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Abstract

A new methodology is proposed to estimate 3D displacement fields from pairs of

images obtained from X-Ray Computed Micro Tomography (XCMT). Contrary to

local approaches, a global approach is followed herein that evaluates continuous dis-

placement fields. Although any displacement basis could be considered, the proce-

dure is specialized to finite element shape functions. The method is illustrated with
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the analysis of a compression test on a polypropylene solid foam (independently

studied in a companion paper). A good stability of the measured displacement field

is obtained for cubic element sizes ranging from 16 voxels to 6 voxels.

Key words: Cellular material, digital image correlation, displacement uncertainty,

shape function, strain localization

1 Introduction

X-Ray Computed Micro Tomography (XCMT) is a very precious tool to have

access to the details of the full microstructure of a material in a non destructive

fashion. By reconstruction from 2D pictures, it allows for a 3D visualization of

the different phases of a material [1, 2]. By analyzing these 3D reconstructed

pictures, one has access, for instance, to microstructural changes during solid-

ification of alloys [3], to microstructural details during sintering of steel pow-

ders [4, 5], to damage mechanisms in the bulk of particulate composites [6, 7]

or to the structure of cellular materials (either metallic or polymeric foams)

and strains [8, 9]. These actual microstructures may be further processed using

e.g. finite element tools [10] for additional exploitations.

Composite materials are of particular interest for the above-mentioned type of

studies since the combination of different phases and materials calls for model-

ing tools that account for strain and stress distributions along and close to in-

terfaces and/or interphases. For instance, damage mechanisms (e.g., interface

debonding, fiber breakage) were analyzed in fiber-reinforced composites [11].

The load transfer between fibers and matrices in the presence of cracks was also
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investigated, and mechanical properties of interfaces were then identified [12].

The strain field was obtained by X-ray diffraction techniques.

The behavior of composite sandwich panels is often studied since these struc-

tures are widely used in transportation industries. Under extreme conditions

(e.g., accidents or crashes), these structures are designed to absorb the im-

pact energy to ensure passengers safety. Therefore, the dynamic response of

sandwich structures has to be identified at high strain rates. The essential role

of the core on the composite response has been demonstrated [13], and the

macroscopic mechanical behavior of different types of core (wood, metallic or

polymeric foams) has been identified [14]. The behavior of cellular materials

generally includes three steps in static or dynamic compression, namely, an

elastic response followed by an important deformation of the material with

quasi-constant stress due to strain localization, and densification. The clas-

sical models, which are used to predict and improve the behavior of these

structures under impact, describe the macroscopic response but do not ac-

count for strain localization and hence are unable to relate the behavior to

the local microstructure [15]. The cellular material under investigation is a

multi-scale foam made out of millimetric porous beads (at the meso scale)

which themselves consist of closed micro cells. To improve this foam used as

core in sandwich panel, it is therefore essential to propose macroscopic consti-

tutive equations that take into account the physical phenomena observed at

all scales (macro-, meso- and micro-scales) of the foam structure. A first point

of this study is to reveal strain localization at the bead scale from 3D images

obtained by XCMT. Second, strain localization within the bead structure is

investigated at the microscopic scale. Last, the measurement of the 3D strain

field opens the way for a realistic description incorporating microstructural

information, and hence in the long term to optimize this microstructure to
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meet mechanical requirements for best safety performances.

Cellular materials are one of the constituents of shock absorbing compos-

ite [14]. In a companion paper [16], the potential of a direct and exhaus-

tive characterization of the microstructure of a multiscale foam after impact

loadings is discussed. Morphology of bead wall was shown to reveal buckling

phenomena. Moreover, the use of mathematical morphology tools enables for

the extraction individual beads, the estimation of their densities and of the

bead density distribution compared to volumetric strains. However, for further

information on the strain at a finer scale require a different approach.

In the case of structural composites, 2D Digital Image Correlation (2D-DIC)

techniques were used (with images obtained by using a CCD camera) to

measure strain fields, to study the influence of the fiber orientation on the

macroscopic behavior or to reveal strain and damage localization at the finest

scales [17, 18, 19, 20]. Few studies have reported detailed investigations of

kinematic analyses using 3D pictures. As a complementary analysis, X-ray

diffraction may be used to evaluate elastic strains [12]. However, the recon-

structed pictures themselves may be used to evaluate displacements. A first

technique consists in tracking markers (e.g., particles). Strain uncertainties of

the order of 10−2 have been reported [21]. When image processing techniques

based upon correlation algorithms are used, strain uncertainties of the order of

10−3 can be achieved [22, 23]. A major field of application concerns biomechan-

ical studies [24, 25]. Other studies were devoted to micromechanical analyses

of strain fields in heterogeneous materials [23, 4]. Cellular materials have also

been studied [8, 9], and 2D strain measurements were performed [26].

