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Abstract

Vesicles under shear flow exhibit various dynamics: tank-treading (tt), tumbling (tb) and

vacillating-breathing (vb). The vb mode consists in a motion where the long axis of the vesicle

oscillates about the flow direction, while the shape undergoes a breathing dynamics. We extend

here the original theory [C. Misbah, Phys. Rev. Lett. 96, 028104 (2006)] to the next order in a

consistent manner. The consistent higher order theory reveals a direct bifurcation from tt to tb

if Ca ≡ τ γ̇ is small enough—typically below 0.5 (τ= vesicle relaxation time towards equilibrium

shape, γ̇=shear rate). At larger Ca the tb is preceded by the vb mode. For Ca ≫ 1 we recover the

leading order original calculation, where the vb mode coexists with tb. The consistent calculation

reveals several quantitative discrepancies with recent works, and points to new features. We briefly

analyse rheology and find that the effective viscosity exhibits a minimum at tt − tb and tt − vb

bifurcation points. At small Ca the minimum corresponds to a cusp singularity, while at high

enough Ca the cusp is smeared out.
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FIG. 1: The three types of motion are shown. The arrows for the tt regime refer to the tank-

treading motion of the membrane. Note that for the tb the vesicle long axis makes a full rotation

by an angle π, while in the vb the long axis executes an oscillation about the horizontal axis.

I. INTRODUCTION

Vesicles are closed membranes suspended in an aqueous medium. They constitute an

interesting starting model for the study of dynamics of real cells, such as red blood cells.

The study of their rheology should capture some essential features of blood rheology.

Under a linear shear flow, a vesicle (where the membrane is in its fluid state) is known

to exhibit a tank-treading (tt) motion, while its long axis makes an angle, ψ < π/4, with

the flow direction[1, 2]. In the presence of a viscosity contrast λ = η1/η0 (η1 and η0 are

the internal and external viscosities, respectively), ψ decreases until it vanishes at a critical

value of λ = λc. For a small enough Ca ≡ τ γ̇ (τ is the relaxation time towards the

equilibrium shape in the absence of an imposed flow, γ̇=shear rate) the tt exhibits a saddle-

node bifurcation towards tumbling (tb)[3].

Recently, a new type of motion has been predicted[4], namely a vacillating breathing

(vb) mode: the vesicle’s long axis undergoes an oscillation (or vacillation) around the flow

direction, while the shape executes a breathing motion. The three types of motion (tt, tb

and vb) are shown on Fig. 1.

Shortly after this theoretical prediction, an experimental report on this type of mode

has been presented[5] (the authors have used the term trembling in order to refer to the

vb mode; actually trembling may evoke some kind of noisy dynamics, and seems to us an

inappropriate denomination, since the vb mode is periodic in time) and in [6] a qualitatively

similar motion called “transition motion” in the vicinity of the tt − tb transition has been
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observed. Nevertheless, a detailed experimental study of this vb mode would be interesting

but has not been reported yet. Since then, works providing further understanding[7], or

attempting[8, 9] to extend the original theory[4] to higher order deformation (with the aim

to account for the experimental observation[5]) have been presented. Interesting features

have emerged[8, 9] regarding the behavior of the vb mode as a function of Ca.

The first aim of this paper is to present the result of the consistent theory regarding the

higher order calculation. We find significant differences with a recent work[8, 9] regarding

the form of the evolution equation. This implies, in particular, that the location of the

boundaries separating the various three regimes in parameter space is significantly affected.

Furthermore, by accounting properly for higher order terms, it is shown that contrary to the

belief in[8] the so-called self similarity (in that only two independent parameters survive in

the final evolution equations) does not hold.

A second important report is to investigate how the effective viscosity derived recently

in[4, 10] is affected by the higher order deformation. In the tt regime the effective viscosity

derived in[4] is still a decreasing function of λ and is only slightly shifted by the higher order

terms. It is found that for a small enough Ca the effective viscosity of the suspension (as a

function of λ) still exhibits a cusp singularity at the tt − tb bifurcation as reported in[10],

while the cusp becomes a smooth minimum when Ca is high enough, namely when the tt−vb

bifurcation occurs.

