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Abstract 

After the justification of the maximum entropy approach for equilibrium thermodynamic 

system, and of a maximum path entropy algorithm for nonequilibrium thermodynamic 

systems by virtue of the principle of virtual work, we present in this paper another application 

of the principle to thermodynamic systems out of equilibrium. Unlike the justification of 

maximum path entropy for the motion trajectories during a period of time, this work is on the 

maximum of the entropy defined as a measure of the momentary dynamical uncertainty as a 

function of the probability distribution over the microstates of the system at any given 

moment.  

 

PACS numbers  
05.70.Ln (Nonequilibrium and irreversible thermodynamics)  

02.50.Ey (Stochastic processes) 

02.30.Xx (Calculus of variations) 
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1) Introduction 

The maximum entropy principle (maxent) proposed by Jaynes[1] for equilibrium system 

represents a longstanding belief dating back to Boltzmann and Gibbs. As presented in many 

textbooks, one can use the Boltzmann entropy in logarithmic function of the number of 

microstates of an isolated system as well as equal probability for all the microstates, then the 

assertion that the maximum entropy state is the most realist one looks reasonable since the 

most probable state must contain in this case of equipartiton the largest number of microstates 

which imply largest entropy. However, the extension of this assertion to other ensembles 

(canonical ensemble for example), and especially the arguments for this extension, are less 

obvious with the expression of thermodynamic entropy in Shannon formula ( ppS ii iln∑−= ) 

where the probability pi are different in general for different microstates. This formula is 

claimed by Jaynes to be the only maximizable information measure for any probabilistic 

situation. In any case, as a principle, maxent does not has sound base with, for example, 

mathematical justification. So it seems not a physical principle on its own. Without the a 

priori assumption of entropy form, maxent is only supported by arguments which are either 

philosophical or intuitive and often formulated on the basis of the subjective nature of 

probability[1], in contrast to the objective nature of the frequency definition of probability in 

physics.   

The extension of maxent to nonequilibrium system is much less obvious. This belief stems 

directly from the success of the maxent within equilibrium statistical mechanics and from the 

arguments supporting maxent as a generic inference principle for probability assignment. 

Since the thermodynamic entropy of the second law does not exist any more, there are 

different definition of entropy in this practice. The first is an extension of the equilibrium 

entropy to nonequilibrium system as a function of nonequilibrium state (see for example [2]). 

The second concerns not the entropy itself but the entropy production used in a similar 

maximum principle[3]. The notion of entropy production is different in different context of 

entropy. It is sometimes related to heat production of the process, sometimes not[4]. The third 

is the path entropy defined as a measure of the uncertainty in the choice (by the system) of 

different possible trajectories from one state to another. So it is a function of the probabilities 

of the occurrence of different paths. The maximization of this entropy and its consequence for 

the maximization of the first entropy or the entropy production has been recently studied 

independently by several authors[5][6][7].  
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In spite of the successful application of maxent to many kinds of system and of the strong 

and longstanding belief in its validity especially for equilibrium system, controversy and 

doubt persist around it (see e.g., [1][3][8]). The doubts run especially around the intuitive, 

plausible and non mathematical arguments supporting maxent as a generic principle for 

optimization, inference and deduction using a unique Shannon entropy measure.  

In our opinion, a justification of maxent from other fundamental principle of physics, 

especially from obvious and widely accepted principles, might help to understand and to 

interpret maxent from theoretical and philosophical viewpoint. This is the aim of our two 

recent works: one for maxent of equilibrium system using the thermodynamic entropy[9], 

another for maxent for nonequilibrium system using path entropy[10]. Both works are based 

on a single principle of the classical mechanics: the principle of virtual work. The latter is an 

obvious, palpable, widely accepted and successfully used principle in both analytical 

mechanics theory and mechanical engineering for static equilibrium and dynamical 

equilibrium problems. For the time being, the outcome of these works is the following. 1) 