The final objective of the present study is to improve mechanical models of

sandwich structures (with composite face-sheets and foam core) under dy-
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namic loading. In this first step, 3D-DIC and tomographic techniques are

applied to better identify the behavior of the foam core and analyze strain lo-

calization appearing in cellular materials during impact. This step is achieved

by resorting to correlation techniques. Digital image correlation is a technique

that consists in measuring displacement fields based on image pairs of the

same specimen at different stages of loading [27]. The displacement field is

computed so that the image of the strained sample is matched to the ref-

erence image when pixel locations are corrected by the displacement field.

Very often, surface images are taken so that only the in-plane displacement

and strain components can be identified when using one camera (2D-DIC)

or 3D displacements and 2D strains of the surface by using stereo-correlation

(2.5-DIC). This technique has revealed to be extremely powerful in solid me-

chanics for different reasons. It is easy to perform with digital cameras that

have very good performances and are low cost, it is a non-intrusive and very

tolerant technique that does not require heavy specimen preparations, and last

it provides a very rich information (i.e., full-fields). Moreover, algorithms have

progressed in the recent years, providing today both robust and very accurate

tools (displacement uncertainties are of order 10−2 pixel or even below). Last,

it allows one to bridge the gap between experiments and simulations by using

identification techniques that explicitly use full-field data [28] or for validation

purposes of numerical codes [29].

As in 2D applications, the most commonly used correlation algorithms con-

sist in matching locally small zones of interest in a sequence of pictures to

determine local displacement components [30]. The same type of hypotheses

are made in three-dimensional algorithms [22, 31, 23, 32]. This study reports

on a different algorithm, which has been shown to be more performing in two

dimensions when compared to FFT-based algorithms [33, 34], but had never
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been extended to three dimensions. The basic approach is close in spirit to

the two dimensional case. However, specific procedures aim at saving memory

storage, which appears today to be the limiting factor, when using conven-

tional PCs. Since 3D images are the result of a computed reconstruction, the

image texture, and more generally its quality cannot directly be compared to

two-dimensional optical images. Moreover, space dimensionality has an im-

pact on the expected performances. It is therefore important to validate the

performance of the algorithm, one of the motivations of the present paper.

The paper is organized as follows. In Section 2, the way the pictures were

obtained through scanning in-situ a compressed foam is discussed. The 3D

correlation algorithm is introduced in Section 3 to analyze the obtained pic-

tures. A “global” procedure is implemented in which the displacement field is

decomposed over a basis made of shape functions of 8-node finite elements.

The performance of the algorithm is evaluated in Section 4 by artificially

translating the actual reference picture of Section 2. In Section 5, first re-

sults are discussed when considering a deformed picture. In particular, the

heterogeneity of the displacement and strain fields is analyzed.

2 Description of the experimental test

2.1 Material

The material under investigation is a polypropylene foam. It is a multi-scale

material made out of millimetric beads that are agglomerated. During process-

ing, the expanded plastic foam beads are injected into a mold where individual

beads are fused together under steam heat and pressure to form a medium
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without inter-bead porosity. Moreover, the beads themselves are cellular struc-

tures with closed cells of size ranging from 10 to 60 µm, with a rather homo-

geneous microstructure, apart from a much denser skin of about 10 µm in

thickness, deprived of large bubbles. As the material is formed, the skin of the

beads come together and merge to form a large scale cellular structure. The

foam structure is therefore made of beads (mesoscale) and cells (microscale).

