that this fragment is of practical interest.

A deterministic fragment

An recognized advantage of expressing safety properties by means of acceptors written in a programming language (like Lustre), is that these acceptors can be executed: they can be tested with various input sequences to check that they express well the initial intuition; they can also be run with the program, for testing or "runtime verification" [START_REF] Havelund | Synthesizing monitors for safety properties[END_REF] purposes. Now, this is not the case of our non-deterministic acceptors, which can only be used in connection with a verification tool. This is why it is also interesting to look for a fragment of the logic that be translated into deterministic acceptors. This is the purpose of this section.

First, we have to come back to the sources of non-determinism in QDDC. If we forget about the construct ∃pD (which is completely non deterministic), we are left with the "chop" construct, whose non-determinism comes from the arbitrary split of the considered interval. Now, in real specification, it appears that the "chop" is very often used deterministically: for instance in P Q 0 , the interval is split into itself and its last state. The basic idea of our deterministic fragment is to replace the "chop" by a deterministic restriction, called "then", where D 1 then D 2 means that the interval consists of a maximal interval satisfying D 1 followed by an interval satisfying D 2 . Now, the notion of maximal interval can only be handled for some kind of formulas for D 1 : we will restrict ourselves to formulas which can only change from true to false when the interval increases. We first define these formulas, noted G.

Syntax and semantics

Propositions P are as before.

The fragment G:

As announced, formulas G can only become false when the time passes:

G ::= begin(P) | P | η ≤ c | ΣP ≤ c | age(P) ≤ c | G 1 ∧ G 2 | G 1 ∨ G 2
The only new constructs are begin(P) -which tells that the first state of the interval satisfies P -and age(P) ≤ c -telling that P has been continuously true for less than c steps: The full fragment:

The formulas of our deterministic fragment are called F :

F ::= G | end (P) | G then F | F 1 ∧ F 2 | ¬F
The new operators are defined as follows:

σ[b, e] |= end (P) iff σ e |= P σ[b, e] |= G then F iff ∃m, b ≤ m < e, σ[b, m] |= G, σ[b, m + 1] |= G, σ[m + 1, e] |= F

Translation into deterministic acceptors

The acceptors A P of propositions are as before. For formulas G, we only define the acceptors for begin(P) and age(P) ≤ c, the other cases are as before:

A The acceptor of a formula F is inductively defined by the opposing table, where "first(b,p)" stands for "after(b) and p and pre(always since(not p, b))" and is true at the first occurrence of p following b.

F A F (b, I) end (P) after(b) and A P (I)

G then F A F (first(not A G (b, I), I)) F 1 ∧ F 2 A F 1 (b, I) and A F 2 (b, I) F 1 ∨ F 2 A F 1 (b, I) or A F 2 (b, I)
¬F not A F (b, I)

Examples

Let us show some examples of formulas using the "chop" operator, and which fall into the deterministic fragment:

• P Q 0 is equivalent to P ∧ end (Q)

• p c → q can be rewritten into 2((age(p) ≤ c)∨q), meaning that the formula is satisfied if and only the acceptor "age(p, true->false)≤c or q" always returns true.

Conclusion

This work does not intend to be a theoretical one. Of course, as soon as we consider automata extended with unbounded counters, the expressive power is maximal, and we can encode any kind of properties involving infinite memory. However, such an encoding is of little practical interest.

We wanted to connect the way synchronous programs are often specified by means of synchronous observers, with formalisms better known in the TCS community. This is why we chose to translate a logic belonging to a wide community (the duration calculus family [START_REF] Chaochen | A calculus of durations[END_REF]), or at least useful fragments of it, into our observers.

Our initial inspiration was [START_REF] Raymond | Recognizing regular expressions by means of dataflows networks[END_REF], which is a very efficient translation of rational expressions into Lustre acceptors. It appeared soon that the same technique cannot be applied to automata with counters: the linear cost of the translation performed in [START_REF] Raymond | Recognizing regular expressions by means of dataflows networks[END_REF] was obtained thanks to reentrant acceptors (the same component of the acceptor can be activated several times while running). This is not possible for extended automata. This is why the present work diverges significantly from [START_REF] Raymond | Recognizing regular expressions by means of dataflows networks[END_REF], particularly because we had to consider non-deterministic automata with oracles.