The scheme of the paper is as follows. In Section II we present in details how a consistent

calculation should be made, and develop the various necessary steps, including geometry,

the calculation of the velocity field, and the treatment of the boundary conditions. Section

III deals with the derivation of the leading order solution, whereas Section IV presents the

outcome of the next order solution. The final evolution equation is presented in Section V,

and a comparison with previous works is given in VI. Section VII is devoted to the main

results of dynamics, and a brief discussion is devoted to rheology in Section VIII. Section

IX is dedicated to a discussion and conclusion.
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FIG. 2: Various geometrical quantities.

II. ASYMPTOTIC EXPANSION

A. Vesicle geometry

The various geometrical quantities are shown on Fig.2. The time-dependent vesicle sur-

face is described by R = R(θ, φ, t) er where

R(θ, φ, t) = r0 [1 + ǫf(θ, φ, t)]. (1)

Here r0 is the radius of the equivalent sphere of the vesicle and ǫ is a small parameter,

which may be related to the excess area ∆ via ∆ = ǫ2. This parameter serves formally as

an expansion parameter (ǫ = 0 is a sphere)[7]. For the following it is convenient to rescale

spatial variables by r0, so that we are left with

R(θ, φ, t) = 1 + ǫf(θ, φ, t). (2)

Several notations and the spirit of some of the calculation used below are close to those

developed for droplets and capsules in the small deformation theory[16, 21, 23]. The function

f is expanded in powers of ǫ and decomposed on the basis of spherical harmonics. In principle
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it can be decomposed on an infinite series of spherical harmonics as

f =
+∞
∑

n=0

fn (3)

with fn =
∑+n

m=−n anm(t)Ynm(θ, φ), where Ynm are the usual spherical harmonics, and anm

are time-dependent amplitudes which are undetermined for the moment. We can alterna-

tively write fn = Fp1p2...pn
[ ∂nr−1

∂xp1
∂xp2

....∂xpn

]rn+1|r=1 (where repeated indices are to be summed

over). Most of our calculation is made with the second formulation. If only the leading

order harmonics are retained, as adopted here, we can write up to order ǫ2

f = f (0) + ǫf (1) = F
(0)
ij Yij + ǫ

(

−6

5
F

(0)
ij F

(0)
ij + F

(1)
ij Yij

)

(4)

with the zeroth and first order amplitudes F
(0)
ij and F

(1)
ij , respectively, and the abbreviation

Yij =

(

∂2r−1

∂xi∂xj

)

r=1

, r =
(

x2
1 + x2

2 + x2
3

)1/2
. (5)

The O(ǫ) term −6/5 F
(0)
ij F

(0)
ij ensures constant volume.

As Yij is a second-order spherical harmonic, the tensors F
(0)
ij and F

(1)
ij have only five

independent elements. We can thus demand that F
(0)
ij and F

(1)
ij are symmetric and traceless.

In this case Eq. (4) can also be written as

f =

[

3F
(0)
ij xixj + ǫ

(

−6

5
F

(0)
ij F

(0)
ij + 3F

(1)
ij xixj

)]

r=1

. (6)

In order to ensure that the excess area of the surface parameterized by (2) is ǫ2, the five

remaining coefficients F
(0)
ij are not independent but coupled by the constraint

[F
(0)
11 ]2 + [F

(0)
22 ]2 + F

(0)
11 F

(0)
22 + [F

(0)
12 ]2 + [F

(0)
13 ]2 + [F

(0)
23 ]2 =

5

96π
. (7)

Eqs. (4,7) guarantee that the vesicle volume is V = 4
3
π + O(ǫ3) and the vesicle surface area

is A = 4π + ∆ + O(ǫ3). We shall see later that including the F
(1)
ij guarantees the constraint

of excess area up to ǫ4.

Our ansatz includes spherical harmonics of order 2 only. It is justified by the fact that

the external flow just contains harmonics of order 2. At next-to-leading order modes of

order 4 are excited, however, they do not couple back to the modes of second order. It is

thus possible to derive a closed description that contains second-order spherical harmonics
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only. It is only at higher orders (not included here) that higher order harmonics may affect

dynamics.