Microtomographic images presented in this paper have been obtained on the

BM05 beam line at the European Synchrotron Radiation Facility (ESRF) in

Grenoble (France). The acquired projections are 2048 × 2048 pixel radio-

graphs, with a pixel corresponding to 4.91 µm. The sample of polypropylene

foam is 10 mm in diameter, and the energy of the beam was set to 16 keV. The

use of microtomographic techniques needs a specific methodology to measure

the state of the foam structure during dynamic loading. The adopted experi-

mental approach consists in carrying out several interrupted impact tests on

a same sample using a drop tower, and acquiring a “picture” in between two

impact tests [8]. A tomographic measurement of the sample is taken before

the first impact and is used as a reference. During each compression, the defor-

mation amplitude is limited to fixed values, namely 1 mm for the first impact,

and 2 mm for the following ones. The sample is maintained compressed and

replaced in the microtomographic setup for another acquisition. These opera-

tions (impact and X-ray scan) are repeated until densification of the foam. The

cellular material deformation can then be evaluated from 3D reconstructions

at each stage of the dynamic test (Figure 1).
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a)

b)

Fig. 1. View of the 96 voxel element volume analyzed in this study (a: reference, b:

deformed configurations). A 14-bit deep grey level digitization is used.

2.2 Connection with other related studies

Most studies focused on the influence of the microstructure (e.g., cell shape,

size distribution) on the macroscopic behavior of the foam. The influence of the
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intermediate scale is seldom investigated. However, considering the thickness

of bead walls and their relatively high density, it appears necessary to take into

account the bead wall rigidity, and further its buckling combined to the cell

deformation in order to accurately describe the macroscopic behavior of foams.

The microstructure of the material is suitable for the present purpose since

it has density contrasts at different scales (from the bubble size to the bead

size) that are used here as random “markers” for the correlation algorithm.

Strain fields of the bead (first, along a vertical plane [9] and then in the

bulk of the whole sample [16]) have highlighted the physical phenomena of

polymeric foam damage under dynamic compression. There are three stages

in the deformation of cellular material in compression. First, after a transient

elastic phase, stronger bead deformation is located near the compression device

surface. In a second phase, observed after the second and third impacts, strains

are localized on layers generally perpendicular to the compression direction.

Last, densification occurs.

The interrupted impact methodology coupled with micro-tomographic analy-

sis have shown a relationship between bead density and strain level. However,

the results show also that the strain heterogeneity is not simply correlated

with the density field, namely, the densest beads are not necessarily the least

deformed zones. The most porous beads generate randomly located weakness

zones in the cellular material that may initiate a local collapse if the neighbor-

hood is favorable, and finally produce a densified layer traversing the entire

specimen. It is thus the combined effect of the structure morphology and of

the heterogeneous density field that creates a specific strain field for a dynamic

compression. There is therefore a need for a complete 3D strain fields to bet-

ter understand the correlation between the material texture and the way the
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material deforms.

3 C8 Digital Image Correlation (C8-DIC)

Digital Image Correlation is based on the principle of optical flow conserva-

tion [35, 36], namely, the texture of the medium is assumed to be passively

advected by the displacement field. If the reference (respectively deformed)

image is represented by a three dimensional gray level-valued field, f(x), (re-

spectively g(x)), optical flow conservation requires that

g(x) = f(x + U(x)) (1)

Let us underline that this hypothesis is only an approximation that may be

in default in particular for large strains, where the gray value is an integral

measure over a voxel size. Moreover, in the case of tomography, a number of

artifacts affect the reconstruction, and violate the above hypothesis. However,

taking into account a different law, although possible in principle, would re-

quire a specific analysis of the bias in the data acquisition technique for the

full image, and in the sequel it is assumed that the above hypothesis holds.

In the present study, the general strategy that consists in exploiting cross-

correlations between small zones of interest [22, 31, 23, 32] is not used. Rather,

an extension to three dimensions of a numerical scheme, which is presented in

details for two dimensions in Ref. [33]) is proposed. It is based on a continuous

and global field as commonly practiced in finite element simulations [37]. It will

therefore allow, for example, for direct and unbiased comparisons with finite

element simulations when the same kinematic hypotheses are made during the

measurement and the simulation stages. The basic principles are recalled here,

10



as well as the specific modifications that have been considered for the sake of

reducing memory and/or time usage.

The optical flow conservation is considered under the weak form of minimizing

the following objective functional T

T (U) =
∫∫∫

D
[g(x) − f(x + U(x))]2dx (2)

This functional is strongly non-linear and generally displays numerous sec-

ondary minima. For computational efficiency, one resorts to a linearized func-

tion T̃

T̃ (U) =
∫∫∫

D
[g(x) − f(x) −∇f(x).U(x)]2dx (3)

The way secondary spurious minima are dealt with is two-fold:

• first, the displacement field is searched in a restricted space of functions,

• second, the texture of the images f and g is severely filtered in such a way

that the Taylor expansion provides a consistent expression of the texture

variation at the scale of the computed displacement.

