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Brecciation-related argon redistribution in alkali feldspars: 

an in naturo crushing study 

Nicolas O. Arnaud and Elizabeth A. Eide 

ABSTRACT 

Alkali feldspar thermochronologic modeling with the 40Ar/39Ar method has generated marked advances in 

knowledge of the mechanisms for argon diffusion in feldspars. While the goal in many cases has been to extrapolate the 

observed and modeled argon behavior in feldspars to natural geological settings, scientific debate surrounding the true 

feasibility of such extrapolations and indeed, the validity of thermochronologic modeling in itself, have provided much 

impetus to improve laboratory techniques to test, and increase basic understanding of, argon diffusion. Two 

cornerstones for the debate over the feasibility of alkali feldspar thermochronology for modeling natural, geologic 

processes have been: 1) Is volume diffusion the main mechanism for argon movement in feldspars?, and 2) If volume 

diffusion is a viable mechanism, does argon then reside in discrete ‘domains’ within the feldspar lattice? 

We describe a study of alkali feldspars from a profile through a well-controlled brittle fault zone in western 

Norway; the feldspars document argon loss during deformation and strongly suggest the existence of argon ‘domains’ 

within the feldspars, at least during laboratory step heating. The progressive change in the character of argon diffusion 

is recognizable in the logr/ro diffusion data from the feldspars and is mimicked by physical changes observed optically 

in the feldspars through progressive degrees of brittle deformation. Modeling results indicate a reduction in size of the 

biggest domains and the appearance of smaller domains during the strongest stages of deformation. Whether or not this 

reveals the existence and the transformation of the domain structure in naturo is difficult to prove from our data alone, 

but interestingly, this behaviour corresponds directly to the physical (optical) appearance of more intense crack 

networks and subgrains in progressively more brecciated feldspars. Because the thermochronologic histories derived 

from modeling the feldspar data conform very well to the known tectonic history of the area, the feldspars appear to 

have successfully retained physical (optical and isotopic) records of episodic tectonic processes operating from ductile 

through low-temperature brittle regimes in rocks with a Caledonian history overprinted by several later (younger) 

geologic events. However, because the 'cold' brecciation is the last tectonothermal event recorded by these rocks, it is 

impossible to truly test for the existence of diffusion domains in naturo. Argon loss appears to have been effective only 

in the most highly brecciated (deformed) samples where the combination of the connected crack network, increased 

fluid flow and higher temperatures enhanced diffusion via fast diffusion pathways and thus, volume diffusion from the 

lattice. Only minor argon loss occurred in zones of lower brittle strain, although some development of cracks and brittle 

features is evident. Independent of the existence of diffusion domains, this study highlights the possible pitfalls when 

cooling histories are deduced from brecciated feldspars in  which age and diffusion charateristics have been decoupled: 
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while the geochronological memory has survived and is identical to that of nonbrecciated feldspars (suggesting no loss 

and minor effects of deformation), the diffusion characteristics have been completely transposed by brecciation and the 

appearance of new domains. Modeling feldspars with these latter characteristics would effectively utilise a new feldspar 

diffusion structure with an 'old' (relict) age memory.. 
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INTRODUCTION 

While the potential of alkali feldspar to retain geochronological as well as thermal information has long been 

known and used (Albarède et al., 1978, Zeitler, 1987) based on the closure temperature principle (Dodson, 1973), only 

recently were feldspars also proposed to be especially efficient in retaining a continuous thermal record. The latter 

could be safely extracted through complex modeling based upon the concept of "multi domain theory" (later referred to 

as MDD). Numerous studies have been conducted both to address and challenge the real thermochronologic potential of 

feldspars. Following upon the early studies of Harrison and Lovera (e.g. Harrison et al., 1991; Lovera et al., 1989, 

1991), most work germaine to this issue has essentially focused on laboratory tests of the nature of diffusion in 

feldspars in vacuo, on the structural complexities of feldspars, and on the potential flaws and artefacts in the recovery of 

meaningful diffusion characteristics from this mineral (e.g. Harrison et al., 1993; Lovera et al., 1993, Parsons et al., 

1991; Villa, 1994; Arnaud and Kelley, 1997, Reddy et al., 1998, Parsons et al., 1999). At the same time, several 

significant geological applications have indicated that the recovery of temperature/time paths from feldspars can be 

geologically realistic, especially when the derived paths have corroborated other independent, temperature-time 

evidence from the associated field geology (Harrison 1990; Arnaud et al., 1993; Leloup et al., 1995). Implicit in these 

studies has been the presumption that 1-laboratory experiments are representative of the same diffusion processes that 

occurred in nature at the geologic times represented by the data, 2- that diffusion domains originated in nature and not 

during laboratory treatment and 3- that most domains originate in nature at temperatures in agreement with the record of 

the thermal history. In this regard, while the nature of diffusion and the existence of diffusion domains can be 

challenged and tested in the laboratory, similar sorts of tests can rarely be conducted in the natural environment. Thus, 

while the recovery of geologically meaningful thermal histories is by itself a significant step toward validating the 

extrapolation of laboratory experiments to the natural environment and providing field evidence of natural diffusion in 

feldspars, we still lack critical documentation of the existence and behaviour of the multidomain structure of feldspars 

from direct diffusion studies induced in nature, by real geological processes. 

The existence of domains controlling argon diffusion in feldspars was probably first suggested by Zeitler (1987) 

and subsequently re-enforced by Harrison, Lovera and co-workers. At the root of this theory is the assumption that 

argon loss is controlled essentially by lattice volume diffusion which takes the mathematical form RT
E
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(where Do is the frequency factor, r is the typical size of the diffusing cell, E is the activation energy, R is the rare gas 

constant, and T is the absolute temperature). The initial observation was that the diffusivities, D/r, of argon measured 

during in vacuo step heating of feldspars seemed to drop suddenly and systematically to lower values (thus slower 

diffusion) with increasing temperatures; normally, if only T dominates the diffusion process, the opposite relationship 

would be expected (i.e. faster diffusion at higher T). Key observations (Lovera et al., 1991, 1993) related to this 
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laboratory phenomenon were that the downward shift in D/r was reproducible, but that high diffusivities at low 

temperatures seemed to vanish when step heating was repeated on the same sample. Given that E and Do are 

theoretically intrinsic parameters of the crystal lattice, the logical explanation was that argon was extracted at low and 

high temperatures from different discrete domains which could be selectively emptied and which differed in size. The 

terminology "domain" was thus initially used to describe a mathematical explanation for decreasing diffusivities while 

temperature increased; this served to provide an explanation for the only variables not fixed a priori in the model ( "T" 

and "r").  At this point it seemed that the domains could, therefore, be viewed as real physical entities within feldspar 

grains. This assumption  was repeatedly tested in numerous ways (e.g. Fitzgerald and Harrison, 1993; Lovera et al., 

1993, Arnaud and Kelley, 1997) but, despite the variety of textural microstructures in feldspars represented in these 

studies, it proved difficult to match perfectly the range of sizes obtained through diffusion studies with real physical 

candidates in the feldspar structure. Moreover, this simple mathematical definition was later amended to imply the 

possibility that some domains might differ also in activation energy, thus implicitly divorcing the term "domain" from a 

clear physical meaning. In our own experience the use of multi-activation energy does not significantly enhance the 

modeling accuracy. moreover several studies suggest that indeed the appearing variation in activation energy could be 

largely due to artifact, such as multiple diffusion mechanisms (Lee, 1995) or unretentive low temperature domains 

never completely individualized during analysis (Lovera et al., 1997). We thus consider the original concept of doamins 

to remain largely valid. Moreover since we claim in this study to identify a size reduction effect of the domains during 

brecciation we will use this term implicitely assuming that it describes a zone of the lattice, of a specific size, limited by 

coherent boundaries allowing direct diffusion to the surface of the grain when argon has reached the border of that zone. 

Those domains should not be nested and the lattice characteristics will remain constant from one domain to another. 

In addressing the existence of feldspar domains, in vacuo crushing experiments have been highly valuable to 

demonstrate that crushing physically affects the domain structure in feldspars by reducing the size of the biggest 

domains, originally presumed to be about the same size as the individual grain (Lovera et al., 1993). This type of 

behaviour during laboratory crushing has precipitated two further questions: 1) Can natural crushing during, for 

example, brecciation, affect argon loss in feldspars in a similar way, and 2) Can examples of natural crushing reveal the 

indisputable existence of domains during the geological evolution of the feldspars? The influence of natural brecciation, 

and of deformation as a whole, on argon retention has been repeatedly questioned, but rarely has the evidence led to a 

clear conclusion (Tullis and Yund, 1991, 1996). This study addresses several of these unresolved issues by examining 

the domain structure and related age information retained by feldpars near a well-studied brecciation zone in western 

Norway. By modeling and comparing diffusion in feldspars remote from, and within, the brecciation zone, we derive a 

hypothesis about the effect of natural brecciation on the intimate argon diffusion-related structures in the feldspars and 
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propose some clarification of the kinetics and physical processes potentially involved in argon loss during brittle 

deformation. 

