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Observer-based Fault Tolerant Control for Constrained Switched Systems 

 
Hao Yang, Bin Jiang*, and Vincent Cocquempot 

 
Abstract: An observer-based fault tolerant control (FTC) method is proposed for constrained 
switched systems (CSS) with input constraints. A family of Lyapunov-based bounded controllers 
are designed to ensure that, whenever actuator faults occur at the dwell time period of each 
continuous mode, the mode is always within its corresponding stability region. A set of switching 
laws are designed to guarantee the asymptotic stability of the overall CSS. The fixed stability 
regions on which the FTC method is based are also relaxed by the proposed variable stability 
regions. An example of CPU processing illustrates the effectiveness of proposed method. 
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1. INTRODUCTION 
 
Many tools have been developed for stability 

analysis of switched systems [1]. Control action of the 
majority of practical switched system is often subject 
to hard actuator constraints, the general synthesis of 
control for CSS is based on concepts of stability 
region and multiple Lyapunov functions (MLFs) e.g., 
[2]. Most of related methods only consider the CSS in 
the fault-free case and with full state measurements.  

Fault may lead to an unacceptable anomaly in the 
system performance. Fault detection and diagnosis 
(FDD) and fault tolerant control (FTC) procedures are 
designed to guarantee that the system goal is still 
achieved in spite of the faults [3-5]. This paper 
focuses on designing a FTC strategy for CSS with 
actuator faults and without full state measurements. 
The novelty of this work are twofold: 1) to design a 
family of Lyapunov-based bounded controllers for 

ensuring that, whenever actuator faults occur at the 
dwell time period of each mode, the mode is always in 
its corresponding stability region; 2) to design a set of 
switching laws based on MLFs, to guarantee the 
asymptotical stability of the overall CSS. 

 
2. PRELIMINARIES 

 
Consider the following switched system with input 

constraints:  

σ( ) σ( ) σ( )( ) ( ( )) ( ( )) ( ),t t tx t f x t G x t u t= +  
max

σ( ) σ 0σ( ) [ ) {1 2 },tu u t t M N≤ , : ,∞ → = , , ,… (1) 

where nx ∈ ℜ  is the state vector, σu  denotes the 
input vector taking values in the nonempty compact 
subset max

σ σ σ σ{ }.mU u u u:= ∈ ℜ : ≤  max
σ 0u >  is 

the magnitude of the input constraints, σ ( )f x  and 

σ ( )G x  are sufficiently smooth. 0σ [ , )t M: ∞ →  is a 
switching signal, which is assumed to be a piecewise 
constant function that is continuous from the right.  

The switching laws are defined as: mode k  
switches to mode ( 1),k +  if the dwell period of 
mode k  is ∆ ,kjt  where ,k M∈  1 2 .j = , ,…  

∆ kjt  belongs to a series of dwell time periods for 
mode k  when it is activated for the j th time. Also 
assume that the switching sequence is fixed and the 
initial mode is random. x  is continuous everywhere.  

Consider system (1) with a fixed σ( )t k=  for 
some ,k M∈  for which a control Lyapunov function 
[2] kV  exists, using the results in [2], the following 
continuous bounded control law can be constructed  

( ) ( ( ) )( ) ( ) ( ),
k k

T
k k f k G k ku x K L V x x L V x b x∗= − ,  (2) 

__________  
 Manuscript received February 18, 2006; revised February 
13, 2007 and June 1, 2007; accepted August 28, 2007. 
Recommended by Editorial Board member Guang-Hong Yang 
under the direction of Editor Tae-Woong Yoon. This work is 
partially supported by National Natural Science Foundation of 
China (60574083), National “863” program of China 
(2006AA12A108) and Natural Science Foundation of Jiangsu 
Province (BK2007195). 
 Hao Yang is with the College of Automation Engineering 
(CAE), Nanjing University of Aeronautics and Astronautics 
(NUAA), 29 YuDao Street, Nanjing, 210016, China and 
LAGIS-CNRS, UMR 8146, Université des Sciences et 
Technologies de Lille (USTL), 59655 Villeneuve d'Ascq cedex, 
France (e-mail: younghao82@yahoo.com.cn). 
 Bin Jiang is with the College of Automation Engineering, 
Nanjing Univ. of Aeronautics and Astronautics (NUAA), 
Nanjing, 210016, China (e-mail: binjiang@nuaa.edu.cn).  
 Vincent Cocquempot is with LAGIS-CNRS, UMR 8146, 
USTL, 59655 Villeneuve d'Ascq cedex, France (e-mail: 
vincent.cocquempot@univ-lille1.fr). 
* Corresponding author. 