Once a first determination of the displacement has been computed, the de-

formed image is corrected by this first determination in order to match the

reference one. Because of the filtering, and the restricted nature of the dis-

placement field that is considered, one expects that the displacement field be

only a gross approximation of the actual one. However, once the first correc-

tion has been performed, the remaining displacement field is likely to be of

much smaller amplitude. Consequently, one re-iterates the same procedure,

with a less filtered image, and an enriched displacement function basis. This

defines one step of an algorithm that may be carried out up to the stage where

the unfiltered image is used. In spirit, it is close to multi-grid algorithms used

in 2D digital image correlation [38, 33, 39] that allow for the measurement of
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large deformations.

This general procedure may be applied to a variety of different fields and

filters. In the sequel, the considered displacement basis is specialized to be

finite element functions over 8-node cubic elements and piecewise tri-linear

functions (C8P1 elements). It follows that the algorithm is referred to as C8-

DIC. Let us introduce the decomposition

U(x) =
∑

i

aiNi(x) (4)

The minimization of the quadratic functional (3) leads to the following linear

system

Mijaj = bi (5)

where

Mij =
∫∫∫

[∇f(x).Ni(x)][∇f(x).Nj(x)]dx

bi =
∫∫∫

[∇f(x).Ni(x)][g(x) − f(x)]dx

(6)

Thus a single parameter characterizes the fineness of the displacement basis,

namely the size ℓ (in voxels) of the element used. The latter is comparable to

the so-called Zone Of Interest (ZOI) size of classical DIC codes.

In so-doing, the displacement field is continuous, and this is an upgrade com-

pared to the procedure used in the early days of 2D digital image correla-

tion [40] where the displacement field was piecewise constant. It was shown in

two dimensions that this continuity allowed one to use much smaller zones of

interest (typically 8 to 16-pixel as compared to 32-pixel ZOIs [33]). In terms

of filters, the most elementary one is used as for the two-dimensional proce-

dure [38], namely, a coarse-graining procedure in which “macro-voxels” are

defined to be the sum of 2 × 2 × 2 elementary voxels. The same procedure is

used recursively. The main advantage of this procedure is that the volume of
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images is reduced by a factor of 8 at each coarse-beading stage. Therefore, the

first iterations of the procedure have a negligible cost as compared to the final

step where the full images are used.

3.1 Differences with respect to 2D implementation

The specificity of three-dimensional images is the large amount of data used

in the analysis, and hence the procedure is demanding in terms of memory

requirements and computation time. To reduce this over-cost, variations as

compared to two-dimensional implementations [33] have been considered:

• Since one generally deals with small strains between consecutive images, one

assimilates the reference and deformed coordinate systems, as classically

performed in linear elasticity. Therefore, instead of computing the gradient

of the original image, a more precise estimate is obtained from the gradient

of the average between reference and (corrected) deformed image. However,

this amounts to computing all gradients as often as the deformed image is

corrected, and from these quantities, estimating the matrix M and second

member b, is a rather costly operation. This procedure was not implemented

in three dimensions. Rather, the above formulation is implemented directly,

and since the reference image f remains invariant, the matrix M is computed

once for all at the start of the procedure, and only the second member is

corrected.

• The correction process of the deformed image to be performed at each itera-

tion involves a sub-pixel interpolation of the gray levels. In two dimensions,

a Fourier transform was used in order to provide a simple interpolation of

the data, convenient for translation of zones. However, to limit edge arti-
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facts, each zone was initially extended by a frame in which aliasing effects

were taken care of through a smooth connection between opposite edges.

In the present case, this procedure would be too time consuming, and thus

a simple and fast (tri-)linear interpolation of gray levels of the elementary

voxel volume containing the required coordinate is implemented.

• The computation of the gradients is performed in two-dimensions through

the Fourier interpolation procedure alluded to above. This is important to

have consistent gradient and interpolation procedures. In three dimensions,

since a linear interpolation is used, a simple finite difference scheme is used.