We wanted also to defend the idea that, in practice, there is no need to restrict oneself to decidable logics, nor to finite state acceptors. Abstraction and approximation are routinely used to deal with programs, and there is no reason not to apply them also to properties. In particular, automata extended with counters are extremely powerful and useful, and more and more techniques are proposed to handle them (e.g., [START_REF] Boigelot | Symbolic verification with periodic sets[END_REF], [START_REF] Comon | Multiple counters automata, safety analysis and presburger arithmetic[END_REF], [JHR99], [FS00], . . .).

 σ e is defined by a pair (b, e) of indices, such that 0 ≤ b ≤ e ≤ n: σ[b, e] |= P 0 iff b = e and σ b |= P σ[b, e] |= P iff b < e and ∀i, b ≤ i < e, σ i |= P σ[b, e] |= η op c iff (e -b) op c σ[b, e] |= ΣP op c iff Card {i | b ≤ i < e, σ i |= P } op c σ[b, e] |= ∃p D iff ∃σ , σ [b, e] |= D, and ∀i, ∀q = p, σ i

4. 1

 1 Some examples (i) Let us consider the formula p . The acceptor output must be true before the first occurrence of b, take the value of p whenever b is true, and remain true as long as p is true: a = not after(b) or (if b then p else (p and pre(a)))

Fig. 1 .

 1 Fig. 1. Using acceptors in program verification

 length = nb since(true, k); nb p = nb since(p, k); a = not after(b) or b or ((true -> pre(a)) and (length < c or nb p ≥ d));

 P ::= 0 | 1 | p | ¬P | P ∧ P | P ∨ P Then we need a first intermediate class of formulas, which can be complemented without raising translation problems: N ::= P 0 | P | η op c | ΣP op c | ¬N with op ∈ {≤, <, =, >, ≥} and c being an integer constant or a parameter.

 with b = starter(b) ∧ A p (b, p, q)) So (introducing "local variables" e and b" for clarity) we can translate the formula into a = not e; e = strict after(b") and pre(always since(q,b")); b"= starter(b') and strict after(b) and pre(always since(p,b)); As an other example, we have already considered the formula 2((η > c) ⇒ (Σp ≥ d)) motivating the introduction of non-deterministic acceptors. Translated into basic QDDC, this formula becomes ¬(true (η > c ∧ Σp < d) true) and falls into our fragment. Its translation (after simplification) gives a = not e; e = starter(b') and nb since(true,starter(b)) > c and nb since(p,starter(b)) < d;

 σ[b, e] |= begin(P) iff σ b |= P σ[b, e] |= age(P) ≤ c iff e -m ≤ c where m = max{i | b ≤ i ≤ e, σ i |= ¬P } if ¬P occurred in [b, e] b -1 otherwise

 begin(P) (b, I) = after(b and A P (I)) A age(P)≤c (b, I) = age(A P (I),b) ≤ c where age(p,b) stands for: age p b = if after(b) and p then (0 ->pre(age p b)) +1 else 0

see also www.tcs.tifr.res.in/~pandya/dcvalid.html.

Acknowledgements: We are indebted to Paritosh Pandya, for having initiated this work, and for many helpful discussions.

Propositions:

We first define (in the opposing table) the acceptors A P for propositions, which return true at step if the proposition is true at step .

P

A P (I) p p ¬P not A P (I) P 1 ∧ P 2 A P 1 (I) and A P 2 (I) P 1 ∨ P 2 A P 1 (I) or A P 2 (I)

We first introduce some useful operators (they are all given in the appendix):

• always since(P,Q) returns true if P has been always true since the last occurrence of Q;

• nb since(P,Q) returns the number of occurrences of P since the last occurrence of Q;

• strict after(P) returns true if P has been true in the strict past. Then the acceptor A N is defined inductively by the following table: Formulas E : Acceptors of formulas E distinguish between real inputs (J) and oracles (K).

Formulas C : Finally, the acceptor of a formula C = ¬E is just: not A E (b, J , K).

Top-level acceptance:

Recall that the satisfaction of a QDDC formula by a sequence σ = σ 0 σ 1 . . . σ n is defined by σ |= D iff σ[0, n] |= D So, the top-level acceptor of a formula C is A C (true -> false, J , K), since the "starter" true -> false is true only at the first step.

In [START_REF] Danthony-Gonnord | Du calcul des durées aux automates symboliques[END_REF], this translation is proven correct, i.e.:

Appendix: Usual temporal operators in Lustre