 

GEOLOGICAL BACKGROUND 

40Ar/39Ar thermochronologic data from reactivated portions of the Nordfjord-Sogn Detachment Zone (NSDZ, 

Fig. 1) and the Dalsfjord Fault (DF) in the Sunnfjord region of western Norway demonstrate punctuated, late Palaeozoic 

through Mesozoic tectonothermal activity in the area (Eide et al. 1997, 1999). 40Ar/39Ar ages from white mica, biotite 

and amphibole are consistent with maintenance of a low geothermal gradient associated with Caledonian (late Silurian-

early Devonian) collision and rapid removal of >60 km of crustal overburden by middle Devonian time (Andersen et 

al., 1998; Fossen and Dunlap, 1998; Dunlap and Fossen, 1998; Eide et al., 1999). The NSDZ developed in early 

Devonian time as a major extensional detachment along which high-pressure, Caledonized basement was eventually 

juxtaposed against overlying low-grade nappe sequences (Andersen and Jamtveit, 1990; Osmundsen et al., 1998). 

Diffusion and thermal modeling of K-feldspars sampled in a profile through the NSDZ has extended the knowledge of 

low-temperature (<300°C) activity along the NSDZ and reveals an Early Carboniferous (360 to 340 Ma) rapid cooling 

event (detailed later herein and in Eide et al., 1999), associated with an episode of rapid unroofing. Brittle reactivation 

of the initially ductile detachment zone is constrained to two episodes, one in latest Permian time (ca. 250-260 Ma) and 

another in latest Jurassic-early Cretaceous time (135-160 Ma). These brittle reactivation events correspond directly to 

the well-documented periods of rift-related, sedimentary basin-forming activity in the North Sea (e.g. Færseth 1996) 

and to extension-related dyke emplacement elsewhere in western Norway (Færseth et al., 1976; Torsvik et al. 1997). 

The brittle fault which is the focus of our study retains a well-developed green fault breccia previously dated to 

correspond to the latest Permian episode of regional extension (Torsvik et al., 1992; Eide et al., 1997) (Fig.1). Field 

relationships and documentation of the ages of these young, brittle faulting events are detailed in Brekke and Solberg 

(1987) Torsvik et al. (1992) and Eide et al. (1997). 

The previous work on feldspars sampled in a profile through the NSDZ demonstrated very consistent argon 

release patterns and modeled cooling histories (Eide et al. 1999). The domains modeled for the feldspars correspond to 

distinct changes in late Palaeozoic cooling rates: 1) slow cooling at 0.5-2.2°C/m.y. from ca. 380 to 360 Ma; 2) rapid 

cooling at (>15°C/m.y. in Early Carboniferous time,360-340 Ma); 3) slow cooling at 0.4-1.7°C/m.y. after c. 340 Ma, 

with partial Ar-loss in Permian and late Jurassic-early Cretaceous times. The older episode of slow cooling followed 

upon exhumation of the basement + nappes immediately after collision (feldspars exhibit high-temperature plateaus at 

ca. 384-419 Ma, in concert with other age and tectonostratigraphic data). The Early Carboniferous rapid cooling event 

recorded by the feldspars links the western Norway margin to contemporaneous unconformities, regional extension, 
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basin inversion and igneous activity previously identified around the proto-North Atlantic perimeter; in western 

Norway, this Early Carboniferous event is linked to an episode of rapid unroofing (Eide et al., 1999). The second, 

younger period of slow cooling modeled in the feldspars shows evidence for disruption by brittle reactivation events, 

outlined above and herein, in latest Palaeozoic and Mesozoic times. 

The geochronological information previously recovered from these breccias is in agreement with all available 

geological information both on- and offshore; thus we proceed with confidence upon the assumption that the retention 

of the geochronological information in the feldspars within the breccia was dominated by microstructural processes in 

synergy with macro-structural developments. In turn, this implies that deformation on the rock scale should be 

associated with significant and reproducible intra-crystalline processes that had bearing on argon loss. 

 

SAMPLE DESCRIPTIONS 

The fault-breccia zone in western Norway comprises a green network breccia and a cross-cutting red breccia. 

The latter is a 15 to 35 cm-thick package, with orientation 210/10W and separates 'hanging-wall' from 'footwall' green 

network breccias (Brekke and Solberg, 1987; Torsvik et al., 1992). The hanging-wall green breccia reworked rocks of 

the Dalsfjord mangerite suite (Fig.1). Macroscopically, the green breccia is a relatively confined zone ca. 5 m thick; 

however, we note (see also below) that the total zone of rock mass affected by brecciation (as evidenced 

microscopically) is broader. 

The Dalsfjord ‘mangerite suite’ comprises deep-seated plutonic rocks ranging from mangerite through gabbro to 

syenite (Kolderup 1921; Brekke and Solberg 1987). Dating the time of intrusion of these rocks has proven difficult, but 

Early Proterozoic ages are probable. The mangerite resides within a nappe package that underwent low-greenschist 

facies metamorphism during its eastward obduction onto the margin of Baltica between 445 and 450 Ma (Andersen et 

al. 1998), prior to Caledonian continental collision. 

In order to test for potential variations in the domain structure of brecciated feldspars, we analysed three K-

feldspars from the mangerite suite from sites at selected distances from the main fault breccia. Samples were taken: 1) 

ca. 4 km (map distance) from the brittle fault/brecciation zone (95AS1, subsequently called the 'unbrecciated' sample), 

2) ca. 100 m from the brittle fault (95AS3, 'slightly brecciated'), and 3) within the breccia itself (95AS4B, 'brecciated') 

(see Fig.1). The structural (vertical) distance from the fault breccia represented by the slightly brecciated sample is 

about 20 m. We estimate the structural distance between the fault breccia and the unbrecciated sample to be more than 

200 m. The textures of the rocks and their feldspars show a clear inverse relationship between degree of brittle 

deformation and distance from the fault breccia. Table 1 contains chemical compositions of feldspars discussed below.  
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Our unbrecciated sample (95AS1) has a primary assemblage of coarse-grained perthitic microcline, plagioclase, 

quartz, titanite, relict pyroxene replaced by chlorite, Fe-Ti oxides, and accessory garnet; a secondary, greenschist facies 

assemblage with chlorite, white mica, minor biotite, epidote, titanite, calcite and apatite occurs in small patches. The 

interiors of alkali feldspar (Or96-98Ab2-4) contain albite lamellae (Or1-3Ab97-99) or more rarely, coarser, albite blebs; rims 

of alkali feldspars are free of lamellae and inclusions and may be slightly more Na-rich (Or95Ab5) (Table 1). The matrix 

plagioclase porphyroblasts (Ab98-99Ab0-1) are clouded by fine-grained white micas. While the subhedral 

quartzofeldspathic minerals form a generally coarse, interlocking texture, inspection of fine-scale features reveals some 

irregular to serrated grain boundaries, minor undulatory extinction, minor subgrain development at alkali feldspar rims, 

strained twins in plagioclase, and polygonal quartz rinds around some alkali-feldspar porphyroblasts (Fig. 2a). The rock 

texture and secondary mineral assemblage are most likely related to the low-temperature greenschist metamorphism and 

mild deformation associated with eastward emplacement/obduction of the entire nappe package in Ordovician times, 

although earlier deformation/metamorphism (between Precambrian and late Ordovician) is also possible. This grain-

scale plastic deformation was obviously only partially recovered. Very weak evidence of brittle deformation is observed 

in the form of scattered microcracks in feldspar porphyroblasts.  

The slightly brecciated sample (95AS2) is similar mineralogically to the unbrecciated sample but retains 

evidence both for ductile (early) and brittle (late) grain-scale deformation. Generally, microperthitic alkali feldspar is 

somewhat turbid and plagioclase porphyroblasts are nearly occluded by fine-grained white mica inclusions. The 

greenschist facies assemblage is more extensively developed in this sample: clusters of epidote grains and chlorite 

patches are scattered throughout the section and dark stringers and brittle fractures contain an assemblage of oxides + 

titanite + epidote. Alkali feldspars (Or98Ab2) contain deformed albite lamellae and again, rare, coarse, subrounded 

albitic blebs (Table 1). Grain boundaries of quartz and feldspar porphyroblasts are serrated and subgrain growth is both 

more developed and irregularly distributed at grain boundaries as well as in the interiors of grains compared to the 

unbrecciated sample. Undulatory extinction is common in both quartz and alkali feldspars and is not affected by 

subgrain limits. Brittle deformation is manifested in the alkali feldspars as fractures/cracks that crosscut individual 

porphyroblasts and/or that visibly offset portions of single grains (with albite lamellae serving as offset markers); stair-

step fractures are also evident (Fig. 2b). In selected instances, albite lamellae that have been intersected by cracks 

appear to curve into the plane of the crack, indicating some degree of plastic flow or recovery during deformation. 

