
HAL Id: hal-00197850
https://hal.science/hal-00197850v1

Submitted on 15 Dec 2007 (v1), last revised 11 Mar 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When do stochastic max-plus linear systems have a cycle
time ?

Glenn Merlet

To cite this version:
Glenn Merlet. When do stochastic max-plus linear systems have a cycle time ?. Electronic Journal of
Probability, 2008, 13 (2008), Paper 12, 322-340. �hal-00197850v1�

https://hal.science/hal-00197850v1
https://hal.archives-ouvertes.fr


ha
l-

00
19

78
50

, v
er

si
on

 1
 -

 1
5 

D
ec

 2
00

7

Cycle time of stochastic max-plus linear systems.
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Abstract

We analyze the asymptotic behavior of the sequence of random vari-
ables (x(n, x0))n∈N

defined by x(0, x0) = x0 and x(n+1, x0) = A(n)x(n, x0),
where (A(n))

n∈N
is a stationary and ergodic sequence of random matrices

with entries in the semiring (R ∪ {−∞}, max, +).
Such sequences model a large class of discrete event systems, among

which timed event graphs, 1-bounded Petri nets, some queuing networks,
train or computer networks.

We give a necessary condition for
(

1

n
x(n, x0)

)
n∈N

to converge almost-

surely, which proves to be sufficient when the A(n) are i.i.d.
Moreover, we construct a new example, in which (A(n))

n∈N
is strongly

mixing, that condition is satisfied, but
(

1

n
x(n, x0)

)
n∈N

do not converge
almost-surely.

1 Introduction

1.1 Model

We analyze the asymptotic behavior of the sequence of random variables (x(n, x0))n∈N

defined by: {
x(0, x0) = x0

x(n + 1, x0) = A(n)x(n, x0)
, (1)

where (A(n))n∈N
is a stationary and ergodic sequence of random matrices with

entries in the semiring Rmax = R ∪ {−∞} whose addition is the max and whose
multiplication is +. Such sequences are called stochastic recurrent sequences
driven by (A(n))n∈N

.
We also define the product of matrices A(k, n) := A(k) · · ·A(n) such that

x(n, x0) = A(n− 1, 0)x0 and, if the sequence has indices in Z, which is possible
up to a change of probability space, y(n, x0) := A(−1,−n)x0.

On the coefficients, Relation (1) reads

xi(n + 1, x0) = max
j

(Aij(n) + xj(n, x0)) ,

and the product of matrices is defined by

A(n − 1, 0)ij = max
i0=j,in=i

n−1∑

l=0

Ail+1il(l). (2)
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In most cases, we assume that A(n) has at least one finite entry on each row,
which is a necessary and sufficient condition for x(n, x0) to be finite. (Other-
wise, some coefficients can be −∞.)

Such sequences model a large class of discrete event dynamical systems.
This class includes some models of operations research like timed event graphs
(F. Baccelli [1]), 1-bounded Petri nets (S. Gaubert and J. Mairesse [11]) and
some queuing networks (J. Mairesse [16], B. Heidergott [13]) as well as many
concrete applications. Let us cite job-shops models (G. Cohen et al.[8]), train
networks (H. Braker [7], A. de Kort and B. Heidergott [10]), computer networks
(F. Baccelli and D. Hong [3]) or a statistical mechanics model (R. Griffiths [12]).
For more details about modelling, see the books by F. Baccelli and al. [2] and
by B. Heidergott and al. [14].

1.2 Law of large numbers

The sequences satisfying Equation (1) have been studied in many papers. If
a matrix A has at least one finite entry on each row, then x 7→ Ax is non-
expanding for the L∞ norm. Therefore, we can assume x0 = 0, and we do it
from now on.

We say that they satisfy the strong law of large numbers (SLLN) if
(

1
n
x(n, 0)

)
n∈N

converge almost surely. The limit in the law of large numbers is called the cycle
time of the system.

Some sufficient conditions for the existence of this cycle time were given by
J.E. Cohen [9], F. Baccelli and Z. Liu [4, 1], D. Hong [15] and more recently by
T. Bousch and J. Mairesse [6], the author [17] or B. Heidergott et al. [14].

T. Bousch and J. Mairesse proved (Cf. [6]) that, if A(0)0 is integrable,
then the sequence

(
1
n
y(n, 0)

)
n∈N

converges almost-surely and in mean and that(
1
n
x(n, 0)

)
n∈N

converges almost-surely if and only if the limit of
(

1
n
y(n, 0)

)
n∈N

is deterministic.
The other results can be seen as sufficient conditions for this to happen.

Some results only assumed ergodicity of (A(n))n∈N
, some others independence.

But, even in the i.i.d. case, it was not clear when the sequence converge.
Based on the part of the result in [1] that do not rely on the additional hy-

potheses of that article, we give a necessary condition for the limit of
(

1
n
y(n, x0)

)
n∈N

to be deterministic. This condition involves a graph defined by the support of
law of A(1). Moreover, whenever it exists, the limit of

(
1
n
x(n, 0)

)
n∈N

is given by
Formula (1), which was proved in [1] under several additional assumptions but
unknown when the convergence was proved by other means, like in [6]. Those
results are gathered in Theorem 2.3.