International Journal of Control, Automation, and Systems, vol. 5, no. 6, pp. 707-711, December 2007 



708 Hao Yang, Bin Jiang, and Vincent Cocquempot 

with 

2 max 4

2 max 2

( ) ( ( ) )
( )

( ) [1 1 ( ( ) ) ]

k k k
k

k k

T
f k f k k G k

k f k
T T

G k k G k

L V L V u L V
K L V x

L V u L V

∗ ∗
∗

+ +
, =

+ +

(3) 
for ( ) 0,

k
T

G kL V ≠ and ( ) 0
kk f kK L V x∗ , =  for ( )

k
T

G kL V  

0,=  where ρ
k kf k f k k kL V L V V∗ = +  and ρ 0k > . One 

can show that for all initial states of k th mode within 
the stability region described by the set  

maxΦ { ( ) ( ) ( ) }
k k

n T
k f k k G kx L V x u L V x∗= ∈ ℜ : <  (4) 

the controller (2) respects the constraints and ensures 
that the states of the k th mode remain within the 
region Φk  and converge to origin asymptotically. An 

estimate of Φk  is described by Ω { n
k x= ∈ ℜ :  

max( ) },k kV x c≤  where Ωk  is expected to be the 

largest invariant set of Φ ,k  max
kc  is the largest 

number for which Ω {0} Φ .k k\ ⊆  
 

3. FTC FOR CSS 
 

3.1. FTC with full state measurement  
Consider the linear form of (1) with σ( )t k=  for 

some ,k M∈  under actuator faulty conditions:  

max( ) ( ) ( ) ( ) ,a
k k k k k k kx t A x t B u t E f t u u= + + , ≤  (5) 

where x  is measurable, ( )k kA B,  is a controllable 
pair. The actuator fault vector is modelled by 

( ) ,a q
kf t ∈ ℜ  assume that ,a

k kf f≤  where 0.kf >  

Consider a Lyapunov function candidate kV =  

,T
kx P x  where kP  is a positive definite symmetric 

matrix that satisfies the Riccati equation 
T T
k k k k k k k k kA P P A P B B P Q+ − = −  for some positive 

definite matrix .kQ  Define 

max{ ( ) },
k k

n T
f k k G kk x L V u L V∗∗= ∈ ℜ : <Φ  (6) 

where ρ ,
k k kf k f k k k E k kL V L V V L V f∗∗ = + + with 

kf kL V  

( ) ,T T
k k k kx A P P A x= +  ( ) 2 ,

k
T T

G k k kL V B P x=  ρ 0.k >  

Denote max{ ( ) }n
kk kx V x c= ∈ ℜ : ≤Ω  as a set of ,kV  

completely contained in kΦ  for some max 0.kc >  
Lemma 1: Consider system (5) with any initial 

condition ( ) ,kj kx t ∈ Ω  under the continuous bounded 
controller  

( ) ( ( ) )( ) ( ) ( )
k k

T
k k f k G k ku x K L V x x L V x xb∗∗= − ,  (7) 

the states remain within the region ,kΩ  and the 
origin of the k th mode is asymptotically stable, 
whenever the fault occurs in [ ∆ ),kj kj kjt t t, +  where 
j  denotes the j th time that the k th mode is 

switched in, ∆ kjt  is the dwell period.  