Maximum thermodynamic entropy is kind of dynamical equilibrium prescribed by the virtual 

work principle. 2) This maxent does not need any assumption about the entropy property and 

functional form. 3) The equiprobability situation for microcanonical ensemble is a natural 

consequence of this approach whatever the entropy form. 4) The constraints introduced as 

partial knowledge into maxent by Jaynes on the basis of informational arguments appear here 

naturally as a consequence of vanishing virtual work. For example, for canonical ensemble, 

virtual work is equal to the virtual variation of the difference between the entropy (S) and the 

energy ( E ) at inverse temperature β, meaning that )( ES β−  should be maximized. For 

grand-canonical ensemble, the maximizable quantity is )( NES βμβ +−  where μ is the 

potential energy and N the particle number. 5) For nonequilibrium system, the maximum 

quantity is the difference )( abab AS η−  between the path entropy abS  and the mean Lagrange 

action abA  of mechanics averaged over the different trajectories, where the path entropy is 

defined by )( ababab dAAddS −= χ  (χ is a diffusion constant) without other conditions.  

In the present work, we will present a further development of this approach: its application 

to nonequilibrium system in order to justify maxent with entropy defined as a measure of the 

dynamical uncertainty at any moment instead of the path entropy measuring the uncertainty of 

a period of the motion.  
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2) Principle of virtual work 
In mechanics, a virtual displacement of a system is a kind of hypothetical infinitesimal 

displacement with no time passage and no influence on the forces. It should be perpendicular 

to the constraint forces. The principle of virtual work says that the total work done by all 

forces acting on a system in static equilibrium is zero for any possible virtual displacement.  

Suppose a simple case of a system of N points of mass in equilibrium under the action of N 

forces Fi (i=1,2,…N) with Fi on the point i, and imagine virtual displacement of each point 

ir
vδ  for the point i. According to the principle, the virtual work Wδ  of all the forces Fi on all 

ir
vδ  vanishes for static equilibrium, i.e. 0

1
=⋅∑=

=
i

N

i
i rFW vv δδ [11]. This principle was extended to 

moving system by d’Alembert[12] who added the initial force iiam v−  on each point of the 

system where mi is the mass of the point i and iav  its acceleration. This "dynamical 

equilibrium" is given by 0)(
1

=⋅−∑=
=

iii
N

i
i ramFW vvv

δδ .  

3) Maximum entropy for nonequilibrium system 
We have an ensemble of a large number of identical systems out of equilibrium. For any 

moment of the movement, the systems are distributed over the momentary time dependent 

microstates in the same way as an ensemble of equilibrium systems distributed over the time 

independent microstates. Suppose in this ensemble a system is composed of N particles 

moving in the 3N dimensional position space starting from a point a. If the motion was 

regular, all the systems would follow a single trajectory from a to a given point b in the 6N-

dimensional phase space during a given period τ according to the least action principle. But as 

well known every system is subject to irregular motion due to the random motion of the 

particles. This random dynamics is just the underlying reason for the fluctuation in energy and 

other quantity of the system. In this circumstance, the systems may take different paths in the 

phase space from a to b as discussed in the papers [5][6][7]. Without loss of generality, we 

consider discrete paths denoted by k=1,2 … (if the variation of the paths is continuous, the 

sum over k must be replaced by path integral between a and b). At a given moment t after the 

departure of the ensemble from an initial state, all the systems are distributed over the 

different trajectories, each one arriving at a microstate j (j=1,2, … w) . This implies that at 

that moment, each trajectory arrives at a microstate. Let pj be the probability that a system is 
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found at the state j having a quantity xj. The ensemble average of the quantity is then given by 

pxx j

w

j
j∑=

=1
.  

Now let us look at the random dynamics of a single system. After leaving its initial state, 

the system is found at a moment on the trajectory k or at the corresponding microstate j. At 

this time, the total force on a particle i of the system is denoted by F i
v  and the acceleration by 

ai
v  with an inertial force ami i

v−  where im  is the mass of the particle. Suppose a virtual 

displacement r i
vδ  of the particle i at the state j, the virtual work over this displacement is 

given by  

 

ramFW ijiiiij
vvv

δδ ⋅−= )(       (1) 

Summing this work over all the particles, we obtain 

ijii
N

i
ij ramFW vvv

δδ ⋅−∑=
=

)(
1

      (2) 