Conversely, we show (Theorem 2.4) that the necessary condition is suffi-
cient when the A(n) are i.i.d. As a first step, we extend (Theorem 3.11) a
result of [15]. Then, we perform an induction, thanks to Proposition 3.5 and
Lemma 3.10.

In Section 2, we state our results and give examples to show that the hy-
potheses are necessary. In Section 3, we successively prove the theorems 2.3
and 2.4 .
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2 Results

2.1 Theorems

In this section we attach a graph to our sequence of random matrices, in order
to define the necessary condition and to split the problem for the inductive
proof of the converse theorem.

Before defining the graph, we need the following, which directly follows from
Kingman’s theorem and can be traced back to J.E. Cohen [9]:

Theorem-Definition 2.1 (Maximal Lyapunov exponent).
If (A(n))n∈N

is an ergodic sequence of random matrices with entries in Rmax

such that the positive part of maxij Aij(0) is integrable, then the sequences(
1
n

maxi xi(n, 0)
)
n∈N

and
(

1
n

maxi yi(n, 0)
)
n∈N

converge almost-surely to the same
constant γ ∈ Rmax, which is called maximal Lyapunov exponent of (A(n))n∈N

.
We denote this constant by γ

(
(A(n))n∈N

)
, or γ(A).

Remark 2.1. The constant γ(A) is well-defined even if (A(n))n∈N
has a row

without finite entry.
The variable maxi xi(n, 0) is equal to maxij A(n − 1, 0)ij .

Let us define the graph attached to our sequence of random matrices as well
as some subgraphs. We also set the notations for the rest of the text.

Definition 2.2 (Graph of a random matrix). For every x ∈ R
[1,··· ,d]
max and

every subset I ⊂ [1, · · · , d], we define the subvector xI := (xi)i∈I .

Let (A(n))n∈N
be a stationary sequence of random matrices with values in

Rd×d
max.

i) The graph of (A(n))n∈N
, denoted by G(A), is the directed graph whose

nodes are the integers between 1 and d and whose arcs are the pairs (i, j)
such that P(Aij(0) 6= −∞) > 0.

ii) To each strongly connected components (s.c.c) c of G(A), we attach the
submatrices A(c)(n) := (Aij(n))i,j∈c and the exponent γ(c) := γ(A(c)).

Nodes which are not in a circuit are assumed to be alone in their s.c.c .
Those s.c.c are called trivial and they satisfy A(c) = −∞a.s. and therefore
γ(c) = −∞.

iii) A s.c.c c̃ is reachable from a s.c.c c (or from a node i) if c = c̃ (or i ∈ c) or
if there exists a path on G(A) from a node in c (resp. from i) to a node in
c̃. In this case, we write c → c̃. (resp. i → c̃).

Remark 2.2 (Paths on G(A)). 1. Equation (2) can be read as ’A(−1,−n)ij
is the maximum of the weights of paths from i to j with length n on
G(A), the weight of the kth arc being given by A(−k)’. Thus, yi(n, 0)
is the maximum of the weights of paths on G(A) with initial node i and
length n and γ(A) is a kind of maximal average weight of infinite paths.
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2. Previous author used such a graph, in the fixed support case, that is when
P (Aij(0) = −∞)) ∈ {0, 1}. In that case, the (random) weight where
almost surely finite. Here, we can have weight −∞, with probability
strictly less than one.

3. Some previous author used the isomorphic graph with weight Aji on arc
(i, j). This is natural to multiply on the left an compute x(n, 0). Since we
mainly work with y(n, 0) and thus multiply on the right, our definition is
more convenient.

With those definitions, we can state the announced necessary condition for
(x(n,X0))n∈N

to satisfy a strong law of large numbers:

Theorem 2.3. Let (A(n))n∈N
be a stationary and ergodic sequence of random

matrices with values in Rd×d
max and almost-surely at least one finite entry on each

row, such that the positive part of maxij Aij(0) is integrable.
If the limit of

(
1
n
y(n, 0)

)
n∈N

is deterministic, then it is given by:

∀i ∈ [1, d], lim
n

1

n
yi(n, 0) = max

i→c
γ(c) a.s., (3)

That being the case, for every s.c.c c of G(A), the submatrix A{c} of A(0) whose
indices are in {

i ∈ [1, d]

∣∣∣∣∃c̃, c → i → c̃, γ(c̃) = max
c→ĉ

γ(c)

}

almost-surely has at least one finite entry on each row.

If
(

1
n
x(n, 0)

)
n∈N

converges almost-surely, then its limit is deterministic and

is equal to that of
(

1
n
y(n, 0)

)
n∈N

, that is we have:

∀i ∈ [1, d], lim
n

1

n
xi(n, 0) = max

i→c
γ(c) a.s., (4)

To make the submatrices A{c} more concrete, we give on Fig. 1 an example
of a graph G(A) with the exponent γ(k) attached to each s.c.c and compute the
submatrix A{c2}.