4 Application to foam tomography

The previously described algorithm is now applied to the three dimensional

pictures obtained from XCMT of one bead extracted from a complete spec-

imen. Three states were considered in the experiments. The first one is the

reference picture (before any loading). The second is obtained from the sam-

ple macroscopically strained at −10% axial compression along the z-axis (just

after the first impact). The last one was compressed at −30% mean compres-

sion (after the second impact). The strain field of the foam is particularly

heterogeneous during the first stage of the dynamic loading. In the compan-

ion paper [16], the integral volumetric strain, tr(ǫ), at the bead scale was

estimated based on a bead wall location technique. Considering only the bead

extracted from the sample (labelled “61”, for more details, see Ref. [16]) the

average volume change of this bead is respectively −2.7% and −17% for the

two studied deformation states. Figure 2 shows three cuts through the same

bead studied in this article at the three stages of deformation (macroscopically

0, −10 and −30% strain). One clearly sees in the last stage that the strain is
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Fig. 2. Cut through the bead “61” in (a) the original state, (b) the −10% com-

pression state, and (c) the −30% compression state. A strain localization is clearly

perceptible in image (c), and can be also distinguished in image (b).

such that some cells collapsed. Moreover, one observes that the strain field is

very heterogeneous, and a (vertical) compression band may be perceived. At a

much more preliminary stage, the same band can already be seen as initiating

at the −10% strain stage. Unfortunately, the last pair of images was too much

deformed to allow for a satisfactory determination of the displacement. In fact,

a good matching of only part of the sample was obtained, and the present lo-

calized compression band forbids a global convergence. Thus this last sample

will be left aside from the present analysis, and we will only report on the first

image pair.
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4.1 Image characteristics

Each tomographic image was initially acquired with a resolution of 2048 ×

2048× 2200 voxels whose physical size is 4.91 µm, encoded as 8-bit deep gray

levels. This represents a considerable amount of information (i.e., 9.2 Go),

which is extremely demanding in terms of memory (storage, RAM and graphic

memories). Therefore the entire specimen was not used but rather a specific

subset. We focused on a single bead (labelled “61”). The volume containing

this bead was already large (i.e., 8003 voxels). A first data compression was

performed reducing the system size by a factor of 4 in each direction. No re-

projection of the mean density onto an 8-bit range was performed; the direct

sum of the gray levels of the 43 block of voxels was assigned to the equivalent

macro-voxel. The dynamic range corresponds to 14-bit digitization. The actual

dynamic range is of the order of 16, 000, i.e., quite close to the maximum value

(16, 384). The physical size of those super-voxels is thus four times larger than

the original voxel, or 19.7 µm.

Last, in those images, a region of interest (ROI) is defined in which the dis-

placement field will be analyzed. In the following, a cubic ROI of the order of

100 voxels wide in each direction was defined, and centered in the compressed

image. The size of the ROI is adjusted to correspond to an integer number of

ZOIs (hence typically 104 or 96 voxels). For such sizes, one could deal with

ZOIs as small as 5 voxels on a laptop computer (Intel dual core Centrino

processor, 2 Go RAM) without encountering memory limitations. For larger

ZOIs, i.e., 16-voxel ZOIs, one could reach larger domain sizes (e.g., 176 voxels

in each direction). Computation time turned out not to be a limitation factor.

A maximum CPU time of the order of 10 min (for ROI sizes of 100 voxels,
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and a ZOI size of 8 voxels) was sufficient to reach convergence. For a ROI size

of 176 voxels, and ZOI size of 16 voxels, the computation time reached about

1 hour.

4.2 A priori performance

Before studying the displacement field between two images, it is important to

evaluate the level of uncertainty attached to both the natural texture of the

image and the algorithm used. Integer valued displacements do not involve any

approximation in the determination of the gray level value. The only difficulty

is to be able to capture the displacement without being trapped in secondary

minima of the objective function. The most stringent limitation comes from

gray value interpolation at non-integer positions. Therefore, in order to assess

the uncertainty resulting from this interpolation guess, a uniform displacement

of (0.5, 0.5, 0.5) voxel is prescribed on the reference image to produce an arti-

ficial “deformed” image. This subvoxel displacement is performed in Fourier

space by a phase shift operation. The procedure is then run blindly on this

pair of images. The systematic error is measured from the spatial average of

the determined displacement. The uncertainty is measured from the standard

deviation of the displacement field about its mean value. It turns out that the

systematic error is quite small as compared to the uncertainty. Only the latter

is reported herein.

The quantification of the uncertainty with respect to the ZOI size is very

important because it allows one to determine the optimal ZOI size to be

used for a given constraint on the error bars. Large ZOIs will enable one

to determine accurate displacements because of the large number of voxels
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Fig. 3. Log-log plot of the uncertainty in displacement for the artificial case of a

uniform translation of 0.5 voxel in each spatial direction, versus ZOI size. Data

points are shown as (◦) and the straight line is a power-law fit to the data.

involved in each element. Conversely, they are unable to capture complex

displacement fields with rapid spatial variations. Conversely, a small ZOI will

be flexible enough to follow large displacement gradients, but will give less

accurate displacement evaluations.