Proof: (sketch) From the time-derivative of kV  
along the closed-loop trajectories (omitted due to 
space), we have that whenever ( )

kf kL V x∗∗ <  
max ( ) ( ) ,

k
T

k G ku L V x  ρ .k k kV V< −  Since kΩ  is the 

largest invariant set, the inequality (6) holds for all 
0,x ≠ then, the origin of the system is asymptotically 

stable.                                      
Theorem 1: Consider the switched system (5) 

under a family of bounded controllers { ( ) ( )k ku x xb=  
},k M: ∈  with the initial states 0( ) .kx t ∈ Ω  If, at 

any time instant ,T  the following conditions hold:  

1( ) ,kx T +∈ Ω     (8) 

1 1 ( 1)( 1)( ( )) ( ( )), 0,k k k jV x T V x t j+ + + −< >  (9) 

then, choosing ∆ kj kjt T t≥ −  and setting σ( ) 1t k= +  

for the j th time at ∆ ,kj kjt t t= +  guarantees that the 
origin of the overall CSS is asymptotically stable.  

Proof: (sketch) From Lemma 1, σ( ) 0,tV < σ .k∀ =  
From (9), we have that for any admissible switching 
time 1 ( 1) 1 ( 1)( 1), ( ( )) ( ( )),kj k k j k k jt V x t V x t+ + + + −<  MLFs 
Theorem [1] can be applied to conclude that the origin 
of the switched system is Lyapunov stable. Also note 
that for each switching time ,kjt  1 2j = , ,…  such that 

σ( ) ,kjt k+ =  the sequence σ( )kjtV  is decreasing and 

positive, so there exists a class K  function α  such 
that 1 ( 1)( 1) 1 ( 1)0 lim [ ( ( )) ( ( ))]j k k j k k jV x t V x t→∞ + + + + += −  

( 1)lim [ α( ( )] 0.j k jx t→∞ +≤ − ≤  This means that ( )x t  

converges to the origin, which together with 
Lyapunov stability, leads to the asymptotical stability 
of the origin.                                 

 
3.2. FTC without full state measurement 

Consider the system (5)  
max( ) ( ) ( ) ( ) ,a

k k k k k k kx t A x t B u t E f t u u= + + , ≤  

 1( ) [ 0] ( ),k ky C x t C x t= =    (10) 

where ry ∈ ℜ  is the output vector, with ,q r<  

where q  is the dimension of .a
kf  1

kC  is an ×r r  
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nonsingular matrix, and ( )k kC A,  is an observable 
pair.  

Denoting ˆ( )x t  as the state estimate and ( )e t  
ˆ.x x−  The following Lemma 2 can be obtained based 

on [2].  
Lemma 2: Consider system (10) with ( ) ,kj kx t ∈ Ω  

under the controller ˆ( )k ku xb=  in (7). There exists a 
positive real number u ke ,  related to ku , such that if 

( ) ,u ke t e ,≤ [ ∆ ),kj kj kjt t t t∀ ∈ , +  then the states remain 
within the region ,kΩ  and the origin of the k th 
mode is asymptotically stable. 

Assumption 1: Rank ( ) .k kC E q=  

Define a transformation 1 ,kx N z−=  where kN =  
1 0 .

0
kC

I

 
 
  

 The system (10) can be transformed into  

 1 11

2 22

3 33

,

a
k kk kk

k kk
a

k kk kk

k kk

z z u fB EA

B EA
z u fB EA

B EA

= + +

     
     = + +     
         

  (11) 

 
( ) ( ) 0 0

,
0 0

r q r q
k

q

I
y z zC I

− × − 
= =  

  
  (12) 

where 1,k k kk N A NA −= ,k kk N BB = .k kk N EE =  z  

can be represented as 1 2 3 1 2 3[ ] [ ] ,T Tz z z y y z=  where 

3 .n rz −∈ ℜ  We just need to estimate 3z . Define  

 

1
1 2

1
3 2

0
0 0

0

k k

k

k k

I E E
S I

IE E

−

−

 −
 

=  
 − 

.   (13) 

Pre-multiplying (13) into (11), we have  

 

1 1
1 2 1 21 21 2

22
1 1

3 3 2 3 23 22

k k k kk k

k

k k k kk k

y yE E E EA A
zy A

yz E E E EA A

− −

− −

   − −
   

=   
   − −  

 (14) 

1
1 1 2 2

2 2
1

3 3 2 2

0
.