The necessary and sufficient condition in the i.i.d. case reads

Theorem 2.4 (Independent case). If (A(n))n∈N
is a sequence of i.i.d. ran-

dom matrices with values in Rd×d
max and almost-surely at least one finite entry

on each row, such that maxAij(0)6=−∞ |Aij(0)| is integrable, then the sequence(
1
n
x(n, 0)

)
converges almost-surely if and only if for every s.c.c c, the subma-

trix A{c} of A(0) defined in Theorem 2.3 almost-surely has at least one finite
entry on each row. That being the case the limit is given by Equation (4).

Remark 2.3. We also prove that, when A(0)0 ∈ L1, the limit of
(

1
n
y(n, 0)

)
is

deterministic if and only if the matrices A{c} almost-surely have at least one
finite entry on each row.

The stronger integrability ensures the convergence of
(

1
n
x(n, 0)

)
to this limit,

like in [6]. There, it appeared as the specialization of a general condition for
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Figure 1: An example of computations on G(A)

γ(4) = 2

γ(1) = 4

γ(6) = 0

γ(5) = 3

Legend

: c

: Indices of A{2}

:
⋃

c2→c c

γ(2) = 1

γ(3)=−∞

uniformly topical operators, whereas in this paper it ensures that B0 is inte-
grable for every submatrix B of A(0) with at least one finite entry on each
row.

Actually, we prove that
(

1
n
x(n, 0)

)
converges, provided that ∀c,A{c}0 ∈

L1, (see Proposition 3.5). We chose to give a slightly stronger integrability
condition, which is easier to check because it does not depend on G(A).

2.2 Examples

To end this section, bellow are three examples that show that the independence
is necessary but not sufficient to ensure the strong law of large numbers and
that the integrability condition is necessary.

Example 1 (Independence is necessary). Let A and B be defined by

A =

(
1 −∞

−∞ 0

)
and B =

(
−∞ 0
0 −∞

)
.

For any positive numbers γ1 and γ2 such that γ1 + γ2 < 1, we set δ = 1−γ1−γ2

2 .
Let (A(n), in)n∈N be a stationnary version of the irreducible Markov chain on
{A,B} × {1, 2} with transition probabilities given by the following diagram :

Then, (A(n))n∈N
is a strongly mixing sequence of matrices whose support

is the full subshit {A,B}N, but we have

P

(
lim
n

1

n
y1(n, 0) = γ1

)
= γ1 + δ and P

(
lim
n

1

n
y1(n, 0) = γ2

)
= γ2 + δ, (5)

and thus, according to Theorem 2.3,
(

1
n
x(n, 0)

)
n∈N

do not converge.
To prove Equation (5), let us denote by τ the permutation between 1 and 2

and by g(C, i) the only finite entry on the ith row of C. It means that for any i,
g(A, i) = Aii and g(B, i) = Biτ(i). Since all arcs of the diagram arriving to a
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Figure 2: Transition probabilities of (A(n), in)n∈N

A,1

B,2

A,2

B,1

δ
γ2

1 − γ2

δγ1

1 − γ1

1 − δ 1 − δ

node (A, i) are coming from a node (C, i), while those arriving at a node (B, i)
are coming from a node (C, τ(i)), we almost surely have

xin(n+1, 0)−xin−1(n, 0) = g(A(n), in)) and xτ(in)(n+1, 0)−xτ(in−1)(n, 0) = g(A(n), τ(in))),

and thus

xin−1(n, 0) =
n−1∑

k=0

g(A(k), ik) and xτ(in−1)(n, 0) =
n−1∑

k=0

g(A(k), τ(ik)),

yi−1(n, 0) =

n∑

k=1

g(A(−k), i−k) and yτ(i−1)(n, 0) =

n∑

k=1

g(A(−k), τ(i−k)).

It is easily checked, that the invariant distribution of the Markov chain is
given by the following table :

x (A, 1) (B, 2) (A, 2) (B, 1)

P((A(n), in) = x) γ1 δ γ2 δ

and that g is equal to 0 except in (A, 1).
Therefore, we have

lim
n

1

n
yi−1(n, 0) = E (g(A(0), i0)) = P ((A(0), i0) = (A, 1)) = γ1

lim
n

1

n
yτ(i−1)(n, 0) = E (g(A(0), τ(i0))) = P ((A(0), τ(i0)) = (A, 2)) = γ2

and consequently

lim
n

1

n
y(n, 0) = (γi−1 , γτ(i−1))

′a.s.,

which implies Equation (5).

The next example shows that independence is not enough.

Example 2 (Independence is not sufficient[5]). Let (A(n))n∈N
be the sequence

of i.i.d. random variables taking values

B =




0 −∞ −∞
0 −∞ −∞
0 1 1


 and C =




0 −∞ −∞
0 −∞ 0
0 0 −∞



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with probabilities p > 0 and 1 − p > 0. Let us compute the action of B and C

on vectors of type (0, x, y)′, with x, y ≥ 0:

B(0, x, y)′ = (0, 0,max(x, y) + 1)′ and C(0, x, y)′ = (0, y, x)′.