For the second terms at the right hand side with inertial forces, we can calculate 

iiiiii trmrrmram δδδδ ==⋅=⋅ )
2
1( 2&v&v&vvv  where ti is the kinetic energy of the particle i. To treat the 

first terms with F i
v , we will distinguish the forces of different nature. Let f i

v
 be the 

interaction forces between the particles whose total vanish for the global system just as in the 

case of equilibrium system. These forces can be given by ii wf −∇=
v

 where wi is the one 

particle potential energy. Let ϕ il  be the forces due to the gradient of some other variables 

such as pressure, temperature, particle density, external fields, etc (with l=1,2, …). These 

forces can be given by lilil V∇−= μϕv  where Vl is the effective potential and lμ  is some 

constant uniquely related to the nature of each force ϕvil  or Vl. We can write  

)()(
11
∑ ∑+−=⋅∑ ∇∑+∇−=⋅∑
==

N

i l
illii

i
li

l
lii

N

i
i vwrVwrF δμδδμδ vvv .      (3) 

where iliil rVv vδδ ⋅∇=   is the virtual variation in the potential Vl due to the virtual 

displacement of the particle i. It follows that 

j
l

ill
N

i
i

N

i l
ill

N

i
jiij vevtwW )()(

111
∑+∑−=∑∑−∑ +−=

===
δμδδμδδδ .       (4) 
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where eiδ  is the virtual variation of only a part ( wte iii += ) of the total energy of the particle 

for the microstate j. This is in fact the one particle energy when the system is in equilibrium 

since wi is defined as the potential of the equilibrium forces. In this way, the virtual work can 

be separated into two part: neq
j

eq
jj WWW δδδ += , the first is the virtual work for equilibrium 

state ( )∑−=
=

N

i
ji

eq
j eW

1
δδ  and the second is for nonequilibrium states j

l
ill

N

i

neq
j vW )(

1
∑∑−=

=
δμδ .  

Remember that, from microscopic viewpoint, a microstate j is a distribution {n1, .. nk, … 

ng, }j of the Nj particles of a system over the g one-particle states k=1,2 …g each having 

energy ek. So we can change the sum over i into the sum over k. For equilibrium work, one 

has 

jkk

g

k
k kj

g

k
k k

eq
j neenenW )()(

11
δδδδ −∑−=∑−=

==
.       (5) 

Hence the equilibrium part of the total virtual work is  

∑−∑−=∑ ∑−∑ ∑−=

∑∑−∑∑−=∑=

k
kk

k
kk

k
kj

j
jk

k
kj

j
jk

j
k

kk
j

jj
k

kk
j

j
eq
j

j
j

eq

neennpenpe

nepenpWpW

δδδδ

δδδδ )()(
.  

     (6) 

The first term is the average of the virtual variation of the energy of the system with constant 

particle number, which can be denoted by j
j

j
k

kk EpenE δδδ ∑=∑=  with j
k

kkj enE )(∑= δδ . 

The second term is the virtual variation of the system energy due to changing particle number 

(grand-canonical system), which is NNpne j
j

j
k

kk δμδμδ =∑=∑−  with j
k

kkj neN )(∑= δμδ  

and Nne
k

kk δδμ /∑−=  (chemical potential). Since ∑−∑=∑=
===

w

j
j jj

w

j
jj

w

j
j pEEpEpE

111
δδδδ  and 

∑−∑=
==

w

j
j jj

w

j
j pNNpN

11
δδδ , we finally get 

∑ −++−=
j

jjj
eq pNENEW δμμδδδ )( .  

     (7) 

By virtue of the first law of thermodynamics, we can identify the heat transfer 

∑ −=
j

jjj pNEQ δμδ )( . If we suppose a reversible virtual displacement (not to be confused 
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with the irreversible nonequilibrium process under consideration), we can still write 

βδδ /eqSQ = . 

Now let us see the nonequilibrium part of the total virtual work j
l

ill
N

i

neq
j vW )(

1
∑∑−=

=
δμδ . 

Its expression over the one particle states is  

jk

g

k l
kll

l
kll

g

k
jkj

l
kll

g

k
k

neq
j nvvnvnW )()()(

111
δμδμμδδ ∑∑−∑∑−=∑∑−=

===
.       (8) 

Then the average nonequilibrium virtual work is given by 

)(
111

k
g

k
kl

l
kl

g

k
kl

neq
j

j
j

neq nvvnWpW δδμδδ ∑−∑ ∑−=∑=
===

. 
     (9) 