0

k k k k
a

k kk k

k k k k

B E E B
u fB E

B E E B

−

−

 −  
   + +   
   −   

 

Define 
1 1
2 2 22,ki kiki k ki ki k kki kG HE E B E E BA A− −= − = −  

for 1 3,i = , and partitioning kiG  as 1 2 3[ ],ki ki kiG G G  
1 3,i = ,  then the first and third block rows of system 

(14) can be written as 3 33 3 ,kG z sz = + 13 3,kv G z=  

where 1
33 1 32 2 33 2 2 ,k k k kk ks G y G y H uyE E −= + + + v =  

1
11 1 12 2 11 21 2 k k k kk k G y G y H uy yE E−− − − −  To estimate 

3z , an observer can be designed as  

 3 333 133 ζ ( )ˆ ˆˆ k k kG s v Gz zz = + + −   (15) 

assume 33 13( )k kG G,  is an observable pair, the 
observer gain ζk  can be chosen to make 33( kG −  

13ζ )k kG  stable.  

From the above discussion, we let 1ˆ ˆkx N z−= =  
1

31 2[ ] .ˆ T
kN y y z−  Denote 3 33 ˆzz z= − , then  

 3( ) µ(λ ) ( ) exp( λ ( ))k kj k kje t t t tz∗ ∗≤ − − , (16) 

where λk
∗  is such that all eigenvalues of 33( kG −  

13ζ )k kG  satisfy λ λ ,k k
∗≤ −  µ(λ ) 0k

∗ >  is polynomial 

in λk
∗ .  

From the second block row in (14), the fault 

estimate ˆ a
kf  can be obtained as  

1
31 22 221 22 232ˆ ( ).ˆ

a
kk kk k kk y y uy zf E BA A A−= − − − −

 (17) 
The above method can provide accurate state and 

fault estimates. For CSS, the observer (15) is switched 
according to the current mode at each switching time. 
The initial states of the current observer are chosen as 

the final states of the previous observer. ˆ a
kf  are 

always obtained from (17) for each mode.  
Theorem 2: Consider the switched system (10) 

under a family of bounded controllers ˆ{ ( )k ku xb= :  
},k M∈  with the initial states 0( ) kx t ∈ Ω  and 0ˆ( )x t  

such that 0µ(λ ) ( ) .k u ke t e∗ +
,≤  If, at any time instant T  

 1( ) ,u ke T e , +≤     (18) 
 1ˆ( ) Ψ ,kx T +∈     (19) 
 1 1 1 ( 1)( 1)ˆ ˆ( ( )) 2 ( ( )),k k k k jV x T M V x t+ + + + −+ <  (20) 

where 1u ke , +  is such that 11µ(λ ) ( )kk Te∗ +
++  

1,u ke , +≤  1Ψk+  is such that 1 1ˆ Ψk kx x+ +∈ → ∈ Ω  

for 1,u ke e , +≤  1kM +  is such that 1u ke e , +≤ →  

1 1 1ˆ( ) ( ) ,k k kV x V x M+ + +− ≤  then, choosing ∆ kjt ≥  

kjT t−  and setting σ( ) 1t k= +  at ∆ ,kj kjt t t= +  
guarantees that the origin of the overall CSS is 
asymptotically stable. 

Proof: (sketch) Based on Lemmas 1, 2, if (18) and 
(19) hold at any time instant ,T  we set σ( ) 1t k= +  
at ∆ ,kj kjt t t= +  then the origin of the ( 1)k + th 



710 Hao Yang, Bin Jiang, and Vincent Cocquempot 

mode is asymptotically stable. Due to the continuity 
of 1( ),kV + ⋅ there exists a positive real number 1,kM +  
such that if 1,u ke e , +≤  then 1 1 ˆ( ) ( )k kV x V x+ +−  

1,kM +≤  which, together with (20), leads to 

1 1 ( 1)( 1)( ( )) ( ( )).k k k jV x T V x t+ + + −<  Similar to Theorem 

1, we can conclude the result.                   
 