Some of the throughgoing cracks and fractures link directly to veinlets of greenschist facies material on the rims 

of feldspar porphyroblasts and indicate contemporaneous fluid activity during brittle fracturing. Scattered patches of 

cataclastic material vary from angular fragments to milled, rounded grains of feldspar + quartz whose sizes range from 

recognizable minerals down to sub-microscopic, isotropic crush material. These cataclastic patches are typically 

bounded by thin strings of greenschist facies minerals and we observe partial orientation of the long axes of larger 
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feldspar fragments along these strings. The rock texture and secondary mineral assemblage represent a combination of 

ductile deformation/low-temperature metamorphism during Caledonian or earlier processes (witness the sample’s 

proximity to the extensional, Devonian NSDZ), and partially recovered brittle deformation affected during the Permian 

and latest Jurassic brecciation episodes (see Fig.  1).  

In the brecciated sample (95AS4B), angular alkali feldspar clasts are surrounded by anastomosing veinlets 

comprising fine, feldspar fragments, chlorite, epidote, titanite, magnetite and fine-grained, layer silicates. The angular 

feldspars themselves are composed almost exclusively of weakly visible, large, sub-grains with preserved perthitic 

feldspar cores containing deformed or ‘wormy’ albite lamellae. In some relict grains, the typical ‘crosshatch’ twinning 

of the microclines appears skewed.  

Cataclasis and autocataclasis produced dramatic grain-size reduction in this rock, compared to the other two 

samples. Cataclasis was localised initially along grain boundaries between quartzofeldspathic minerals; the cataclastic 

activity facilitated propagation of fractures through weakened grains which subsequently induced a significant amount 

of autocataclasis (Fig.  2c, 2d). Occurrence of new, replacement minerals like quartz and albite on and in the alkali 

feldspars is evident, especially near areas of pronounced grain reduction. Finer-grained, disaggregated feldspar 

fragments float in the greenschist-facies ‘matrix’; importantly, fine-grained magnetite, dated palaeomagnetically to late 

Permian in this green breccia (Torsvik et al., 1992) has crystallised in this matrix, in veinlets and in the cataclastic 

zones, attesting to both the timing (Late Permian) and temperature (<250°C) of breccia formation. 

The basic grain-scale evolution of brittle deformation in these rocks from ‘unbrecciated’ through to the breccia 

sensu stricto, is one where minor fracturing is progressively replaced by micro-crushing. While the exact slip systems 

producing the observed features in these grains cannot be positively addressed without TEM analysis, the rocks closer 

to the brittle fault have probably been influenced by both microcracking and dislocation creep. Although the latter is 

usually affected only at higher temperatures (amphibolite facies or more), the presence of water, as evidenced from the 

contemporary low-greenschist facies mineral assemblage in the brittley deformed rocks, may have facilitated the 

transition between these two grain-scale mechanisms. The partial strain recovery exhibited by both the brecciated and 

the partially brecciated samples was almost certainly aided by the presence of low-temperature fluids throughout the 

fracture process (see also Tullis and Yund, 1996). 

 

ARGON LOSS FROM THE SAMPLES 

Analytical procedures 

Whole rocks were crushed, sieved and washed; individual grains of feldspar were hand-picked for analysis after 

examination under binocular microscope. The whole analytical treatment is described in Eide et al. (1999). Bulk 
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mineral separates were irradiated in a single irradiation, at the Siloée reactor of Centre d'Etude Atomique in Grenoble 

France. The J-factor value of 0.006764 (with 1% relative standard deviation) was estimated by the use of duplicates of 

the Caplongue amphibole standard with an age of 344.5 Ma (Maluski and Schaeffer, 1982). Interfering nuclear 

reactions on K and Ca were calculated by co-irradiation of pure salts but their effect is negligible owing to the K-rich 

chemistry of the analyzed feldspars. Samples were loaded in aluminium packets into a double vacuum furnace with 

furnace temperature calibration by means of a thermocouple fitted at the base of an Mo crucible.  Samples were then 

cyclically heated from 400 or 450°C to 1400°C (see Lovera et al., 1997 and Fig.  3). The initial steps between 400°C 

and 650°C are duplicated in order to identify more clearly the presence of excess argon that might be hosted in fluid 

inclusions or low retentivity sites (Harrison et al., 1994), while steps between 700 and 800°C are cycled in order to 

extract the most potentially useful information about argon diffusion (Lovera et al. 1989, 1991). Heating schedules for 

each sample are detailed in Table 2. 

Individual gas steps were purified by means of a cold trap with liquid air and SAES ™ Al-Zr getters. Once 

cleaned, the gas was introduced into a VG3600 mass spectrometer, with 2 minutes for gas equilibration prior to analysis 

in static mode. Signals were measured by means of a Faraday cup with a resistor of 1011 ohm for 40Ar and 39Ar, while 

38Ar, 37Ar and 36Ar were analysed with a photomultiplier after interaction on a Daly plate. Gain between both collectors 

was estimated by duplicate analysis of 39Ar on both during each analysis, and also by statistical calibration done over a 

period of several years. During the course of analysis, the gain values average 92.5 and are known at better than 1.5%. 

This error is included in the age calculation, along with analytical errors on each signal and errors on the blank values. 

Variations in Cl/K ratios through the degassing process are monitored through neutron induced 38Ar/39Ar isotope ratios 

where 38Ar is derived from Cl. The connection between those ratios is semi-qualitative as no multiplicative factor was 

calculated between the isotope and the elemental ratios. Detailed analytical results are available from the authors upon 

request. Modeling of the argon data applied the algorithm and theories developed by Lovera et al. (1989, 1991) and led 

to kinetic parameters of argon loss and the cooling histories (see Eide et al., 1999). In the following, we use the word 

"domains" to describe the reservoirs from which argon was lost, as well as to reference their relative sizes which, in 

turn, describe their varying abilities to lose argon. Although this constitutes a first-order description that does not relate 

at first sight to physical objects in the lattice, our conclusions shed light on the physical existence and nature of these 

entities. 

 

Results and argon loss modeling 

In each of the three samples, the first striking features are the age spectra which exhibit strong age gradients. 

Otherwise, the K/Ca ratios in all of the samples are extremely high and in fact, very low Ca-derived 37Ar values 
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precluded the calculation of meaningful ratios. On the contrary, some Cl is present in the samples as demonstrated by 

the 38Ar contents (described below). 

In the unbrecciated sample, ages climb from 100 Ma to an initial, semi-plateau at ca. 300 Ma, before abruptly 

climbing to a final plateau at ca. 390 Ma in the highest temperature steps (Fig. 3a). The shape of the spectrum is most 

probably associated with the diffusion domain structure of the sample, together with a complex thermal history. Some 

Cl in the sample is evident in the degassing signatures at very low temperatures; this Cl-content then rapidly decreases 

(to very low 38Ar/39Ar ratios), suggesting that Cl is only present in fluid inclusions that explode below 600°C. For the 

modeling, a unique activation energy (E) was used, in accordance with the statistical study of Lovera et al. (1997). The 

logr/ro plot for this sample is successfully modeled with 5 domains with E of 46.6 kcal/mol (Fig. 4a); the latter value 

agrees with most estimates for activation energies for argon loss in alkali feldspars. The domain sizes and gas content 

distributions show that argon loss in the sample was dominated by two "large" domains containing more than 90% of 

the total gas. The two large domains correspond essentially to the single large (high temperature) domain modeled in 

these feldspars in the study by Eide et al. (1999). 

To appreciate the relative sizes of the domains, the maximum in the logr/ro plot is useful since it is, by definition 

(Lovera et al., 1989), a direct representation of the difference between the largest and smallest domains sizes. In the 

unbrecciated sample, the maximum logr/ro value is 1.84, notably also fairly typical for feldspars from crystalline 

basement rocks (Lovera et al., 1997). This sample is representative of the shape and derived cooling history obtained 

from all of the undeformed feldspars previously analysed and modeled in the Sunnfjord area (see above and Eide et al., 

1999).  

The slightly brecciated sample (95AS3), physically closer to the fault breccia, yields an age spectrum pattern 

very similar to the unbrecciated sample: the steps rise from ca 100 Ma up to an initial, semi-plateau at 300 Ma, before 

reaching a final plateau at ca. 390 Ma. Again, some Cl is apparently degassed at low temperatures, while the K/Ca 

ratios remain high throughout the experiment (Fig. 3b). Although five classes of domain sizes with a constant E of 46.6 

kcal/mol, indistinguishable within error from parameters obtained from the undeformed sample, are sufficient to model 

diffusion in this sample, the details of the modeled diffusion behaviour in the slightly brecciated sample elucidate a 

slightly different domain distribution compared to the unbrecciated feldspar. On the logr/ro plot, this is evident first, 

through the maximum logr/ro value of 2 (slightly higher than that of the unbrecciated sample) (Fig. 4b), and second, via 

the subtle variation in the slope of the logr/ro graph between 0 and 30% of the degassed 39Ar (the slope is shallower than 

that in the unbrecciated sample; compare Figures 4a and b where the "plateau" at 1.2 ± 0.1 is obtained at ca. 17% for the 

undeformed sample and after 24% for the slightly brecciated one). These two differences in the logr/ro behavior are 

indicative of an increase in minimum versus maximum domain sizes, as well as of the total amount of gas released by 
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the "smallest" domains: up to 22% of 39Ar is now apparently contained in small domains in this slightly deformed 

sample, compared to less than 10% of 39Ar in “small” domains in the unbrecciated case. 