Therefore x1(n, 0) = 0 and maxi xi(n+1, 0) = #{0 ≤ k ≤ n|A(k) = B}. In par-
ticular, if A(n) = B, then x(n + 1, 0) = (0, 0,#{0 ≤ k ≤ n|A(k) = B})′, and if
A(n) = C and A(n−1) = B, then x(n+1, 0) = (0,#{0 ≤ k ≤ n|A(k) = B}, 0)′.
Since

(
1
n
#{0 ≤ k ≤ n|A(k) = B}

)
n∈N

converges almost-surely to p, we see:

limn
1
n
x1(n, 0) = 0 a.s.

∀i ∈ {2, 3}, lim infn
1
n
xi(n, 0) = 0 and lim supn

1
n
xi(n, 0) = p a.s. .

(6)

Therefore the sequence
(

1
n
x(n, 0)

)
n∈N

almost-surely does not converge.

We notice that G(A) has two s.c.c c1 = {1} and c2 = {2, 3}, with Lyapunov
exponents γ(c1) = 0 and γ(c2) = p, and 2 → 1. Therefore we check that the first
row of A{c2}(n) has no finite entry with probability p.

The last example shows that Theorem 2.4 do not holds under the weaker
integrability condition A(0)0 ∈ L1.

Example 3 (Integrability). Let (Xn)n∈Z
be a sequence of i.i.d. real variables

satisfying Xn ≥ 1 a.s. and E(Xn) = +∞. The sequence of matrices is defined
by:

A(n) =




−Xn −Xn 0
−∞ 0 0
−∞ −∞ −1




A straightforward computation shows that x(n, 0) = (max(−Xn,−n), 0,−n)′

and y(n, 0) = (max(−X0,−n), 0,−n)′. It follows from Borel-Cantelli lemma
that limn

1
n
Xn = 0 a.s. if and only if E(Xn) < ∞. Hence

(
1
n
x(n, 0)

)
n∈N

con-
verges to (0, 0,−1)′ in probability but the convergence do not occur almost-
surely.

Let us notice that the limit of
(

1
n
y(n, 0)

)
n∈N

is given by Remark 2.3 : each

s.c.c has exactly one node, γ(1) = −E(Xn) = −∞, γ(2) = 0 and γ(3) = −1.

3 Proofs

3.1 Necessary conditions

3.1.1 Additional notations

To interpret the results in terms of paths on G(A), and prove them, we redefine
the A{c} and some intermediate submatrices.

Definition 3.1. To each s.c.c c, we attach three sets of elements.
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i) Those that only depend on c itself.

x(c)(n, x0) := A(c)(n − 1, 0)(x0)
c and y(c)(n, x0) := A(c)(−1,−n)(x0)

c

ii) Those that depend on the graph downstream of c.

Ec := {c̃|c → c̃}, γ[c] := max
c̃∈Ec

γ(c̃),

Fc :=
⋃

c̃∈Ec

c̃, A[c](n) := (Aij(n))i,j∈Fc

x[c](n, x0) := A[c](n − 1, 0)(x0)
Fc and y[c](n, x0) := A[c](−1,−n)(x0)

Fc .

iii) Those that depend on the indices of A.{c}.

Gc := {c̃ ∈ Ec|∃ĉ, c → c̃ → ĉ, γ(ĉ) = γ[c]},

Hc :=
⋃

c̃∈Gc

c̃ , A{c}(n) := (Aij(n))
i,j∈Hc

x{c}(n, x0) := A{c}(n − 1, 0)(x0)
Hc and y{c}(n, x0) := A{c}(−1,−n)(x0)

Hc .

iv) A s.c.c c is called dominating if Gc = {c}, that is if for every c̃ ∈ Ec\{c},
we have: γ(c) > γ(c̃).

As in Remark 2.2, we notice that the coefficients y
(c)
i (n, 0), y

[c]
i (n, 0) and

y
{c}
i (n, 0) are the maximum of the weights of paths on the subgraph of G(A)

with nodes in c, Fc and Hc respectively.
Consequently γ(c), γ(A[c]) and γ(A{c}) are the maximal average weight of

infinite paths on c, Fc and Gc respectively. Since γ[c] is the maximum of the
γ(c̃) for s.c.c c̃ downstream of c, the interpretation suggests it might be equal
to γ(A[c]) and γ(A{c}). Corollary 3.4, due to F. Baccelli [1] says it is.

Clearly, γ(A[c]) ≥ γ(A{c}) ≥ γ(A[c]), but the maximum is actuallyy taken
for finite paths, so that the converse inequalities are not obvious.

3.1.2 Formula for the limit

Let L be the limit of
(

1
n
y(n, 0)

)
n∈N

, which exists according to [6] and is assumed
to be deterministic.

By definition of G(A), if (i, j) is an arc of G(A), then, with positive proba-
bility, we have Aij(−1) 6= −∞ and

Li = lim
n

1

n
yi(n, 0) ≥ lim

n

1

n
(Aij(−1) + yj(n, 0) ◦ θ−1) = 0 + Lj ◦ θ−1 = Lj .