3.3. Relaxation of the stability region 
The region kΦ  in (6) is based on a fixed norm 

bound of faults, which could be relaxed. Define the 

fault detection threshold as 1
2 23ˆ ( ) ,a

k kk e tf E A−=  

and define ˆ 0a
kf >  such that ˆ ˆ .a a

k kf f≤  A variable 

stability region is designed as  

maxˆ { ( ) ( ) ( ) },
k k

n T
f k k G kk f x L V x u L V x◊

, = ∈ ℜ : <Φ  

(21) 
where ˆρ

k k k k
a

f k f k k k E k E kkL V L V V L V L Vf◊ = + + +  

1
2 23 ,u kk k eE A−

, and u ke ,  is related to ˆ( ).k ku b x=  

The region (21) is variable according to different ˆ .a
kf  

This region is less conservative than (6).  
Let’s similarly define ˆ { ( )n

kk f x V x, = ∈ ℜ :Ω  
max

ˆ }.
k fc ,

≤  ˆk f,Ω  is a set of ,kV  completely contained 

in ˆk f,Φ  for some max
ˆ 0,

k fc ,
>  and define ˆΨk f,  

such that if ,u ke e ,≤  then ˆˆˆ Ψ .k fk fx x ,,∈ → ∈ Ω  

Lemma 3: Consider system (10) under control law 
ˆ( ),k ku b x=  ( ) Ω ,kj kx t ∈  and ˆ( )kjx t  is such that 

µ(λ ).k
∗  ( ) .kj u ke t e+

,≤  Assume the faults occur at 

.f
kjt t=  If ˆˆ( ) Ψ ,f

kj k fx t ,∈  then there exists 
ˆ

0,f
u ke , >  

such that for all f̂
u ke e ,≤  [ ∆ ),f

kj kjkjt t t t∀ ∈ , +  the 

bounded controller  

 
ˆ( ) [ )

ˆ( )
ˆ( ) [ ∆ ),

f
k kj kj

k f
kj kjkjk

b x t t t
u x

x t t t tb

◊
 , ∈ ,= 

, ∈ , +

 (22) 

where ˆ ˆ ˆ ˆ( ) ( ( ) )( ) ( ),
k k

T
k f k G kk x K L V x x L V xb

◊− , makes 
the origin of the k th mode asymptotically stable.  

Proof: (sketch) Lemma 2 ensures the system is 
stable for [ ).f

kj kjt t t∈ ,  At ,f
kjt t=  the faults occur, 

from the time-derivative of kV  along the closed-loop 

trajectories, we obtain that for any ˆ( ) ,f
k fkjx t ,∈ Ω  x  

is input-to-state stable w.r.t. e  for [ ∆ ),f
kj kjkjt t t t∈ , +  

the result follows.                            
Theorem 3: Consider switched system (10) under a 

family of bounded controllers ˆ{ ( ) },ku x k M◊ , ∈  the 
initial states 0( ) Ω ,kx t ∈  and 0ˆ( )x t  are such that 

0µ(λ ) ( ) .k u ke t e∗ +
,≤  If ˆ( ) Ψf

k fkjx t ,∈ and ( )f
kje t ≤  

f̂
u ke ,  ,k M∀ ∈  and if at any time instant f

kjT t≥   

 1( ) ,u ke T e , +≤     (23) 
 1ˆ( ) Ψ ,kx T +∈      (24) 
 1 1 1 ( 1)( 1)ˆ ˆ( ( )) 2 ( ( )),k k k k jV x T M V x t+ + + + −+ <  (25) 

then, choosing ∆ kj kjt T t≥ −  and setting σ( ) 1t k= +  

at ∆ ,kj kjt t t= +  guarantees that the origin of the 

overall CSS is asymptotically stable.              
 