In the brecciated sample, we observe a dramatic re-enforcement of the behavior outlined above, in addition to 

some new features. The age spectrum has a very different shape compared to both of the other samples: the steps rise 

slowly from almost 0 age to a very irregular, semi-plateau around 300-350 Ma and at the end of the experiment, the 

highest temperature steps exhibit a distinct and rapid decrease in apparent ages (down to ca 150 Ma). The amount of Cl 

degassed at low temperatures is higher than that observed in the other two samples and, probably more importantly, 

some Cl is also released in the higher temperature steps, corresponding to the age maxima in the spectrum. This 

behaviour implies Cl in two different reservoirs in this sample (Fig. 3c), as was also proposed by detailed studies of the 

location of excess argon (Harrison et al., 1994; Foster et al., 1990). It is noteworthy that for the same temperature steps, 

no correspondingly significant change is observed in the K/Ca ratios of the sample. For diffusion modeling, at least 8 

domains with constant E of 44.8 kcal/mol replicate the logr/ro plot adequately. While this number of domains used in 

the modeling is the highest amongst the three samples, the activation energy for this sample is identical within statistical 

and numerical errors of those obtained from the other two samples. Upon closer examination of the logr/ro plot for the 

brecciated sample, we see a much shallower slope of the line through the initial set of data compared the other two 

samples. The logr/ro value then increases very slightly over the course of the experiment to a maximum value of 2.5 

after more than 85% of the 39Ar has been lost; this value is clearly the highest of the three samples studied (Fig. 4c). In 

terms of domain sizes, the larger number of domains and their behaviour in the brecciated samples as represented by the 

logr/ro diagram indicate domains with size contrasts greater than those found in the previous two, less deformed 

samples; in this case, the first 7 of the 8 domains contain 86% of all 39Ar liberated during the experiment and also have 

the 'smallest' sizes (compare to Figures 4a and b). We note that the inverse isochron plot for the brecciated sample also 

exhibits the highest amount of air contamination of the three samples studied. Introduction of air is most simply 

explained by atmospheric pollution on newly created crystal surfaces at the earth surface or during sample preparation 

as discussed below. 

 

EVOLUTION OF BRECCIATION AND ARGON LOSS 

A broad assessment of the data and the modeled results indicates a clear relation within and between each 

sample in terms of: 1) their chronologic memories, 2) the kinetics and magnitude of argon loss and 3) their degrees of 

brecciation. Utilising the undeformed sample as a baseline, progressive breccia-related deformation (from the 

undeformed to the slightly deformed samples) is manifested by an increase in the amount of gas released from the 

smallest domains in the feldspars. However, comparison between the maximum values in the logr/ro plots of the 
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undeformed versus the slightly deformed sample does not reveal a significant increase in gas released from one sample 

compared to the other over the same experimental ranges.  We note that MDD modeling does not allow us to 

distinguish the real size ranges, but rather just the ratios between biggest and smallest domains. From this discussion, 

one could argue that the true size of the biggest and smallest domain has changed from the undeformed to the slightly 

deformed sample. However, we suggest instead that, since feldspars are chemically identical along section and belong 

to the same host rock, the simplest explanation is that the overall intersample size differences between small and large 

domains have not changed (increased) significantly as a result of mild brecciation. Rather,initial brecciation (passing 

from undeformed to slightly deformed feldspars)  brought about a situation whereby more lattice sites containing argon  

were included in small domains. This explanation would facilitate the apparent increase in gas release from the smallest 

domains without requiring that the true size of the domains has changed between the two samples.  Put simply, the data 

indicate  that the volume of the grain enclosed in small domains and/or the number of small domains have increased 

with mild brecciation. While  the migration of argon from bigger to smaller domains would affect a similar behaviour, 

we findsuch an explanation to be thermodynamically improbable. Since large amounts of argon were not lost from the 

sample (compare, for example, their release spectra in Fig. 3), argon diffusion out of the feldspar was probably 

restricted. Any minor argon diffusion out of the slightly brecciated feldspar, when compared to feldspars physically 

farther from the brittle fault, is associated with local fracturing of the feldspar grains and transport of weakly bound Ar 

away from the feldspars by intergranular fluids (Eide et al. 1999).  

The progression of the effects of brecciation is evident when we incorporate the most deformed sample in the 

comparison; this sample reveals a strikingly larger volume of 39Ar gas released from small domains than that released in 

the other two samples. Moreover, the logr/ro maximum in the brecciated sample shows that the ratio of size from 

biggest to smallest domains has increased during brecciation. Again, we have no direct measure of domain sizes and 

both the size of smallest and biggest domains may have changed. However, although an increase in domain size of the 

biggest domains during brecciation is theoretically possible, a decrease in size as a result of mechanical grinding is, of 

course, a more logical outcome. At this stage it is difficult to say whether only the smallest domains were reduced in 

size or if both biggest and smallest domains were ground to finer dimensions; if the latter is correct, the smallest 

domains in the brecciated sample would, by  implication, have even smaller dimensions than those in the slightly 

brecciated sample since the logr/ro shows an increase. Argon loss has clearly been enhanced in this sample, but it does 

not appear that the 'lost' argon was simply redistributed within the grains since every part of the age spectrum has a 

lower apparent age than comparable parts of the spectra from the other two samples. Similarly, whole rock, step-heating 

analysis of the green breccia (host rock of the brecciated feldspar) likewise does not show excess argon (see Eide et al., 

1997), thus implying that argon was lost wholescale from the rock system itself and not only from the feldspar grains. 

This fairly pervasive 'flushing' of argon from the system is most readily related to enhanced fluid flux during formation 
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of the green breccia; greater fluid flux has previously been documented by crystallisation of hydrous, low-grade 

metamorphic minerals, by development of fluid-related chemical remanent magnetic signature (ChRM) (Torsvik et al., 

1992; Eide et al., 1997) and also by the higher Cl content exhibited by this sample, even within the 'deeper' (higher 

temperature) parts of the grain. The end of the age spectrum for the brecciated sample also shows marked argon loss 

which at this time we find difficult to explain either kinetically or physically. 

 

PHYSICS OF DEFORMATION, ARGON LOSS AND DOMAINS  
 We emphasize the fact that domain analyses have been conducted, as is usually the case, solely on the loss of 

39Ar in laboratory. Thus, the question remains: what is the relation, if any,  between the "domain" structure identified in 

the laboratory and the actual behavior of the sample in nature? This has obvious consequences on the assessment of the 

existence and behaviour of domains in nature. Existence and potential use of domains have been particularly challenged 

in the recent work of Parsons et al. (1999) and, following their thoughtful analysis our own work, can help to bring 

elements of answers to the following questions: 

 

 Did domains exist prior to treatment in the laboratory ? 

 To answer this question, we would have to test the idea that thepeculiar degasing we observe was a direct 

product of  the separation, crushing, sieving, irradiation and step heating of the samples.  A simple experiment would be 

to compare the thermal history of undeformed and deformed samples subsequent to brecciation to see if the age record 

(thus a direct measure of 40Ar kinetics) agrees with the behaviour obtained from the loss of 39Ar. An agreement would 

be a strong incentive to propose that what we see as a result of laboratory experiment and modeling did exist in nature, 

prior to laboratory analysis. Unfortunately, our samples did not record any meaningful cooling information after 

brecciation since this last event occurred around 250°C and ended well below K-feldspar closure temperature. 

Geological targets that fulfill all requirements to perform this test (e.g. homogeneous petrography in undeformed and 

deformed rocks, low temperature brittle deformation, significant thermal history after brecciation) are difficult to find. 

We note the urgent need for such studies. The inability to carry out this sort of test leads us to acknowledge fully that all 

39Ar loss in our samples could be due to complex structural changes in the samples during laboratory treatment. 

Nonetheless, the fact that all undeformed feldspars share very common diffusion behavior (Eide et al., 1999), while 

slightly to highly deformed onesshow altered diffusional characteristics suggest strongly that the laboratory revelations 

have some basis in real structures acquired in nature. Moreover, argon loss in nature, as evidenced by the age variations, 

is qualitatively comparable to the alteration of the 39Ar loss. 

 

 Were some domains created during brecciation ? 
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 Many lines of research have been devoted to the description of textural changes during feldspar cooling. The 

complexity of sub-solidus changes has been especially emphasised as proof that these textural changes occurred below 

the temperatures claimed to be recovered by MDD. In our case, domain modification clearly happened below the 

average closure temperature for argon loss in K-feldspars. Moreover, if laboratory artefacts are discarded, we can 

conclude that the peculiar diffusion behavior developed because of brecciation--either because brecciation dictated the 

development of  post-deformation  diffusion structures, or because brecciation created new domains. These samples 

exhibit a remarkable coincidence between structural and textural evolution as observed microscopically and via argon 

diffusion. Clearly in these experiments, the domains in the deformed samples are intuitively associated with subgrain 

structures of which some are petrographically visible. Indeed, subgrains develop during deformation by the 

development of physical breaks of the lattice; these breaks can be caused by defect migration that in turn, leads to 

evolution of undeformed pieces of lattice surrounded by coherent boundaries. Such isolated structures will behave as 

completely independent grains, sharing all the diffusion characteristics suggested for diffusion domains by Harrison, 

Lovera and co-workers: the small grains or domains are not nested, they have a typical size distribution, and diffusion in 

each of those domains is volumetric. This is an extreme case in which the existence of domains is not an intrinsic 

characteristic of the original feldspars but rather is an effect of deformation. 