If c → c̃, then for every i ∈ c and j ∈ c̃, there exists a path on G(A) from i

to j, therefore Li ≥ Lj . Since this holds for every j ∈ Fc, we have:

Li = max
j∈Fc

Lj (7)

To show that maxj∈Fc Lj = γ[c], we have to study the Lyapunov exponents of
sub-matrices.

The following proposition states some easy consequences of Definition 3.1
which will be useful in the sequel.

8



Proposition 3.2. The notations are those of Definition 3.1 .

i) for every s.c.c. c, x[c](n, x0) = xFc(n, x0).

ii) for every s.c.c. m, and every i ∈ c, we have:

xi(n, 0) = x
[c]
i (n, 0) ≥ x

{c}
i (n, 0) ≥ x

(c)
i (n, 0).

yi(n, 0) = y
[c]
i (n, 0) ≥ y

{c}
i (n, 0) ≥ y

(c)
i (n, 0). (8)

iii) Relation → is a partial order, for both the nodes and the s.c.c. .

iv) If A(0) almost-surely has at least one finite entry on each row, then for
every s.c.c. c, A[c](0) almost-surely has at least one finite entry on each
row.

v) for every c̃ ∈ Ec, we have γ(c̃) ≤ γ[c̃] ≤ γ[c] and Gc = {c̃ ∈ Ec|γ
[c̃] = γ[c]}.

The next result is about Lyapunov exponents. It is already in [1, 4] and its
proof does not uses the additional hypotheses of those articles. For a point by
point checking, see [17].

Theorem 3.3 ([1, 4, 2]). If (A(n))n∈N
is a stationary and ergodic sequence of

random matrices with values in Rd×d
max such that the positive part of maxi,j Aij

is integrable, then γ(A) = maxc̃ γ(c̃).

Applying this theorem to sequences
(
A[c](n)

)
n∈N

and
(
A{c}(n)

)
n∈N

, we get
the following corollary.

Corollary 3.4. For every s.c.c. c, we have

γ(A{c}) = γ(A[c]) = γ[c].

It follows from proposition 3.2 and the definition of Lyapunov exponents
that for every s.c.c c of G(A),

max
i∈Fc

Li = lim
n

1

n
max
i∈Fc

yi(n, 0) = γ(A[c]).

Combining this with Equation (7) and Corollary 3.4, we deduce that the
limit of

(
1
n
y(n, 0)

)
n∈N

is given by Equation (3).

3.1.3 A{c}(0) has at least one finite entry on each row

We still have to show that for every s.c.c c, A{c}(0) almost-surely has at least
one finite entry on each row. Let us assume it does not. It means that there
exists a s.c.c. c and an i ∈ c such that the set

{∀j ∈ Hc, Aij(−1) = −∞}

9



has positive probability. On this set, we have:

yi(n, 0) ≤ max
j∈Fc\Hc

Aij(−1) + max
j∈Fc\Hc

yj(n − 1, 0) ◦ θ−1.

Dividing by n and letting n to +∞, we have Li ≤ maxj∈Fc\Hc
Lj. Replacing

L according to Equation (3) we get γ[c] ≤ maxk∈Ec\Gc
γ[k]. This last inequality

contradicts proposition 3.2 v). Therefore, A{c}(0) almost-surely has at least
one finite entry on each row.

3.1.4 The limit is constant

Let us assume that
(

1
n
x(n, 0)

)
n∈N

converges almost-surely to a limit L′. Up to
a change of probability space, we can assume that A(n) = A ◦ θn, where A is
a random variable and (Ω, θ, P) is an invertible ergodic measurable dynamical
system.

It follows from [6] that
(

1
n
y(n, 0)

)
n∈N

converges almost-surely, thus we have

1

n
y(n, 0) −

1

n + 1
y(n + 1, 0)

P
→ 0.

We compound each term of this relation by θn+1 and, since x(n, 0) = y(n, 0)◦θn,
it proves that:

1

n
x(n, 0) ◦ θ −

1

n + 1
x(n + 1, 0)

P
→ 0.

When n tends to +∞, it becomes L′ ◦θ−L′ = 0. Since θ is ergodic, this implies
that L′ is constant.

Since 1
n
y(n, 0) = 1

n
x(n, 0) ◦ θn, L′ and L have the same law. Since L′ is

constant, L = L′ almost-surely, therefore L is also the limit of
(

1
n
x(n, 0)

)
n∈N

.
This proves formula (4) and concludes the proof of Theorem 2.3 .

3.2 Sufficient conditions

3.2.1 Right products

In this section, we prove the following proposition, which is a converse to The-
orem 2.3.

Proposition 3.5. Let (A(n))n∈N
be an ergodic sequence of random matrices

with values in Rd×d
max such that the positive part of maxij Aij(0) is integrable and

that satisfy the three following hypotheses:

1. for every s.c.c c of G(A), A{c}(0) almost-surely has at least one finite
entry on each row.

2. for every dominating s.c.c c of G(A), limn
1
n
y(c)(n, 0) = γ(c)1 a.s. .