For a given l, the first term in the parentheses is in fact l
j

ljjj
j

kl

g

k
kj VVpvnp δδδ −=∑−=∑ ∑−

=
)(

1
 

where ∑=
k

klklj vnV δδ  is the sum of the virtual variations of klv  over all the particles (or over 

all the one particle states) at the state j. The second term can be written as 

NNpnvp l
j

jjl

g

k
jkkl

j
j δνδνδ −=∑−=∑∑−

=1
)(  where j

g

k
jkkll Nnv δδν /)(

1
∑=
=

. It follows that 

NVNVWpW
l

lll
l

ll
neq
j

j
j

neq δωδμδνδμδδ −∑−=+∑−=∑=
=

)(
1

. 
     (10) 

where ∑=
l

llνμω  can be considered as a kind of nonequilibrium chemical potential. Since 

∑−∑=
==

w

j
lj jlj

w

j
jl pVVpV

11
δδδ , Eq.(10) becomes 

∑ −∑++∑−=
j

jj
l

ljl
l

ll
neq pNVNVW δωμωδδμδ )( .      (11) 

Mimicking the first law, we can define the last term of this equation as a kind of "heat" 

implying that it is associated with the uncertainty of the probability distribution as a function 

of Vlj and Nj in the nonequilibrium state. Let it be denoted by  

∑ −∑=
j

jj
l

ljl
neq pNVS δωμηδ )(       (12) 

where η is a nonequilibrium parameter which mimics β for equilibrium state. Finally, the total 

virtual work for the nonequilibrium system is 
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Ω+++∑−−=

++++∑−−=

δδωμδμδ

βδηδδωμδμδδ

NVE

SSNVEW

l
ll

eqneq

l
ll

)(

//)(
 

     (13) 

where βδηδδ // eqneq SS +=Ω  is the total uncertainty of the dynamics. Applying the virtual 

work principle to this equation gives the following variational approach 

0)( =++∑−−Ω NVE
l

ll δωμδμδδ       (14) 

for nonequilibrium dynamics. In what follows, we only discuss the case of closed system 

without variation of particle number, i.e., μ=νl=ω=0 for canonical ensemble. Eq.(14) is now: 

0)//( =∑−−+
l

ll
neqeq VESS μηβδ ,      (15) 

a global maxent for the nonequilibrium dynamics. 

4) Maximum entropy production 
We remember that the dynamics is separated into two components: equilibrium one and 

nonequilibrium one. This separation makes it possible to tackle the dynamical uncertainty and 

total energy in two components as well: the equilibrium uncertainty associated with the 

second law QS eq βδδ =  and the nonequilibrium uncertainty neqneq QS ηδδ = ; the equilibrium 

internal energy E  and the nonequilibrium internal energy ∑
l

llVμ . This separation can help 

us to understand more about the variational recipe of Eq.(14). In a previous work[9], we have 

proved that for equilibrium system, the variation of the difference )( ES eq β−  vanishes, 

which implies a variational algorithm for the nonequilibrium component only 

0)( =∑−
l

ll
neq VS μηδ .      (16) 

This means that the nonequilibrium virtual work must vanish as well 0=neqWδ . So it is 

)( ∑−
l

ll
neq VS μη  which is maximized at any moment of the dynamics. From point of view of 

the Jaynes' maxent algorithm, this is just the maximum of the nonequilibrium entropy under 

the constraint of the effective potentials llVμ .  

In order to see further the maxent of neqS , let us suppose the nonequilibrium entropy is a 

function of the probability distribution pj at the considered moment, i.e., 
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)...( ,2,1 w
neq pppfS = . We can write j

j j

neq p
p
fS δδ ∑

∂
∂

=  due to a virtual process. On the other 

hand, we have ∑∑=
j

j
l

ljl
neq pVS δμηδ which implies 

0)( =∑−∑
∂
∂

j
l

ljl
j j

pV
p
f δμη . 

     (17) 

By virtue of the normalization condition 0
1

=∑
=

w

j
jpδ  for this given moment, one can prove that 

KV
p
f

l
ljl

j
=∑−

∂
∂ μη . 

     (18) 

with constant K[14]. Eq.(18) can be used for deriving the probability distribution of the 

nonequilibrium component of the dynamics if the functional f is given. Inversely, if the 

probability distribution is known, one can derive the functional of neqS  (some examples are 

given in [13]).  