 

 Did domains exist prior to brecciation ? 

One can also infer the existence of domains with the above characteritics prior to deformation: the most 

retentive and thus “largest” structures identified in the unbrecciated sample seem to decrease in size during brecciation. 

They are in this way physical entities that we define as volumetric areas limited by coherent boundaries; probably, these 

‘entitites’ are the grains themselves. We find no other plausible definition of these data that would allow the domains to 

be partitioned during brecciation. The physical existence of the smallest domains is more difficult to prove but they 

apparently can also be affected by grain size reduction, and therefore must exist physically in the lattice. The fact that 

the slightly brecciated sample shows more small domains of roughly the same sizes as the smallest domains from the 

unbrecciated sample is more puzzling, since there is no logical reason for which newly formed domain-like subgrains 

would have the same size as inherited intrinsic domains in the feldspars. We can offer only that perhaps the size 

distribution of intrinsic domain structures in feldspars and developing subgrains at the lattice scale are promoted for 

certain typical sizes. 

 

A plausible scenario 

If we attempt to relate the argon diffusion and domain evolution with the physical process of brecciation, a 

simple model of crack propagation would satisfactorily explain the observed behaviour. We propose a model where, 
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during the early stage of brecciation, crack propagation in the feldspars tended to cut randomly through the grains, 

individualizing new domains of intermediate, smaller, effective diffusion length (Fig. 5). Note that we utilise the 

partially brecciated sample here as a proxy for ‘early’ brecciation. Because temperatures were fairly low, brecciation 

itself did not significantly enhance diffusion, and the appearance of smaller domains in themselves did not translate into 

enormous argon loss; likewise, fluids in the ‘early’ brecciation phase were volumetrically small and did not enhance 

strain-related crack propagation or facilitate wholescale argon flushing. When we proceed in the laboratory to the 

completely brecciated sample, the grains behave as if composed of a higher density of smaller domains, which we 

interpret to represent in nature a very effective period of crack propagation during the peak stage of brecciation; this 

pervasive crack propagation would actively reduce the size of any pre-existing domains and individualize some of these 

domains to sizes even smaller than those in the lesser deformed samples. This would also induce a net increase in the 

surface over volume ratio of the grains and thus explain the highest atmospheric contamination in the brecciated grains 

simply by  a higher adsorbed quantity of atmospheric argon, most probably during sample stay at the earth's surface. 

Argon loss would be enhanced at this advanced stage because of increased temperature, because of enhanced 

deformation within the locus of brecciation and/or because of increased fluid flow. At the same time that domain size 

reduction was enacted, argon also diffused globally out of all the domains (both 'original' and new domains). Some 

argon certainly diffused out of the grain via ‘lattice volume-diffusion’, but it is likely that most of argon loss was 

produced via volume diffusion first from the feldspar lattice to the new, neighbouring cracks, and then to the mineral 

surface, with the cracks acting as fast diffusion pathways. If the new, small domains were nested inside surviving 

(relict) big domains, we would not expect to ‘see’ them with this type of analysis (they would be effectively masked by 

the larger domains); that the small domains appear at all implies that they exist as entitites bound instead by fast 

diffusion pathways. Existence of fast diffusion pathways may also explain why the memory of the "biggest" domains, 

usually equated with 'greatest retentivity' at highest temperatures, seems to be selectively and categorically erased 

(witness the complete loss of the ca 390 Ma, Caledonian plateau), while the intermediate domains seem to retain their 

ages (ca. 300 Ma). Although the true physical manifestation of this behaviour remains speculative, one straightforward 

possibility is that the biggest domains, if indeed they exist as spatial entities, are simply more likely to be intersected by 

any cracks generated in the grain. Because argon diffusion will be essentially controlled by rapid diffusion along these 

cracks, the big domains would lose their argon more rapidly and at an earlier stage than would the intermediate- or 

small-sized domains (Fig. 5). Interestingly, a high Cl content is associated with the age maxima of the spectrum for the 

brecciated sample, suggesting that loss by rapid diffusion along the crack network was enhanced by fluid flow. This Cl 

content is the highest recorded among the variably brecciated samples and it is interpreted as reflecting a stong fluid 

circulation along the cracks during brecciation climax. 

15 



Feldspar brecciation, Arnaud and Eide 

We freely note the difficulty in explaining the zero (0 Ma) ages at the beginning of the spectrum in the 

brecciated sample, as well as the decrease of the ages at the end of the spectrum. Null ages at the beginning of 

degassing have already been outlined in gem-quality feldspars (Arnaud and Kelley, 1997) and attributed to the opening 

of fractures intersecting the surface of the grain, probably during laboratory sample preparation (crushing). These 

fractures should contain argon lost from the lattice, not all of which was liberated from the grain, due to the fact that 

some of the fractures never intersected the grain surface until laboratory crushing. In our in naturo crushing sample, 

wholescale argon loss has nonetheless occurred from the bulk of the grain (and the rock) as shown by the low age 

maxima in the spectrum and the whole rock analysis of the breccia (Eide et al. 1997). In our example, it is conceivable 

that not all of the cracks were connected to the grain surfaces and thus accumulated argon that was subsequently 

liberated during sample preparation. One or both of these processes would lead to spurious 0 ages. Any explanation for 

the precipitous drop in ages at the high-temperature end of the spectrum only by means of domain size redistribution 

must somehow incorporate complete diffusion of the argon out of the high-temperature domains and subsequent 

redistribution of this argon partially into newer, smaller domains, which implies a very complex diffusion picture inside 

those grains. Alternatively, the drop in K/Ca ages at the end of the spectrum could evidence mixing between feldspar 

phases of different age but similar retentivities. New albitic feldspar grew inside the most brecciated grains under the 

influence of temperature and fluid flow. We note that these new phases are pristine and constitute retentive domains 

with lower ages since they form after the main brecciation event. Consequently, they could be expected to show their Ar 

signatures at high laboratory temperatures, at the same experimental temperatures where the big domains in the pristine 

K-feldspars were degasing. 

CONCLUSIONS 

The diffusion behaviour during brecciation as described herein highlights how complex and variable those 

processes can be: they strongly depend upon the rate of the process (both strain and recovery), the degree of fluid flow, 

the temperature and probably other variables not observed in this study. The significant constraint brought by our in 

naturo study is that deformation in rather dry and cold conditions does not induce argon loss on a large scale. The 

propagation of cracks, however, significantly affects the theoretical diffusion pattern of the crystals. Only when 

deformation climaxes and temperature and fluid flow have increased can one expect massive argon loss. At the 

maximum phase of brecciation, two processes compete: rapid, "open path" diffusion and lattice diffusion. The former is 

likely to be especially efficient when the density of cracks is so high that a completely connected network develops, 

inducing rapid loss even from the formerly big domains, that then selectively lose their argon memory. Any fluid flow 

will only serve to enhance that effect and will also flush argon out of the rock at the decimetre scale. Volume diffusion 

will develop only if temperature is sufficient, and will affect the structures according to their sizes. Therefore, in the 
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absence of elevated temperatures or fluid flow we conclude that only extremely severe deformation is necessary to 

induce argon loss, which will subsequently proceed essentially via non-volume diffusion. 

This study also has implications for the recovery of thermal histories from deformed alkali feldspars. First, weak 

or medium degrees of brittle deformation seriously alter the charateristics of argon diffusion, although significant argon 

loss is not induced. It follows that, although the memory of the grain has survived, the diffusion charateristics seen in 

the laboratory will be completely different from the ones that prevailed during the grain thermal history, prior to 

deformation. This is because the new domains are not intrinsic characteristics of the feldspars but are superimposed, 

acquired structures. Usually, this will transpose into anomalously low argon retentivities in abundant, low retentivity 

sites and would lead to an overestimation of cooling rates if modeled without care by MDD. This is likely to happen in 

old basement rocks in which multiple, low intensity events may lead to a seriously brecciated structure in feldspars that 

usually behave in a less ductile manner than other minerals. Second, argon loss during severe brecciation seems to be 

controlled initially by non-volume diffusion processes, characterized by loss along fast diffusion pathways intuitively 

associated with a denser and progressively connected network of cracks. In such rocks, modeling of 

temperature/duration variables using volume diffusion will of course be flawed and again, retentivity will be 

overestimated, leading to spurious temperatures or duration that are higher than reality. 