10



3. for every subsets I and J of [1, · · · , d], such that random matrices Ã(n) =
(Aij(n))

i,j∈I∪J
almost-surely have at least one finite entry on each row

and split along I and J following the equation

Ã(n) =:

(
B(n) D(n)
−∞ C(n)

)
, (9)

such that G(B) is strongly connected and D(n) is not almost-surely (−∞)I×J ,
we have:

P ({∃i ∈ I,∀n ∈ N, (B(−1) · · ·B(−n)D(−n − 1)0)i = −∞}) = 0. (10)

Then the limit of
(

1
n
y(n, 0)

)
n∈N

is given by Equation (3).

If Hypothesis 1. is strengthened by demanding that A{c}(0)0 is integrable,
then the sequence

(
1
n
x(n, 0)

)
n∈N

converges almost-surely and its limit is given
by Equation (4).

Hypothesis 1. is necessary according to Theorem 2.3, Hypothesis 2 ensures
the basis of the inductive proof, while Hypothesis 3 ensures the inductive step.

Remark 3.1 (Non independent case). Proposition 3.5 does not assume the inde-
pendence of the A(n). Actually, it also imply that

(
1
n
x(n, 0)

)
n∈N

almost surely
if the A(n) have fixed support (that is P(Aij(n) = −∞) ∈ {0, 1}) and the pow-
ers of the shift are ergodic, which is an improvement of [1]. It also allows to
prove the convergence when the diagonal entries of the A(n) are almost surely
finite, under weaker integrability conditions than in [6]. (see [18] or [17] for
details)

Remark 3.2 (Paths on G(A), continued). Let us interpret the three hypotheses
with the paths on G(A).

1. The hypothesis on A{c}(0) means that, whatever the initial condition i ∈ c,
there is always an infinite path beginning in i and not leaving Hc.

2. The hypothesis on dominating s.c.c means that, whatever the initial con-
dition i in dominating s.c.c c, there is always a path beginning in i with
average weight γ(c). The proof of Theorem 3.3 (see [1] or [17]) can be
adapted to show that it is a necessary condition.

3. We will use the last hypothesis with Ã(n) = A{c}(n), B(n) = A(c)(n). It
means there is a path from i ∈ c, to Hc\c. Once we know that the limit
of

(
1
n
y(n, 0)

)
n∈N

is given by Equation (3) this hypothesis is obviously

necessary when γ(c) < γ[c].

It follows from propositions 3.2 and 3.4 and the definition of Lyapunov
exponents that we have, for every s.c.c c of G(A),

lim sup
n

1

n
yc(n, 0) ≤ γ[c]1 a.s. . (11)

11



Therefore, it is sufficient to show that lim infn
1
n
yc(n, 0) ≥ γ[c]1 a.s. . Be-

cause of proposition 3.2 i), it is stronger to show that

lim
n

1

n
y{c}(n, 0) = γ[c]1. (12)

We prove Equation (12) by induction on the size of Gc. The initialization of
the induction is exactly Hypothesis 2. of Proposition 3.5.

Let us assume that Equation (12) is satisfied by every m such that the size
of Gc is less than N , and let m be such that the size of Gc is N + 1. Let us
take I = c and J = Hc\c. If c is not trivial, it is the situation of Hypothesis 3.
with Ã = A{c}, which almost-surely has at least one finite entry on each row
thanks to Hypothesis 1. . Therefore, Equation (10) is satisfied. If c is trivial,
G(B) is not strongly connected, but Equation (10) is still satisfied because
D(−1)0 = (Ã(−1)0)I ∈ RI .

Moreover, J is the union of the c̃ such that c̃ ∈ Gc\{m}, thus the induction
hypothesis implies that:

∀j ∈ J, j ∈ c̃ ⇒ lim
n

1

n
(C(−1,−n)0)j = lim

n

1

n
y
{c̃}
j (n, 0) = γ[c̃] a.s..

Because of Corollary 3.4 ii), γ[c̃] = γ[c], therefore the right side of the last
equation is γ[c] and we have:

lim
n

1

n
(y{c})J(n, 0) = lim

n

1

n
C(−1,−n)0 = γ[c]1 a.s.. (13)

Equation (10) ensures that, for every i ∈ I, there exists almost-surely a
T ∈ N and a j ∈ J such that (B(−1,−T )D(−T − 1))ij 6= −∞. Since we have

limn
1
n

(C(−T,−n)0)j = γ[c] a.s., it implies that:

lim inf
n

1

n
y
{c}
i (n, 0)

≥ lim
n

1

n
(B(−1,−T )D(−T − 1))ij + lim

n

1

n
(C(−T,−n)0)j = γ[c] a.s.

Because of upper bound (11) and inequality (8), it implies that

lim
n

1

n
(y{c})I(n, 0) = γ[c]1 a.s..,

which, because of Equation (13), proves Equation (12). This concludes the
induction and the proof of Proposition 3.5.