4. CPU PROCESSING CONTROL SYSTEM 
 
A simplified CPU processing control system 

illustrates our approach. The system have two modes:  
Mode 1: The amount of CPU tasks is large while 

CPU temperature is not too high.  
Mode 2: The amount of CPU tasks is not large and 

more energy is used for decreasing the temperature.  
Three states are respectively the amount of CPU 

tasks π,  the temperature ρ,  and angular velocity of 
a cooling fan ω.  c ∈ ℜ  and v ∈ ℜ  are the clock 
frequency and the voltage input of a cooling fan. The 
system model is omitted due to the page limit. In 
Mode 1, 5,c ≤  10,v ≤  1 2 5.af ≤ .  In Mode 2, 

2,c ≤  5,v ≤  2 1.af ≤  We only illustrate the method 

in Section 3.2. Choosing 11(0) ( ) [8 9 5 9] ,Tx x t= = .  
 

Fig. 1. State trajectories. 
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which is in 1.Ω  Only 1
af  is considered: 1 0,af =  

for 110 ,fs t t≤ <  and 1 2 0 2sin(5 ),af t= + .  for 11
ft ≤  

0.7 ,t s≤  with 1 [2 0.2 0] .TE = −  The parameters 
are omitted. We switch the system to Mode 2 at 

21 0 7 ,t t s= = .  Fig. 1 shows that the origin of CSS is 
asymptotical stable. 

 
5. CONCLUSIONS 

 
In this work, the FTC problem for CSS with input 

constraints is investigated. The proposed method will 
be also extended to more general nonlinear CSS with 
application to real systems in the future. 

 
REFERENCES 

[1] R. A. Decarlo, M. S. Branicky, S. Pettersson, and 
B. Lennartson, “Perspectives and results on the 
stability and stabilizability of hybrid systems,” 
Proc. of the IEEE, vol. 88, no. 7, pp. 1069-1082, 
2000.  

[2] N. H. EI-Farra, P. Mhaskar, and P. D. 
Christofides, “Output feedback control of 
switched nonlinear systems using multiple 
lyapunov functions,” Systems and Control 
Letters, vol. 54, no. 12, pp. 1163-1182, 2005.  

[3] M. Blanke, M. Kinnaert, J. Lunze, and M. 
Staroswiecki, Diagnosis and Fault-Tolerant 
Control, Springer, Verlag Berlin Heidelberg, 
2003.  

[4] B. Jiang, M. Staroswiecki, and V. Cocquempot, 
“Fault accommodation for a class of nonlinear 
dynamic systems,” IEEE Trans. on Automatic 
Control, vol. 51, no. 9, pp. 1578-1583, 2006.  

[5] H. Yang, B. Jiang, and M. Staroswiecki, 
“Observer based fault tolerant control for a class 
of switched nonlinear systems,” IET Control 
Theory and Applications, vol. 1, no. 5, pp. 1523-
1532, 2007. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hao Yang was born in Nanjing, China, 
in 1982. He is currently a Ph.D. 
candidate in Nanjing University of 
Aeronautics and Astronautics, China, 
and Université des Sciences et 
Technologies de Lille, France. His 
research interests include fault tolerant 
control of hybrid systems.  
 

 
Bin Jiang was born in Jiangxi, China, 
in 1966. He obtained the Ph.D. in 
Automatic Control from Northeastern 
University, Shenyang, China, in 1995. 
Currently he is a Full Professor and 
Department Head of Automatic 
Control in Nanjing University of 
Aeronautics and Astronautics. He 
serves as Associate Editor for 

International Journal of System Science, International 
Journal of Control, Automation and Systems, etc. His 
research interests include fault diagnosis and fault tolerant 
control.  
 
 

Vincent Cocquempot was born in 
France, in 1966. He received the Ph.D. 
degree in Automatic Control from the 
Lille University of Sciences and 
Technologies, in 1993. He is currently 
a Professor in automatic control and 
computer science at the Institut 
Universitaire de Technologies de Lille, 
France. He is Head of Research in the 

LAGIS-CNRS UMR 8146, at Université des Sciences et 
Technologies de Lille, France. His research interests include 
robust on-line fault diagnosis for uncertain dynamical 
nonlinear systems, Fault Detection and Isolation (FDI) and 
Fault Tolerant Control (FTC) for Hybrid Dynamical 
Systems.  
 