Next we compute, up to O(ǫ2), the two tangential vectors:

tθ = ∂θR, tφ = ∂φR (8)

and the unit normal vector

n =
tθ × tφ

|tθ × tφ|
. (9)

From the tangential vectors follows the metrics

gij = Ri · Rj (10)

with its inverse gij. Following Seifert [2], we evaluate the curvature tensor

hij = (∂i∂jR) · n, (11)

which yields the mean curvature

H =
1

2
gikhki (12)

and the Gaussian curvature

K = det(gikhkj). (13)

In terms of the amplitudes of the shape function we have, for example,

H = −1 − 2ǫ F
(0)
ij Yij − ǫ2

[

6

5
F

(0)
ij F

(0)
ij + 2F

(1)
ij Yij − 5F

(0)
ij F

(0)
lm YijYlm

]

+ O(ǫ3). (14)

B. Velocity field

In common experiments, the Reynolds number of the flow is much smaller than unity. The

dynamics of the flow is thus adequately described by the Stokes equations for the velocity

field u and the pressure p,

ηα∇2v = ∇p, (15)
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where η0 is the viscosity of the suspending fluid and η1 is the viscosity of the fluid inside. We

define as usually the ratio λ ≡ η1/η0. We can safely assume that the fluids are incompressible,

and thus

∇ · v = 0. (16)

The total velocity field outside the vesicle can then be written as v = v0 + u, where u is

the perturbation of the field due to the presence of the vesicle, and the imposed shear flow

v0 is taken in the form v0 = γ̇x2 e1, where γ̇ is the shear rate.

Likewise, we write for the velocity field within the vesicle: v̄ = ω × r/2 + ū, where ω is

the vorticity. Following Lamb [17], we write an ansatz for the unknown perturbation of the

velocity field outside the vesicle in the form

u =
∞

∑

n=0

∇χ−n−1 × r + ∇φ−n−1 −
n − 2

2n(2n − 1)
r2∇p−n−1

+
n + 1

n(2n − 1)
rp−n−1, (17)

and inside the vesicle:

ū =
∞

∑

n=0

∇χ̄n × r + ∇φ̄n +
n + 3

2(n + 1)(2n + 3)
r2∇p̄n

− n

(n + 1)(2n + 3)
rp̄n. (18)

The first term expresses vortex motion in a uniform pressure field. The second term rep-

resents an irrotational motion which can exist in a field of uniform pressure. The last two

terms are connected with the pressure distribution.

The functions p̄n, φ̄n, and χ̄n in the Lamb solution are solid spherical harmonics of order

n and p−n−1, φ−n−1, χ−n−1 are solid spherical harmonics of order −n − 1 [16]. Splitting off

their r-dependence, we write χ−n−1 = r−n−1Qn, φ−n−1 = r−n−1Sn, and p−n−1 = r−n−1Tn.

Likewise for the quantities within the vesicle: χ̄n = rnQ̄n, φ̄n = rnS̄n, and p̄n = rnT̄n. The

precise values of the functions Qn, Sn,. . . (which are surface spherical harmonics and thus

depend only on the angles) are determined from the boundary conditions at the membrane,

as will be seen later.

Since a shear flow induces a shape deformation from a sphere which involves only second

order harmonics (i.e. n = 2), only Y2m is active[2, 4]. The other modes are damped[7, 16]
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to leading order. So we can write the Lamb solution for the full velocity field v as

v̄ = ∇φ̄ +
5

42
r2∇p̄ − 2

21
r p̄ + γ̇/2 (x2e1 − x1e2), (19)

v = ∇φ +
1

2
r p + γ̇ x2ex. (20)

where we explicitly write the external shear flow for the outer field and its rotational com-

ponent for the inner field. Since there is only the second harmonic, we have dropped the

subscripts (like in the terms p−n−1, pn, which would produce p−3 and p2) in order to simplify

the notations. The ansatz functions are expanded in powers of ǫ:

φ̄ =
[

S̄
(0)
ij Yij + ǫ S̄

(1)
ij Yij

]

r2, (21)

φ =
[

S
(0)
ij Yij + ǫ S

(1)
ij Yij

]

r−3 (22)

and

p̄ =
[

T̄
(0)
ij Yij + ǫ T̄

(1)
ij Yij

]

r2 + p̄0, (23)

p =
[

T
(0)
ij Yij + ǫ T

(1)
ij Yij

]

r−3. (24)

C. Stress balance

We now formulate the stress balance at the membrane. To this end we have to evaluate

the stresses exerted by the membrane as well as the hydrodynamical stresses that result

from the fluids on both sides of the membrane.