3.2.2 Left products

As recalled in the introductions, T. Bousch an J. Mairesse proved that
(

1
n
x(n, 0)

)
n∈N

converges almost-surely as soon as the limit of
(

1
n
y(n, 0)

)
n∈N

is determinis-
tic. Therefore, the hypotheses of Proposition 3.5 should imply the SLLN for
(x(n, 0))n∈N

. But the theorem in [6] assumes a reinforced integrability assump-
tion, that is not necessary in our situation. We will prove the following in this
section :

12



Proposition 3.6. Let (A(n))n∈N
be an ergodic sequence of random matrices

with values in Rd×d
max such that the positive part of maxij Aij(0) is integrable and

that satisfy the three hypotheses of Proposition 3.5.
If Hypothesis 1. is strengthened by demanding that A{c}(0)0 is integrable,

then the sequence
(

1
n
x(n, 0)

)
n∈N

converges almost-surely and its limit is given
by Equation (4).

To deduce the results on x(n, 0) from those on y(n, 0), we introduce the
following theorem-definition, which is a special case of the main theorem of [19]
and directly follows from Kingman’s theorem:

Theorem-Definition 3.7 ([19]). If (A(n))n∈Z
is a stationary and ergodic

sequence of random matrices with values in Rd×d
max and almost-surely at least one

finite entry on each row such that A(0)0 is integrable, then there are two real
numbers γ(A) and γb(A) such that

lim
n

1

n
max

i
xi(n, 0) =

1

n
max

i
yi(n, 0) = γ(A) a.s.

lim
n

1

n
min

i
xi(n, 0) =

1

n
min

i
yi(n, 0) = γb(A) a.s.

It implies the following corollary, which makes the link between the results
on (y(n, 0))n∈N

and those on (x(n, 0))n∈N
when all γ[c] are equal, that is when

γ(A) = γb(A).

Corollary 3.8. If (A(n))n∈Z
is a stationary and ergodic sequence of random

matrices with values in Rd×d
max and almost-surely at least one finite entry on each

row such that A(0)0 is integrable then

lim
n

1

n
x(n, 0) = γ(A)1 if and only if lim

n

1

n
y(n, 0) = γ(A)1.

Let us go back to the proof of the general result on (x(n, 0))n∈N
. Because of

propositions 3.2 and 3.4 and the definition of Lyapunov exponents, we already
have, for every s.c.c c of G(A),

lim sup
n

1

n
xc(n, 0) ≤ γ[c]1 a.s. .

Therefore it is sufficient to show that lim infn
1
n
xc(n, 0) ≥ γ[c]1 a.s. . and

even that

lim
n

1

n
x{c}(n, 0) = γ[c]1.

Because of corollary 3.8, it is equivalent to limn
1
n
y{c}(n, 0) = γ[c]1. Since all

s.c.c of G(A{c}) are s.c.c of G(A) and have the same Lyapunov exponent γ[c], it
follows from the result on the y(n, 0) applied to A{c}.

13



3.3 Independent case

In this section, we prove Theorem 2.4.
Because of Theorem 2.3, it is sufficient to show that, if, for every s.c.c c,

A{c} almost-surely has at least one finite entry on each row, then the sequence(
1
n
x(n, 0)

)
converges almost-surely. To do this, we will prove that, in this situ-

ation, the hypotheses of Proposition 3.6 are satisfied. Hypothesis 1. is exactly
Hypothesis 1. of Theorem 2.4 and Hypotheses 2. and 3. respectively follow from
the next lemma and theorem.

Definition 3.9. For every matrix A ∈ Rd×d
max, the pattern matrix Â is defined

by Âij = −∞ if Aij = −∞ and Aij = 0 otherwise.

For every matrix A,B ∈ Rd×d
max, we have ÂB = ÂB̂.

Lemma 3.10. Let (A(n))n∈N
be a stationary sequence of random matrices with

values in Rd×d
max and almost-surely at least one finite entry on each row. Let us

assume that there exists a partition (I, J) of [1, · · · , d] such that A = Ã satisfy
Equation (9), with G(B) strongly connected. For every i ∈ I, let us define

Ai := {∀n ∈ N, (B(1, n)D(n + 1)0)i = −∞} .

1. If ω ∈ Ai, then we have ∀n ∈ N,∃in ∈ I (B(1, n))iin
6= −∞.

2. If the set E =
{

M ∈ {0,−∞}d×d
∣∣∣P

(
Â(1, n) = M

)
> 0

}
is a semigroup,

and if P
(
D = (−∞)I×J

)
< 1, then for every i ∈ I, we have P(Ai) = 0.

Proof.

1. For every ω ∈ Ai, we prove our result by induction on n.

Since the A(n) almost-surely have at least one finite entry on each row,
there exists an i1 ∈ [1, · · · , d], such that Aii1(1) 6= −∞. Since (D(1)0)i =
−∞, every entry on row i of D(1) is −∞, that is Aij(1) = −∞ for every
j ∈ J , therefore i1 ∈ I and Bii1(1) = Aii1(1) 6= −∞.

Let us assume that the sequence is defined up to rank n. Since A(n + 1)
almost-surely has at least one finite entry on each row, there exists an
in+1 ∈ [1, · · · , d], such that Ainin+1(n + 1) 6= −∞.

Since ω ∈ Ai, we have:

−∞ = (B(1, n)D(n + 1)0)i ≥ (B(1, n))iin
+ (D(n + 1)0)in

,

therefore (D(n + 1)0)in
= −∞.