Apart from suggesting that domains formed during deformation are physical subgrains, our study strongly 

supports the existence of the biggest domains as real physical entities visibly affected by brecciation Whether or not 

these domains are intrinsic characteristics of K-feldspars that can record cooling despite low-temperature alteration of 

the lattice is not accessible through our study. It must be stressed also that all diffusion behaviour highlighted in this 

study cannot, at present, be unequivocally distinguished from possible artefacts produced by laboratory treatment. 

However the agreement between geological microstructures, argon loss during brecciation and in the laboratory is 

rather suggestive of non-random artefacts.  This study shows the amount of information one can extract from in naturo 

crushing studies. In vacuo crushing studies are highly valuable but are generally restricted to the study of finite 

products, and thus miss the evolution of the processes during deformation. In simple cases (for example, homogeneous 

feldspar compositions covering a wide range of degrees of deformation) in which the strain can be deduced and 

analysed both in terms of duration, strength and recovery, one can unravel the dynamic evolution deformation and 

related argon loss processes. This type of study clearly works only in areas with well-established geologic control to 

evaluate feldspar thermochronologic histories in terms of both the chronology and style of deformation. The obvious 

next step is to add a significant thermal overprint to this story to assess the existence of domains controlling argon 

diffusion in nature. 
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CAPTIONS 

 

Table 1. 

Results of step heating degassing. The first table gives isotopic data errors and ages with the quantity  of 39Ar released 

(moles) and cumulative %39Ar. The second table shows diffusion parameters calculated during experimental 

heating. Values are shown as “0.000” when the mass spectrometer signals were below blank levels.  

 

Table 2. 

Input parameters for diffusion modeling of the log(r/ro) plots. 

 

 

Figure 1. 

Location map, of the studies samples, together with a simplified chronostratigraphy and reported ages. Numbers on the 

stratigraphic column refer to references in bibliography. 

Figure 2a-d. 

Photomicrographs showing basic grain-scale evolution of brittle deformation in these rocks from ‘unbrecciated’ through 

to the breccia with special focus on the K-feldspars. Scale bars are shown in each photograph. 
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 A/ unbrecciated sample (95AS1) with coarse-grained perthitic microcline with interlocking texture, containing albite 

lamellae or blebs; rims of alkali feldspars are free of lamellae and inclusions and may be slightly more Na-rich. 

Fine-scale features reveals some irregular to serrated grain boundaries, minor undulatory extinction, minor subgrain 

development at alkali feldspar rims, strained twins in plagioclase, and polygonal quartz rinds around some alkali-

feldspar porphyroblasts 

B/ slightly brecciated sample (95AS2) with microperthitic alkali feldspar containing deformed albite lamellae. Grain 

boundaries are serrated and subgrain growth is both more developed and irregularly distributed at grain boundaries 

as well as in the interiors of grains. Undulatory extinction is common and is not affected by subgrain limits. Brittle 

deformation is manifested as fractures/cracks that crosscut individual porphyroblasts and/or that visibly offset 

portions of single grains and stair-step fractures are also evident. 

C and D/ two fields in the highly brecciated sample (95AS4B). The cataclastic activity facilitated propagation of 

fractures through weakened grains which subsequently induced a significant amount of autocataclasis. Angular 

alkali feldspar clasts are surrounded by anastomosing veinlets comprising fine, feldspar fragments, chlorite, epidote, 

titanite, magnetite and fine-grained, layer silicates. The angular feldspars themselves are composed almost 

exclusively of weakly visible, large, sub-grains with preserved perthitic feldspar cores containing deformed or 

‘wormy’ albite lamellae. In some relict grains, the typical ‘crosshatch’ twinning of the microclines appears skewed. 

Occurrence of new, replacement minerals like quartz and albite on and in the alkali feldspars is evident, especially 

near areas of pronounced grain reduction. Finer-grained, disaggregated feldspar fragments float in the greenschist-

facies ‘matrix’. 

Figure 3.  

Similar heating schedules applied to the three samples. 

Figure 4abc. 

Age and diffusion information for each sample. Age spectra are shown (top darwing) together with log(r/ro) plots 

(bottom drawing) on which diffusion model has been reported (thicker line). because model almost perfectly fit the 

intial log(r/ro) values they are almost indistinguishable. The change in diffusion characteristics from one sample to 

another is shown by the comparison of the relative domain sizes (obtained from logDo/r2 and compared to the 

highest retentivity domain) and relative volume fractions (the relative fraction of 39Ar contained in the degassed 

sites). The most spectacular effect is the increasing importance of the small domains, progressively decreasing in 

size and becoming more numerous. 

Figure 5abc. 
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Feldspar brecciation, Arnaud and Eide 
39Ar/37Ar (thick line) and 38Ar/39Ar (thin line) used as proxies for K/Ca and Cl/K correlation plots. Note that the most 

deformed sample shows a very different degassing pattern than the two others, suggesting a lower K/Ca and Cl rich 

phase now dominates the highest temperature steps of the degassing.  

Figure 6. 

Inverse isochron diagram underscoring the increasing amount of non radiogenic argon in the most deformed sample, 

probably due to an increase surface to volume ratio associated to brecciation.. 

Figure 7.  

Highly simplified sketch scenario of the relations between physical deformation processes and diffusion of argon in 

naturo, both in terms of residing sites and diffusion processes, with emphasis on the K-feldspar (Ksp). Argon (black 

lettering) is shown as ArK when produced in situ from K, and Ar, when inherited at the time of, or after, feldspars 

formation. 

A/ typical situation in an undeformed sample fater Devonian and prior to Permian faulting. the sample is composed of  

Ksp, plagioclase (Pl), quartz (Qz) and late groundmass interstitial minerals (GS minerals). Ksp have an originally 

complex structure which is interpreted as forming domains of diffusion (see text for a detailed discussion of this 

assumption) which are voluntarily grossly sketched since their real nature is unknown.. The sample being below 

closure temperature, argon is not lost from the sample except maybe on the  its very borders (black arrows).  

B/ brecciation starts at low temperature. Crushed zones appear firstly between grains, along with quartz dynamic 

recrystallization and new Ksp (Ksp2) crystallization. Fractures propagate into more coherent grains such as Ksp and 

individualize newly formed "small" domains, trapping argon (white lettering) already present or in-situ decay-

produced after crack propagation. No diffusion yet develops although those cracks form proto-fast diffusion 

pathways which will be activated later. 

C/ brecciation proceeds and produces cataclasite formation. Inside Ksp grains fracturing is intense, along with the 

formation of new albitic pristine feldspar. numerous "small" newly-formed domains contain most of argon, either 

ineherited or in-situ produced. Diffusion is enhanced by fluid-flow and argon (white lettering and boxed) diffuses 

using fast diffusion pathways (white arrows) as soon as it exits from a small domain using volume diffusion (black 

arrows). not that argon from the albitic crystals probably does not diffuse out. 
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Temp 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar F39Ar %40Ar* 40Ar*/39Ar Age ± 1σ
°C (10-3) (10-14moles) released Ma Ma

95 As 1 K-feldspar  J=0.0068510 wt= 4  mg

400 18.094 0.050 0.002 33.082 0.06 0.19 46.77 8.46 101.68 4.09
400 17.351 0.031 0.000 10.803 0.07 0.43 81.73 14.18 167.27 5.18
450 19.466 0.030 0.001 8.560 0.08 0.67 87.06 16.95 198.16 4.68
500 22.106 0.026 0.011 4.852 0.54 2.42 93.47 20.66 238.86 4.49
500 23.774 0.023 0.003 2.297 0.22 3.12 97.04 23.07 264.74 11.57
550 25.789 0.023 0.004 1.504 0.31 4.14 98.17 25.32 288.54 10.63
550 26.831 0.021 0.007 0.842 0.33 5.20 98.95 26.55 301.49 5.85
600 27.473 0.023 0.012 1.201 0.43 6.59 98.60 27.09 307.12 13.12
600 27.291 0.022 0.006 0.446 0.27 7.45 99.39 27.13 307.50 11.31
650 28.126 0.022 0.001 1.198 0.41 8.79 98.63 27.74 313.91 11.29
650 27.548 0.021 0.000 0.225 0.25 9.60 99.63 27.45 310.83 10.96
700 27.932 0.022 0.001 1.172 0.40 10.89 98.65 27.55 311.97 12.83
700 27.823 0.022 0.004 0.363 0.24 11.66 99.49 27.68 313.28 11.77
750 28.331 0.022 0.001 0.701 0.35 12.79 99.15 28.09 317.53 10.81
750 28.469 0.021 0.000 0.399 0.27 13.67 99.46 28.32 319.87 10.45
800 28.757 0.022 0.001 1.199 0.34 14.77 98.66 28.37 320.45 12.40
800 28.963 0.022 0.000 0.888 0.27 15.63 98.98 28.67 323.51 12.18
800 29.088 0.022 0.000 0.364 0.21 16.31 99.51 28.94 326.37 13.30
800 28.983 0.022 0.000 0.000 0.36 17.49 99.87 28.95 326.37 11.88
700 42.275 0.023 0.000 31.739 0.01 17.52 78.14 33.03 368.05 37.71
750 31.876 0.019 0.000 0.547 0.02 17.60 99.39 31.68 354.36 17.70
800 30.188 0.022 0.000 0.000 0.07 17.82 99.88 30.15 338.77 6.75
850 29.671 0.023 0.000 0.794 0.20 18.46 99.10 29.40 331.09 18.41
900 29.884 0.023 0.001 1.501 0.42 19.83 98.42 29.41 331.17 17.71
950 30.366 0.024 0.001 1.920 0.73 22.20 98.04 29.77 334.88 19.22
1000 31.322 0.025 0.001 2.272 1.36 26.59 97.78 30.63 343.62 20.05
1050 32.740 0.025 0.001 2.281 2.65 35.18 97.87 32.04 358.03 18.43
1150 35.842 0.027 0.001 2.613 5.15 51.86 97.78 35.05 388.23 32.54
1200 36.210 0.027 0.000 2.222 8.31 78.78 98.12 35.53 393.02 28.10
1400 36.750 0.027 0.000 2.298 6.55 100.00 98.09 36.05 398.16 30.32