The normal force exerted by the membrane is given by the Helfrich force[2]:

Fn = κ
[

2H(2H2 − 2K) + 2∆SH
]

− 2 ZH. (25)

H and K are the mean and the Gaussian curvature, respectively, and ∆S is the Laplace-

Beltrami operator. Here Z is a Lagrange multiplier which enforces local membrane area

conservation. At zeroth order, the bracketed term in Eq. (25) vanishes since H2 = K2 = 1

and ∆SH = 0. It follows that, at leading order, the bending rigidity of the membrane is not

involved into play. This is just a consequence of the formal expansion we have adopted. In

order to arrive at a non-trivial solution at zeroth order, we formally require κ (and ∂tf) to

scale like ǫ−1. In order to make all ǫ dependencies explicit, we introduce κ̄ = ǫκ and write

Fn = ǫ−1κ̄
[

2H(2H2 − 2K) + 2∆SH
]

− 2 ZH. (26)
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By the same token, the isotropic part of Z must scale like ǫ−1. The angular part, however,

turns out to be O(1). Hence we decompose the Lagrange multiplier Z in the following way:

Z = ǫ−1
(

Z
(0)
0 + ǫ Z

(1)
0

)

+ Z
(0)
ij Yij + ǫ Z

(1)
ij Yij. (27)

The tangential force exerted by the membrane (due to its incompressibility) is

Ft =
(

g11tθ + g21tφ

)

∂θZ +
(

g12tθ + g22tφ

)

∂φZ. (28)

The fluid stresses are given by the hydrodynamical stress tensor:

σij = −p δij + η0 (∂ivj + ∂jvi), (29)

σ̄ij = −p̄ δij + η1 (∂iv̄j + ∂j v̄i). (30)

The full stress balance at the membrane thus reads

[(σij − σ̄ij)nj + Fnni] ei + Ft = 0, (31)

which has to be evaluated at r = 1 + ǫf .

D. Membrane incompressibility and kinematic condition

Membrane local incompressibility entails that the projected divergence of the velocity

field must vanish on the membrane:

(δij − ninj) ∂ivj = 0. (32)

We have in addition to require continuity of the fluid velocities across the membrane,

vi = v̄i (33)

as well as equality with the velocity of the membrane (if we do not account for any permeation

across the membrane). The latter condition reads

ǫ ∂tf = nivi, (34)

if we neglect O(ǫ2) terms [21].
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III. SOLUTION AT ZEROTH ORDER

In this section we shall deal with the leading order solution as originally derived by one of

us[4]. By leading order we mean to keep only the terms having (0) in their superscript (e.g.

F
(0)
ij ). We shall present in the next section the solution to the next order. Following Frankel

et al.[21], we determine the ansatz coefficients from the boundary conditions by performing

surface integrals over the (spherical) vesicle. For example, the equation
∫

(

v
(0)
i − v̄

(0)
i

)

xj dΩ = 0, (35)

which is an integral version of the continuity condition at zeroth order (actually a projection

of the ith vector component on the subspace of first-order spherical harmonics), yields the

five relations

T̄
(0)
ij − T

(0)
ij + 10S̄

(0)
ij =

5

3
eij. (36)

Similarly, the integral
∫

(

v(0)
p − v̄(0)

p

)

xpxixj dΩ = 0 (37)

(which is just the projection of the radial velocity balance on the subspace of second-order

spherical harmonics, but can also be understood as a projection of the ith component of the

radial velocity on the subspace of first-order spherical harmonics) gives the equations

2

7
T̄

(0)
ij − T

(0)
ij + 4S̄

(0)
ij + 6S

(0)
ij =

2

3
eij. (38)

From the stress balance [Eq. (31)] we have, upon projection on the appropriate subspace,
∫