It means that every entry on row in of D(n+1) is −∞, that is Ainj(n + 1) = −∞
for every j ∈ J , therefore in+1 ∈ I and

Binin+1(n + 1) = Ainin+1(n + 1) 6= −∞.

Finally, we have:

(B(1, n + 1))iin+1
≥ (B(1, n))iin

+ Binin+1(n + 1) 6= −∞.
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2. As a first step, we want to construct a matrix M ∈ E such that

∀i ∈ I,∃j ∈ J,Mij = 0.

Since P
(
D = (−∞)I×J

)
< 1, there are α ∈ I, β ∈ J and M0 ∈ E with

M0
αβ = 0. For any i ∈ I, since G(B) is strongly connected, there is M ∈ E

such that M ∈ E and Miα = 0. Therefore M i = MM0 is in E and satisfies
M i

iβ = 0.

Now let us assume I = {α1, · · · , αc} and define by induction the finite
sequence of matrices P k.

• P 1 = Mα1

• If there exists j ∈ J such that P k
αk+1j = 0, then P k+1 = P k. Else,

since the matrices have at least one finite entry on each row, there
is an i ∈ I, such that P k

αki, and P k+1 = P kM i.

It is easily checked that such P k satisfy,

∀l ≤ k,∃j ∈ J, P k
αlj

= 0.

Therefore, we set M = Pm and denote by p the smallest integer such that

P

(
Â(1, p) = M

)
> 0

Now, it follows from the definition of E and the ergodicity of (A(n))n∈N

that there is almost surely an N ∈ N , such that Â(N + 1, N + p) = M .

On Ai, that would define a random jN ∈ J such that MiN jN
= 0, where

iN is defined according to the first point of the lemma. Then, we would
have

(A(1, N + p))ijN
≥ (A(1, N))iiN + (A(N + 1, N + p))iN jN

> −∞

But Ai is defined as the event on which there is never a path from i to J ,
so that we should have ∀n ∈ N,∀j ∈ J,A(1, n))ij = −∞.

Finally, Ai is included in the negligible set
{
∀n ∈ N, Â(n + 1, n + p) 6= M

}
.

Theorem 3.11. If (A(n))n∈N
is a sequence of i.i.d. random matrices with

values in Rd×d
max such that the positive part of maxij Aij(0) is integrable, A(0)

almost-surely has at least one finite entry on each row and G(A) is strongly
connected, then we have

∀i ∈ [1, d], lim
n

1

n
yi(n, 0) = γ(A)

.

This theorem is stated by D. Hong in the unpublished [15], but the proof
is rather difficult to understand and it is unclear if it holds when A(1) takes
infinitely many values. Building on [6], we now give a short proof of this result.
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Proof. According to [6],
(

1
n
y(n, 0)

)
n∈N

converges a.s. We have to show that its
limit is deterministic.

The sequence R(n) := Â(−1,−n) is a Markov chain whose states space is{
M ∈ {0,−∞}d×d |M0 = 0

}
and whose transitions are defined by:

P (R(n + 1) = F |R(n) = E) = P

(
ÊA(1) = F

)
.

For every i, j ∈ I, we have Rij(n) = 0 if and only if (A(−1,−n))ij 6= −∞.
Let i be any integer in {1, · · · , d} and E be a recurrent state of (R(n))n∈N

.
There exists a j ∈ [1, · · · , d] such that Eij = 0. Since G(A) is strongly con-
nected, there exists a p ∈ N, such that (B(−1,−p))ji 6= −∞ with positive

probability. Let G be such that P

(
(B(−1,−p))ji 6= −∞, B̂(−1,−p) = G

)
> 0.

Now, F = EG is a state of the chain, reachable from state E and such that
Fii = 0. Since E is recurrent, so is F and E and F belong to the same recurrence
class.

Let E be a set with exactly one matrix F in each recurrence class, such that
Fii = 0. Let Sn be the nth time (R(m))m∈N

is in E .
Since the Markov chain has finitely many states and E intersects every

recurrence class, Sn is almost-surely finite, and even integrable. Moreover, the
Sn+1 − Sn are i.i.d. (we set S0 = 0) and so are the A(−Sn − 1,−Sn+1). Since
P (S1 > k) decreases exponentially fast, A(−1,−S1)0 is integrable and thus the
sequence

(
1
n
y(Sn, 0)

)
n∈N

converges a.s. Let us denote its limit by l.
Let us denote by F0 the σ-algebra generated by the random matrices A(−Sn−

1,−Sn+1). Then l is F0 measurable, and the independence of the A(−Sn −
1,−Sn+1) means that (Ω,F0, P, θS1) is an ergodic measurable dynamical sys-
tem. Because of the choice of S1, we have li ≥ li◦θS1 , so that li is deterministic.

Now, let us notice that the limit of 1
n
yi(n, 0) is that of 1

Sn
yi(Sn, 0), that is

li
E(S1) , which is deterministic.

This means that lim 1
n
yi(n, 0) is deterministic for any i, and, according to

Theorem 2.3, it implies that it is equal to γ(A).
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