The uncertainty (here defined by means of the standard deviation σ(U) is

typically observed in two dimensions to vary as a power-law of the ZOI size,

ℓ for FFT-DIC [41] or Q4-DIC [33]

σ(U) ≈ Aα+1ℓ−α (7)

with an exponent α of the order of 1 for FFT-DIC and of order 2 for Q4-DIC

and very good textures.

The average uncertainty on the displacement may be estimated to be of or-

der half of σ(U) as computed for a displacement of 0.5 voxel in each direc-

tion [41, 33]. Figure 3 shows that a reasonable power-law is observed in three

dimensions, where a best fit through the data produces the plain line on the
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graph, with A = 2.4 voxels and α = 1.07. The prefactor of the mean uncer-

tainty is thus A/2, which compares quite well with the corresponding value in

two dimensions, where the prefactor is approximately 1 pixel (or A ≈ 2 vox-

els). The exponent, α, is a bit disappointing as compared to two dimensional

performances. The origin of this small exponent is not yet clear. It may come

from the poor approximation used in interpolation and gradients, or be the

result of the specific texture of the image. When dealing with more pictures,

it will be possible to answer that question.

In order to quantify the strain uncertainty (last column of Table 1), the mean

strain is estimated over the entire region of interest for the rigid body transla-

tion of 0.5 pixel in each direction. The uncertainty is defined as the maximum

of the absolute value of the principal strain. As expected, the strain uncer-

tainty decreases with the ZOI size. However, it remains less than 7× 10−3 for

all used ZOI sizes, i.e., small enough to allow us to address the case under

study.

5 Results for one loading step

5.1 Matching gap

In order to evaluate quantitatively the difference between two images, a match-

ing gap is defined as

R =
σ(f − g)

max(f) − min(f)
(8)

where σ denotes the root mean square value of the picture difference. It is a

dimensionless indicator of the distance between two images, reaching 0 only

for identical images. The initial gap between the two images over the region of
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interest is 9.49 %. The first step, which consists in estimating the mean rigid

body translation, reduced the gap to 8.65 %. Good quality optical images are

matched up to a final gap of the order of 1 %. In our case, the gray levels should

be comparable since, for all images, the same affine transformation to 8-bit

conversion is performed after the reconstruction has been performed. Slight

difference may however occur due to interferences, (a coherent X-ray beam

was used at ESRF) but this may give rise to about 2 gray level variations (or

about 1%) in the original images.

In the present case, at convergence, the gap drops to about 5 % between

the reference and the corrected image. Table 1 summarizes the final gap for

different ZOI sizes. As expected, as the ZOI decreases in size, more and more

degrees of freedom are available to reduce the gap. However, the level reached

for the smallest ZOI sizes seems to indicate that the incompressible level of

mismatch between both images is reached. Although somewhat larger than

for two-dimension optical images, the gain with respect to the initial gap

is significant enough to indicate that the matching presumably cannot be

improved further with the present algorithm.

5.2 ZOI size sensitivity

To check for the stability of the results with respect to the ZOI size, different

indicators extracted from the displacement fields are proposed in Table 1.

First, the mean displacement estimated from the arithmetic average 〈. . .〉 of

the nodal displacements, along the three spatial directions, are indicated for

ZOI sizes ranging from 16 to 6 voxels. The displacement averages are stable

and only fluctuate by about 0.01 voxel (corresponding to 0.197 µm).
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Table 1

Influence of the ZOI size on various quantities of interest: mean displacement, match-

ing gap, volume change, axial strain in the compression direction and strain uncer-

tainty.

ZOI size 〈Ux〉 〈Uy〉 〈Uz〉 Gap tr(ε) εzz δǫ

(vox.) (vox.) (vox.) (vox.) (%) (–) (–) (–)