[(

σ
(0)
iq − σ̄

(0)
iq

)

n(0)
q +

(

F (0)
n − 2Z

(0)
0

)

n
(0)
i + F

(0)
t · ei

]

xj dΩ = 0, (39)

which gives rise to

λT̄
(0)
ij +

3

2
T

(0)
ij + 10λS̄

(0)
ij =

5

3
eij + Z

(0)
ij − 4

(

Z
(0)
0 + 6κ̄

)

F
(0)
ij (40)

and at the same time fixes

p0 =
2

ǫ

(

Z
(0)
0 + ǫZ

(1)
0

)

. (41)

Finally, evaluating the integral
∫

[

(

σ(0)
pq − σ̄(0)

pq

)

n(0)
q +

(

F (0)
n − 2Z

(0)
0

)

n(0)
p + F

(0)
t · ep

]

xpxixj dΩ = 0, (42)
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we find

3T
(0)
ij − 1

7
λT̄

(0)
ij + 4λS̄

(0)
ij − 24S

(0)
ij =

2

3
eij − 2Z

(0)
ij − 4

(

Z
(0)
0 + 6κ̄

)

F
(0)
ij . (43)

Eqs. (36,38,40,43) determine the values of T
(0)
ij , T̄

(0)
ij , S

(0)
ij , and S̄

(0)
ij as a function of eij, Z

(0)
0 ,

Z
(0)
ij , and F

(0)
ij .

Likewise, the angular components Z
(0)
ij of the membrane tension are found from the

surface integral over the projected divergence (Eq.(32))

∫

(

δpq − n(0)
p n(0)

q

)

∂pv
(0)
q xixj dΩ = 0, (44)

which yields

3

7
T̄

(0)
ij + 2S̄

(0)
ij = 0. (45)

Having thus obtained the velocity field as a function of the shape amplitudes F
(0)
ij (and

eij, Z
(0)
0 ), we employ the same strategy to fulfil the kinematic condition (34):

∫

(

ǫ ∂tf
(0) − n(0)

p v(0)
p

)

xixj dΩ = 0. (46)

The result is a set of five equations that describe the dynamics of the amplitudes:

ǫ ∂tF
(0)
ij =

20 eij

23λ + 32
−

24
(

Z
(0)
0 + 6κ̄

)

23λ + 32
F

(0)
ij . (47)

For the time being we leave the isotropic part Z
(0)
0 of the membrane tension undetermined,

and it will be dealt with later in this paper.

IV. SOLUTION AT FIRST ORDER

The solution at first order is obtained in the same way as the solution at zeroth order,

this is why we shall not dwell on this issue. However, we must now apply the boundary

conditions at r = R instead of r = 1 (in order to incorporate consistently the desired order

in ǫ). To this end, we employ a Taylor series expansion around r = 1. For example, the

velocity field becomes

vi|r=1+ǫf =

[

v
(0)
i + ǫf (0)xj

∂v
(0)
i

∂xj

+ ǫv
(1)
i

]

r=1

+ O(ǫ2). (48)
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For the continuity condition we have to evaluate the integrals

∫

(

v
(1)
i − v̄

(1)
i + f (0)xq

∂(v
(0)
i − v̄

(0)
i )

∂xq

)

xi dΩ = 0, (49)

∫

(

v(1)
p − v̄(1)

p + f (0)xq
∂(v

(0)
p − v̄

(0)
p )

∂xq

)

xpxixj dΩ = 0. (50)

Similar integrals are constructed for the first-order stress balance. The resulting equations

allow for the determination of T
(1)
ij , T̄

(1)
ij , S

(1)
ij , and S̄

(1)
ij .

Membrane incompressibility (32) provides us with the expression of Z
(1)
ij , and from the

kinematic condition (34) we find at first order the following evolution equations for the

amplitudes:

ǫ ∂tF
(1)
ij = −ωs

2

(

ǫpsiF
(0)
pj + ǫpsjF

(0)
pi

)

− 24

23λ + 32

[

Z
(1)
0 F

(0)
ij +

(

Z
(0)
0 + 6κ̄

)

F
(1)
ij

]

+
4800

7

λ − 2

(23λ + 32)2
Sd

[

F
(0)
ip epj

]

+
288

7

1

(23λ + 32)2
Sd

[

F
(0)
ip F

(0)
pj

] [

(138λ + 192) κ̄ + (49λ + 136)
(

Z
(0)
0 + 6κ̄

)]

, (51)

where we have introduced the notation Sd[bij] = 1
2
[bij + bji − 2

3
δijbll].