Temp Time f D/r2 1000/T -log(D/r2) log(r/ro)

°C min (K-1)
E=38696 cal/mol +- 4973   log(Do/ro)= 4.14/s +- 1.48

400 20 0.19 2.33E-09 1.486 8.633 0.106 Table 1
400 30 0.43 6.46E-09 1.486 8.190 -0.116 Arnaud and Eide, 2000
450 20 0.67 1.76E-08 1.383 7.756 0.102
500 20 2.42 3.53E-07 1.294 6.452 -0.172
500 30 3.12 1.69E-07 1.294 6.771 -0.013
550 20 4.14 4.83E-07 1.215 6.316 0.092
550 30 5.20 4.33E-07 1.215 6.363 0.116
600 20 6.59 1.07E-06 1.145 5.971 0.214
600 30 7.45 5.30E-07 1.145 6.276 0.366
650 20 8.79 1.43E-06 1.083 5.846 0.414
650 30 9.60 6.49E-07 1.083 6.188 0.585
700 20 10.89 1.73E-06 1.028 5.762 0.607
700 30 11.66 7.55E-07 1.028 6.122 0.787
750 20 12.79 1.82E-06 0.978 5.741 0.809
750 30 13.67 1.01E-06 0.978 5.996 0.937
800 20 14.77 2.05E-06 0.932 5.689 0.976
800 30 15.63 1.15E-06 0.932 5.940 1.101
800 40 16.31 7.13E-07 0.932 6.147 1.205
800 120 17.49 4.32E-07 0.932 6.364 1.313
700 30 17.52 5.07E-08 1.028 7.295 1.373
750 30 17.60 1.20E-07 0.978 6.919 1.398
800 30 17.82 3.48E-07 0.932 6.459 1.360
850 30 18.46 1.00E-06 0.890 5.998 1.306
900 30 19.83 2.29E-06 0.853 5.640 1.287
950 30 22.20 4.34E-06 0.818 5.362 1.296
1000 30 26.59 9.36E-06 0.786 5.029 1.265
1050 30 35.18 2.31E-05 0.756 4.636 1.193
1150 30 51.86 6.34E-05 0.703 4.198 1.199
1200 30 78.78 1.84E-04 0.679 3.734 1.068



Temp 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar F39Ar %40Ar* 40Ar*/39Ar Age ± 1σ
°C (10-3) (10-14moles) released Ma Ma

95 AS 3 K-feldspar  J=0.0068510 wt= 4  mg

400 12.089 0.039 0.004 16.843 0.14 0.58 59.29 7.17 86.48 2.04
400 11.598 0.031 0.017 5.585 0.08 0.91 85.73 9.94 118.89 5.94
450 14.227 0.025 0.001 3.045 0.30 2.14 93.53 13.31 157.40 3.07
450 17.439 0.023 0.007 1.908 0.23 3.09 96.62 16.85 197.08 7.26
500 20.428 0.022 0.004 1.467 0.48 5.06 97.74 19.97 231.30 7.16
500 22.177 0.022 0.004 0.643 0.33 6.42 98.99 21.95 252.78 9.10
550 23.431 0.022 0.003 0.740 0.56 8.73 98.93 23.18 265.90 9.33
550 24.193 0.022 0.003 0.000 0.36 10.20 99.85 24.16 276.29 9.23
600 24.788 0.022 0.001 0.500 0.47 12.13 99.26 24.61 281.04 9.61
600 24.812 0.022 0.003 0.000 0.38 13.70 99.85 24.78 282.84 9.41
650 25.188 0.022 0.002 0.280 0.46 15.57 99.53 25.07 285.94 9.54
650 25.098 0.022 0.002 0.000 0.34 16.96 99.85 25.06 285.86 9.31
700 25.472 0.022 0.002 0.282 0.42 18.70 99.53 25.35 288.94 10.00
700 25.200 0.021 0.002 0.000 0.33 20.04 99.85 25.16 286.93 9.31
750 25.791 0.022 0.003 0.344 0.42 21.76 99.47 25.65 292.10 9.24
750 25.428 0.022 0.002 0.000 0.31 23.01 99.85 25.39 289.33 10.18
800 26.218 0.022 0.007 0.442 0.43 24.76 99.37 26.05 296.29 9.79
800 26.221 0.022 0.004 0.000 0.36 26.24 99.86 26.18 297.66 11.02
800 26.378 0.022 0.003 0.000 0.31 27.50 99.86 26.34 299.31 10.68
800 26.744 0.023 0.003 0.000 0.54 29.73 99.86 26.71 303.13 10.83
700 23.852 0.006 0.005 0.000 0.01 29.77 99.85 23.82 272.66 18.94
750 25.837 0.023 0.004 0.000 0.03 29.91 99.86 25.80 293.63 7.76
800 27.231 0.023 0.005 0.000 0.09 30.28 99.86 27.19 308.22 6.06
850 27.838 0.023 0.005 0.000 0.25 31.31 99.87 27.80 314.53 15.18
900 28.528 0.024 0.009 0.447 0.48 33.29 99.42 28.36 320.35 16.17
1000 33.400 0.027 0.007 1.612 1.27 38.50 98.49 32.90 366.67 20.04
1050 34.783 0.028 0.007 2.132 1.89 46.24 98.12 34.13 379.06 18.40
1100 35.382 0.029 0.005 2.323 2.93 58.28 97.99 34.67 384.49 25.33
1150 35.318 0.027 0.003 1.988 4.71 77.63 98.26 34.70 384.82 19.05
1200 35.323 0.027 0.002 1.740 5.45 100.00 98.47 34.78 385.58 30.77

Temp Time f D/r2 1000/T -log(D/r2) log(r/ro)

°C min (K-1)
E=41211 cal/mol +- 2262   log(Do/ro)= 5.75/s +- 0.70

400 20 0.58 2.18E-08 1.486 7.661 0.014
400 30 0.91 2.14E-08 1.486 7.669 0.018
450 20 2.14 2.47E-07 1.383 6.608 -0.050
450 30 3.09 2.16E-07 1.383 6.666 -0.021
500 20 5.06 1.05E-06 1.294 5.977 0.038
500 30 6.42 6.81E-07 1.294 6.167 0.133
550 20 8.73 2.29E-06 1.215 5.640 0.223 Table 1 cont
550 30 10.20 1.21E-06 1.215 5.917 0.361 Arnaud and Eide, 2000
600 20 12.13 2.82E-06 1.145 5.549 0.491
600 30 13.70 1.77E-06 1.145 5.753 0.593
650 20 15.57 3.59E-06 1.083 5.445 0.718
650 30 16.96 1.98E-06 1.083 5.704 0.847
700 20 18.70 4.06E-06 1.028 5.392 0.942
700 30 20.04 2.26E-06 1.028 5.646 1.069
750 20 21.76 4.70E-06 0.978 5.328 1.137
750 30 23.01 2.45E-06 0.978 5.611 1.278
800 20 24.76 5.48E-06 0.932 5.261 1.308
800 30 26.24 3.29E-06 0.932 5.483 1.419
800 40 27.50 2.22E-06 0.932 5.654 1.504
800 120 29.73 1.39E-06 0.932 5.857 1.606
700 30 29.77 1.09E-07 1.028 6.963 1.728
750 30 29.91 3.54E-07 0.978 6.450 1.698
800 30 30.28 9.86E-07 0.932 6.006 1.681
850 30 31.31 2.75E-06 0.890 5.561 1.645
900 30 33.29 5.59E-06 0.853 5.253 1.662
1000 30 38.50 1.63E-05 0.786 4.787 1.730
1050 30 46.24 2.86E-05 0.756 4.543 1.742
1100 30 58.28 5.49E-05 0.728 4.260 1.725
1150 30 77.63 1.42E-04 0.703 3.849 1.634



Temp 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar F39Ar %40Ar* 40Ar*/39Ar Age ± 1σ
°C (10-3) (10-14moles) released Ma Ma