16 −2.28 −0.77 −2.99 5.51 −0.028 −0.038 0.003

12 −2.27 −0.77 −3.00 5.16 −0.028 −0.037 0.004

8 −2.27 −0.77 −2.99 4.88 −0.025 −0.034 0.005

6 −2.27 −0.78 −2.99 4.76 −0.022 −0.032 0.007

To further probe the stability of the displacement results, the mean strain

is computed over the entire region of interest. The mean strain is classically

defined as the volume (arithmetic) average of the strain. In the chosen dis-

cretization, the strain is constant in each element. So that the mean strain

is also the average of the strain over elements. In this case, a simple check

shows that the inner nodes do not contribute to this estimate and hence only

the boundary nodal values matter. However, because these nodes are located

on the boundary, they are much less constrained than inner nodes, and hence

much susceptible to noise. In order to reduce this spurious effect, the strain

estimates are performed by ignoring the outermost elements. One consequence

of this however is the fact that the domain over which the strain is estimated

is not quite identical when the ZOI size changes. It is observed that the mean

volume change, i.e., div(U), or tr(ε), which is a compression of order −2.5%

has a tendency to decrease with the ZOI size. However this decrease is only
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6 × 10−3 and this estimate of the strain is in agreement with the result ob-

tained by measuring the volume change of iso-surfaces representing the bead

61 (−2.7%, see Ref .[16]). We will see in Section 5.4 that this trend has a sim-

ple interpretation. One observes also that the axial strain along the direction

of compression follows exactly the same tendency, and hence the transverse

area change, εxx + εyy, is approximately constant (fluctuation of the order of

10−3).

5.3 Check of correction from mid-plane cuts

Although it is important to deal with a single number such as the matching gap

to evaluate the quality of the displacement determination, a global quantity

may hide different types of deviates, from a uniformly distributed difference,

to a large but exceptional difference. To have a more faithful appreciation

of the quality of the determination, Figures 4, 5 and 6 show three midplane

cuts (normal to x, y or z) of the reference image (a), as compared to the as-

received deformed image (b), and the corrected deformed image (c) once the

determined displacement has been taken into account. Had the determination

and image acquisition been perfect, then the section views (a) and (c) would

have been identical. Although very significant differences are perceived on the

images (a) and (b), the similarity between (a) and (c) is clear.

To further check this similarity, a two-dimensional image correlation analysis

(Q4-DIC) was run on the three (a)-(c) pairs. This software is similar in spirit

to the one used in three dimensions, and for the image pairs (a)-(c) ideally

the displacement field should be zero. It is worth noting that both codes

are totally independent, and use some slightly different prescriptions for the
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Fig. 4. Reference (a), Deformed (b) and Corrected (c) cut through the specimen for

x = 100 voxels.

interpolation and gradient computation (as discussed in Section 3.1). This

may be responsible for a non-zero answer. The same ZOI size was used as for

the three dimensional computation (i.e., 8 pixels). The obtained displacement

field was less than 0.02 pixel for all three cuts, and with no visible spatial

correlation, (the displacement field seemed similar to white noise). This check

is thus considered as an additional validation of the result.

Let us also note that in Figure 4 the deformed image as well as the corrected

one display marked vertical lines that seem to be artifacts of the reconstruc-

tion. This illustrates the previous discussion on relatively high level of match-

ing gap between images at convergence.
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Fig. 5. Reference (a), Deformed (b) and Corrected (c) cut through the specimen for

y = 100 voxels.

5.4 Influence of ZOI size

One aspect associated with three dimensional analyses of displacements is

the fact that it is difficult to visualize three dimensional vector fields. Hence

we do not show such graphs. However, to give some indications of the mea-

sured displacement field, 2D maps of the component of the displacement field

that has the largest mean gradient, namely Uz, along the compression axis

is shown. A reference plane corresponding to the mid-plane normal to the

x-axis (x = 100 voxels) is chosen. Figure 7 shows the corresponding maps of

Uz(x = 100 voxels, y, z) for four values of the ZOI size, ranging from 16 to 6

voxels in each direction. It is to be noted that the large scale features of the

displacement are preserved. It is also observed that small ZOIs are required

to capture the sharp gradients, but they unfortunately enhance the noise level
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Fig. 6. Reference (a), Deformed (b) and Corrected (c) cut through the specimen

for z = 100 voxels.

in the displacement measurements.

In order to better illustrate this effect, the corresponding strain maps of the εzz

component are shown in Figure 8. The chosen discretization, C8P1 elements,

implies that the strain should be a constant in each element. However, such

maps are difficult to compare since the visual impression is limited by the inter-

element discontinuities. It was chosen to use a linear interpolation between

strains assigned to the center of each element. Let us however note this is a

simple rendering effect which does not quite corresponds to the discretization.