Note that this equation still contains the undetermined functions Z
(0)
0 (t) and Z

(1)
0 (t),

which must be chosen such that the dynamics of the amplitudes comply with the available

excess area relative to the sphere.

V. COMBINING ZEROTH AND FIRST ORDER SOLUTIONS

We now proceed by casting the solutions at zeroth order, Eq. (47), and at first order,

Eq. (51), into a single equation. To this end, we set Fij = F
(0)
ij + ǫF

(1)
ij and Z0 = Z

(0)
0 + ǫZ

(1)
0 .

Thus we obtain a single evolution equation for the amplitudes Fij:

ǫ
DFij

Dt̄
=

20 ēij

23λ + 32
− 24 (Z0 + 6ǫC−1

a )

23λ + 32
Fij (52)

+ ǫ

[

4800

7

λ − 2

(23λ + 32)2
Sd[Fipēpj] +

288

7

(49λ + 136) Z0 + (432λ + 1008) ǫC−1
a

(23λ + 32)2
Sd[FipFpj]

]

.

The quantity

DFij

Dt̄
≡ ∂t̄Fij +

1

2
(ǫpsiFpj + ǫpsjFpi) , (53)
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entering this equation, is the Jaumann derivative (note that we consider all the calculation

in the advection frame of the vesicle, so that we have partial derivative instead of material

derivative as is usually written in the Jaumann derivative). ǫpsj is the Levi-Civita tensor.

In Eq.(52) time is dimensionalized by γ̇−1, and ēij by γ̇. The capillary number Ca is defined

as

Ca =
η0γ̇r3

0

κ
≡ τ γ̇ (54)

where τ is a typical time scale for the relaxation of the vesicle towards its equilibrium when

the flow is set to zero.

We shall now determine the Lagrange multiplier Z0 by imposing that the shape functions

Fij must comply with the available excess area. In terms of Fij, the surface of the vesicle is

given by

A = 4π + ∆ + O(ǫ4) = 4π + ǫ2 96π

5

(

F 2
11 + F 2

22 + F11F22 + F 2
12 + F 2

13 + F 2
23

)

+ O(ǫ4). (55)

Note that after recasting the zeroth- and first-order amplitudes into one amplitude, the

surface area is observed up to O(ǫ4). This is a very important point, since problems with

constraints always trigger higher order nonlinearities than those initially present in the

physical problem[26].

Evaluating ∂tA = 0 and substituting Eq. (52) for ∂tFij, we find the expression for Z0,

which reads:

Z0 =
(8π F12 − 6C−1

a ǫ) + ǫ A0

1 + ǫB0

(56)

with the abbreviations

A0 =
8π

[

1200 (λ − 2) C0 − 31104 (3λ + 7) ǫC−1
a D0

]

35 (23λ + 32)
,

B0 =
1728π (49λ + 136) D0

35 (23λ + 32)
,

which contain the following combinations of the amplitudes:

C0 = F11F12 + F22F12 + F13F23,

D0 = F11F
2
22 − F11F

2
12 + F22F

2
13 + F11F

2
23 + F 2

11F22 − 2F23F12F13 − F 2
12F22.
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VI. GENERAL COMMENTS AND COMPARISON WITH OTHER WORKS

Let us make some general comments. If we set formally ǫ = 0 on the right hand side of

Eq.(52) and in Eq.(56), we obtain the following equation

ǫ
DFij

Dt̄
=

20ēij

23λ + 32
− 192π

23λ + 32

F12Fij

∆
. (57)

This is the evolution equation derived in [4] (where time is rescaled by γ̇−1), which we

call “leading order theory”. Note that even to this leading order the evolution equation is

nonlinear. This nonlinearity is triggered by local membrane incompressibility. Note that

this markedly differs from droplet[16, 21] and capsule[23] theories where the leading order

equations are linear. The nonlinearities induce bifurcations and lead to the three dynamical

modes: tt, tb and vb.