95 AS 4B K-feldspar  J=0.0068510 wt= 1  mg

400 99.804 0.150 0.000 340.632 0.05 1.76 0.99 0.98 12.12 3.13
400 25.111 0.054 0.467 68.520 0.07 4.25 20.91 5.25 63.79 3.46
450 15.982 0.033 0.343 21.855 0.13 8.91 60.33 9.65 115.46 2.52
450 19.159 0.029 0.000 17.887 0.12 13.33 72.73 13.93 164.49 3.62
500 20.525 0.025 0.000 8.539 0.24 22.22 87.75 18.01 209.91 4.01
500 23.907 0.025 0.000 7.625 0.20 29.77 90.59 21.66 249.59 4.78
550 26.667 0.025 0.628 9.971 0.31 41.19 89.26 23.82 272.76 5.87
550 28.765 0.025 0.703 13.205 0.19 48.32 86.81 25.00 285.17 6.30
600 33.016 0.028 1.148 28.931 0.19 55.29 74.83 24.75 282.55 6.47
600 35.358 0.030 1.187 33.550 0.11 59.52 72.72 25.76 293.19 7.14
650 28.163 0.026 1.725 10.110 0.15 64.97 90.08 25.43 289.79 6.26
650 30.513 0.027 1.175 13.623 0.10 68.56 87.32 26.69 302.97 7.06
700 30.612 0.024 0.078 10.875 0.08 71.44 89.60 27.43 310.70 7.00
700 31.069 0.028 0.000 11.185 0.07 73.91 89.44 27.79 314.39 6.80
750 30.693 0.026 0.000 8.558 0.08 76.88 91.79 28.17 318.40 7.21
750 30.197 0.029 0.708 8.660 0.07 79.36 91.80 27.75 313.99 6.86
800 27.777 0.029 1.186 8.356 0.07 82.11 91.57 25.48 290.29 6.72
800 26.999 0.031 0.836 2.614 0.04 83.70 97.37 26.32 299.11 8.78
800 28.945 0.031 0.287 0.129 0.03 84.80 99.84 28.91 326.02 12.98
800 30.883 0.041 0.133 5.290 0.05 86.62 94.96 29.33 330.34 21.64
800 36.527 0.053 4.189 8.020 0.01 86.81 94.69 34.81 385.85 47.15
850 29.826 0.036 0.296 6.880 0.02 87.38 93.29 27.84 314.90 22.53
900 26.812 0.034 0.765 8.149 0.03 88.51 91.34 24.52 280.11 14.85
950 25.419 0.035 0.852 9.722 0.04 89.91 89.10 22.68 260.53 14.41
1000 29.989 0.040 0.000 26.783 0.03 90.93 73.98 22.18 255.25 23.45
1050 26.099 0.036 0.276 24.130 0.04 92.24 73.15 19.10 221.86 20.78
1100 25.336 0.027 0.000 19.265 0.08 95.14 77.80 19.71 228.53 11.11
1150 20.462 0.027 0.000 21.358 0.09 98.60 69.55 14.23 167.83 9.92
1200 45.151 0.057 0.100 117.098 0.02 99.46 24.73 11.17 132.99 68.73
1400 277.069 0.234 11.117 985.658 0.01 100.00 -2.77 -7.81 0.00 0.00

Temp Time f D/r2 1000/T -log(D/r2) log(r/ro)

°C min (K-1)
E=42716 cal/mol +- 6159   log(Do/ro)= 7.46/s +- 1.90

400 20 1.76 2.04E-07 1.486 6.691 0.142 Table 1 cont
400 30 4.25 6.52E-07 1.486 6.186 -0.111 Arnaud and Eide, 2000
450 20 8.91 4.02E-06 1.383 5.396 -0.026
450 30 13.33 4.28E-06 1.383 5.368 -0.040
500 20 22.22 2.07E-05 1.294 4.684 0.035
500 30 29.77 1.71E-05 1.294 4.766 0.076
550 20 41.19 5.30E-05 1.215 4.275 0.198
550 30 48.32 2.78E-05 1.215 4.556 0.338
600 20 55.29 4.73E-05 1.145 4.325 0.547
600 30 59.52 2.12E-05 1.145 4.674 0.722
650 20 64.97 5.15E-05 1.083 4.288 0.818
650 30 68.56 2.44E-05 1.083 4.613 0.981
700 20 71.44 3.25E-05 1.028 4.489 1.179
700 30 73.91 2.03E-05 1.028 4.692 1.280
750 20 76.88 4.09E-05 0.978 4.388 1.362
750 30 79.36 2.55E-05 0.978 4.593 1.465
800 20 82.11 4.83E-05 0.932 4.316 1.539
800 30 83.70 2.10E-05 0.932 4.679 1.720
800 40 84.80 1.17E-05 0.932 4.931 1.846
800 120 86.62 7.18E-06 0.932 5.144 1.953
800 30 86.81 3.33E-06 0.932 5.477 2.120
850 30 87.38 9.97E-06 0.890 5.001 2.075
900 30 88.51 2.10E-05 0.853 4.677 2.091
950 30 89.91 2.92E-05 0.818 4.535 2.182
1000 30 90.93 2.42E-05 0.786 4.616 2.372
1050 30 92.24 3.51E-05 0.756 4.455 2.430
1100 30 95.14 1.05E-04 0.728 3.977 2.320
1150 30 98.60 2.80E-04 0.703 3.553 2.227
1200 30 99.46 2.14E-04 0.679 3.670 2.397



Sample number, Domain from less Relative Domain size relative 
modelling activation to most retentive volume faction to the most retentive

energy and frequency factor

95As1 1 0.02412 0.00037
E= 46.49 kcal/mol 2 0.0402 0.00221
logDo/r

2=6.63 m2/s 3 0.04846 0.0098
4 0.30525 0.76642
5 0.58197 1

95As3 1 0.06812 0.00071
E=46.60 kcal/mol 2 0.07705 0.00504

logDo/r
2=7.42 m2/s 3 0.08039 0.03168

4 0.74055 0.95
5 0.03389 1

95As4b 1 0.03863 0.00037
E=44.81 kcal/mol 2 0.16146 0.00116

logDo/r
2=8.15 m2/s 3 0.13493 0.00256

4 0.12602 0.00294
5 0.18977 0.00993
6 0.14464 0.04559
7 0.06772 0.14916
8 0.13682 1

Table 2
Arnaud and Eide, 2000
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Figure 3
Arnaud and Eide, 2000
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A: Unbrecciated sample 95As1

B: Slightly brecciated sample 95As3

C: Highly brecciated sample 95As4B

Figure 4
Arnaud and Eide, 2000
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A: Unbrecciated sample 95As1

B: Slightly brecciated sample 95As3

C: Highly brecciated sample 95As4B

Figure 5
Arnaud and Eide, 2000
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Figure 6
Arnaud and Eide, 2000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

39Ar/40Ar

36
A

r/40
A

r

Unbrec. 95AS1

Slightly bercc. 95AS3

Highly brec. 95AS4B



Post-Caledonian/pre Permian, ca. 250 C
o

95AS1: Top-west extensional
collapse (NSDZ)

Pl

Qz

Ksp

Ksp

Pl

Qz
GS minerals

A.

Ar

ArK

ArK is on going in situ
production of radiogenic Ar
Ar is Ar having been inherited
or produced in situ

ArK

ArK

Ar

Fig 7a.
Arnaud & Eide



ca. 260 Ma/ ca. 225 C
oB.

GS minerals

Ksp

Pl

Ksp2

Ksp2

Ksp

veinlets (+fluids)

polycrystalline
Qtz

Qtz

C
ru

sh
zo

n
e

Ksp

Ar

ArK

Ar

proto-fast
diffusion pathways

Developping
sub-grains:
newly formed
“small domains”

95AS3: Incipient Permian
brittle faulting

Fig. 7b
Arnaud & Eide

ArK

ArK

Ar

is on going in situ
production of radiogenic Ar in newly
formed small domains (deformation
subgrains)

is Ar having been inherited
or produced in situ now residing
in newly formed small domains

ArK

Ar



95AS4B: High brittle strain,
extensional brittle faulting,

fluid flow, cataclasis

PlKspcataclasite

Qtz

Fig. 7c
Arnaud & Eide

Ar

Ar

Ar

ArK

Ar Ar

Ar

Ar

ArK

ca. 250 Ma/ ca. 200 C
oC.

ArK

Ksp

New albitic pristine
crystals

Ar fast
diffusion
pathways

volume diffusion
loss out of lattice

Ar
Ar

Ar

Ar

Ar is Ar being transferred from
the lattice (both original and
newly formed domains) to,
and lost from, fast diffusion pathways

Ar


	Fspdommod.pdf
	Abstract
	 Introduction
	Geological background
	Sample descriptions
	Argon loss from the samples
	Analytical procedures
	Results and argon loss modeling


	Evolution of brecciation and argon loss
	Physics of deformation, Argon Loss and Domains 
	Conclusions
	 Bibliography
	Captions
	Table 1.


	tables.pdf
	fig1.pdf
	fig2.pdf
	figure 3,4,5,6mod.pdf
	Fig7abcmod.pdf