Concerning Eq.(14), since llVμ  is the potentials associated with macroscopic transfer 

such as matter diffusion, heat conduction, macroscopic expansion of gas etc, neqSδ  can be 

seen as the entropy (momentary uncertainty) of the transfer processes. Without this transport 

phenomenon, it must be an equilibrium, neqS  must be constant. From this viewpoint, neqS  is 

an entropy production of the transports, and Eq.(14) is in fact the maximization of the entropy 

production (MEP) or of the uncertainty produced by the dynamics. MEP is a principle 

proposed since long for nonequilibrium thermodynamics and verified by numerous systems 

(see [3] and references there-in for details).  

One should notice the difference between the entropy in MEP and the thermodynamic 

entropy used for equilibrium case. We do not have necessarily QS neq βδδ =  where Qδ  is the 

heat transfer. 

5) Application to diffusion 
In what follows, we do not consider energy dissipation. We address simple cases with 

only one effective potential Vl for transfer phenomena.  

Let C be the density of the diffused particles. From the Fick's first law, the flux is given by 

CDJ ∇−=  where D is the diffusion constant. Comparing the law to FCCuJ dμ==  
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( Fu dμ=  is the drift velocity of a particle with dμ  its mobility and F the force on each 

particle), we obtain the effective force 
d

il C
CDF

μ
ϕ ∇−

==v . We can see that in the definition 

lilil V∇−= μϕv , the constant 
d

l
D
μ

μ =  if we let i∇=∇  and CVV ll ln== . We get the entropy 

production 

CS l
neq lnδημδ = .      (19) 

This result can be applied to the free adiabatic expansion of ideal gas of N particles. Suppose 

a small expansion from a state 1 to a state 2 with respectively volumes V1 to V2 and densities 

C1 and C2. It is straightforward to write 
1

2ln
V
VS l

neq ημδ = . This is close to the result 

1

2ln
V
VNkS B=Δ  calculated for two equilibrium states 1 and 2. If it is the case, we can identify 

lημ  to BNk  where kB is the Boltzmann constant, which means the following relationship 

D
NkBdμη = . Using the Einstein relation TkD Bdμ= , we find 

T
N

=η . Note that SΔ  is the 

difference between the two equilibrium entropies of the state 1 and 2. But Eq.(19) is in 

general for any two momentary states during the expansion.  

In the case of electric conduction with the current density ECeuCeJ d
vvv

μ−=−=  with 

VE −∇=
v

, where e is the charge, E
v

 the electric field and V its potential, we have Veil ∇−=ϕv  

with el =μ  and VVl = . Hence 

VeS neq δηδ = .      (20) 

By virtue of the Joule's law VI
t
QP δ
δ
δ

==  with current intensity I and heat production Qδ  

over a small segment lδ  of the conduction wire crossed by the current during a time period 

tδ , we can identify neqSTδ  to Qδ  if the temperature is uniform everywhere in the volume 

lsδ  of the segment lδ  where s is the section area of the wire. Since 

VNetVCeustPQ δδδδδ ===  where lCstCsuN δδ ==  is the total number of electrons in the 
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segment lδ . Put neqSTQ δδ =  and compare it with Eq.(20), we find 
T
N

=η  as above and 

Eq.(20) becomes V
T
NeS neq δδ = . 

We still notice that even within this analysis based on the heat production, neqSδ  is not the 

variation of the thermodynamic entropy of second law which does not exist for 

nonequilibrium system. 

6) Concluding remarks 
On the basis of the application of virtual work principle of d'Alembert to equilibrium 

system in order to justify maximum thermodynamic entropy, we have presented here an 

extension of the same principle to thermodynamic system out of equilibrium in order to 

justify maxent using the momentary entropy as a measure of the dynamical uncertainty at any 

moment instead of the path entropy as the uncertainty of trajectory for a period of the 

evolution. We see that maxent for nonequilibrium system with the momentary entropy as a 

function of the probability distribution over the momentary microstates is a consequence of a 

very basic principle in mechanics for equilibrium problems.  

One outcome of this work is that maxent, being mathematically justified from other 

physical principle, is a physics principle on its own.  

Another conclusion is that the validity of this maxent does not need hypothesis about the 

entropy functional. This opens the way for maxent to be applied to other entropy forms if any 

as measure of statistical uncertainty. See reference [13] for detailed discussion on this topic.  
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