Note the very large amplitude of the strains distribution shown in this figure,

and the consistency between different ZOI sizes. It is obvious that the large

ZOI of 16 voxels leads to a diffusion of the strain over large sizes and hence

cannot estimate faithfully sudden variations. For sizes of 12 or 8 voxels, two

features become well pronounced, namely a compression band located on the
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Fig. 7. Comparison between the Uz-component of the displacement field in the

x = 100 voxels plane, determined using different ZOI sizes a) 16; b) 12; c) 8; d)

6 voxels. The displacement scale is in voxel (1 vox. = 19.7µm).

left of the domain with strains reaching -25%, and an inclined shear band. For

a 6-voxel ZOI, the noise level becomes prohibitive to rely on the quantitative

estimates of the strains, but the same features can be seen.

It was previously mentioned that such compression or shear bands could be

perceived (qualitatively) between the reference (a) and −10% deformed (b)

specimen, and was much more marked for the −30% deformed sample (Fig-

ure 2). Cells located on the left side of Fig. (2c) and along a median vertical

cut have collapsed. The phenomenon of bead wall buckling can also be seen

clearly on these last pictures. It is worth emphasizing that such an abrupt

displacement gradient is a very difficult test case where a number of classical

two-dimensional image correlation code would fail to detect.
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Fig. 8. Comparison between the εzz-component of the strain field in the x = 100 vox-

els plane, determined using different ZOI sizes a) 16; b) 12; c) 8; d) 6 voxels. In order

to decrease the visual impact of the discretization, the maps have been linearly in-

terpolated between element centers where the element strain has been imposed.

The fact that the strains are localized has a direct impact on the evaluation of

their mean values. It was mentioned above that the effective size over which

the mean strain is computed depends on the ZOI size, because all elements

adjacent to the boundary were discarded. If the strain field were homogeneous,

this would have no consequence. In the present case however, the opposite

assumption that the strain be negligible over the removed element leads to a

systematic correction of the order (1−2ℓ/L) where L is the ROI size. A mean

axial strain of order −2.8% independent of the ZOI size, is obtained when this

first order correction is taken into account.

The amplitude of the displacement is also to be noted, namely, the level

spanned by the axial displacement is about 10 voxels, or 530µm, which is
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already quite large for DIC techniques even if strains were not localized. Let

us also observe that as the ZOI size decreases, the displacement field appears

to become more noisy. This is an illustration of the uncertainty that increases

as the ZOI size decreases, as shown in Fig. 3.

6 Conclusion

A new approach was developed to determine 3D displacement fields based on

the comparison of two CT scans. The sought displacement field is decomposed

onto a basis of continuous functions using C8P1-shape functions as proposed in

classical finite element methods. The latter corresponds to one of the simplest

kinematic descriptions. It therefore allows for a complete compatibility of the

kinematic hypotheses made during the measurement stage and the subsequent

identification / validation stages, for instance, by using finite element simula-

tions [10]. Since a linearized functional is considered, a multi-scale algorithm

is implemented to allow for small as well as medium range displacements (i.e.,

at least of the order of the element size).

The performance of the algorithm was tested on a reference image obtained

by CT to evaluate the reliability of the estimation, which is shown to allow

for either a reasonable accuracy for homogeneous displacement fields, or for a

very well resolved displacement field down to element sizes as small as 6 voxels.

The displacement field is analyzed on a foam sample where a localization band

develops in uniaxial compression. For element sizes ranging from 16 down to

6 voxels, the displacement field is shown to be reliably determined. As far as

mean strains are concerned, consistent results were obtained. Strain localiza-

tion could be observed when analyzing more locally the displacement maps.
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The analysis is therefore operational and reliable to deal with CT pictures.

However, average strain levels as high as −30% could not be analyzed even

with the multi-grid implementation. Scans at intermediate strain levels should

have been performed.

The application of this algorithm to study the behavior of cellular materials is

encouraging. It has been possible to highlight and identify the heterogeneity of

the strain field in a foam. Previous works have shown the heterogeneity of the

deformation between beads, at the mesoscopic scale. With this new approach,

by combining 3D-DIC and XCMT, the heterogeneity of the strain inside a bead

has been shown at a scale close to that of the cell scale. The information will be

useful to improve foam models and to better understand the response of this

cellular material used in sandwich structures. The phenomena observed and

quantified from this method have to be taken into account in a new model.

Although these results are very encouraging, in order to follow the entire

development of the strain field, it appears necessary to have a more progressive

series of image with a more limited displacement difference between successive

scans so as to be compatible with the limits of the presented DIC algorithm.
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