In the leading order theory the membrane rigidity (or Ca) scales out from the evolution

equation. Following Ref.[4], two groups [8, 9] attempted very recently to include higher

order contributions beyond Eq.(57). The calculations presented by Lebedev et al.[8] and

Nogushi and Gompper[8, 9] do not seem to conform to our theory. Lebedev et al.[8] add in

the Helfrich force the next order term, but they ignored the corresponding hydrodynamical

response. As shown below the ignored terms are higher than those retained. This does

not only induce quantitative variations, but also it is shown below that the so-called self-

similarity[8] (in that the equations contain only two independent parameters) does not hold.

Nogushi and Gompper[9] retain the full Helfrich force (without truncation), but as Lebe-

dev et al.[8] they did not take into account the corresponding hydrodynamic response. In

addition, the authors combine, without justification, various ingredients: (i) leading order

theory[4] for the amplitude of vesicle deformation in order to compute the hydrodynamical

response, (ii) the full Helfrich force (without including the corresponding velocity field), (iii)

the semi-phenomenological Keller-Skalak[15] theory for the orientation angle of the vesicle;

this last point will become more clear in the next section. At present we do not understand

why the authors consider worthwhile to use a leading order theory for the amplitude of

deformation, but a semi-phenomenological theory for the orientation angle.

It should be stressed that a consistent theory [Eq. (52)], as presented here, induces higher

and higher nonlinearities due the constraint of a given available excess area. In section VII

we shall present the main results which follow from the full equation Eq.(52).
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A. Post-expansion of the full evolution equation

In order to compare more precisely with previous analyses, it is convenient to expand the

evolution equation Eq.(52) in powers of Fij. For that purpose, we admit that Fij is small

enough, albeit it is formally of order unity. This is a priori justified by the fact that due to

the available excess area constraint (7) the sum of the amplitudes is 5/96π ≪ 1. The idea is

to express Fij in terms of the orientation angle and the amplitude of deformation. For that

purpose we make use of the following identity

∑

i,k=1,2,3

3xixkFik(t) =
2

∑

m=−2

a2m(t)Y2m(θ, φ) (58)

(note that a2m was called F2m in [4]).

Then using as in[4] a22 = Re−2iψ, ψ coincides with the orientation angle of the vesicles

(Fig.2), and R is the amplitude of deformation of the vesicle. Instead of using R, and for

the sake of comparison with[8] we use the variable Θ defined by R/2ǫ = cos(Θ). We expand

the full equation [Eq.(52)] in powers of Fij and retain terms up to the higher (fifth) order

in Fij in a consistent manner. We then perform a straightforward conversion of variables in

terms of ψ and Θ. We find for Θ and ψ the following equations (where now we use physical

time instead of t̄):

T∂tΘ = −S sin Θ sin 2ψ + cos 3Θ + ǫ Λ1 S sin 2ψ (cos 4Θ + cos 2Θ) (59)

+ ǫ Λ2 S sin 2ψ cos 2Θ + .... (60)

T∂tψ =
S

2

{

cos 2ψ

cos Θ
[1 + ǫΛ2 sin Θ] − Λ

}

+ ...., (61)

where we define,

S =
7Ca

9

√
3π

ǫ2
, (62)

T =
7Ca

720

√
10π

23λ + 32

γ̇
, (63)

Λ =
1

240

√

30

π
(23λ + 32)ǫ, (64)

Λ1 =
1

28

√

10

π

49λ + 136

23λ + 32
, (65)

Λ2 =
10

7

√

10

π

λ − 2

23λ + 32
, (66)
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and ‘. . . ’ stands for other terms of the series. The first term on the right hand side of

Eq. (59) corresponds to the leading order theory presented in [4]. The first and second

term correspond to the situation treated in [8] where only the higher order contribution in

the membrane bending force is included[8, 9]. Taking the corresponding hydrodynamical

response to the same order into account (as done here) induces significant changes. A new

term, for example, is the third term on the right hand side of Eq. (59) (proportional to Λ1).

This term is at least of the same order as cos 3Θ. Indeed, the term proportional to Λ1S is of

the order of Λ1Ca/ǫ. Even if we consider ǫ not too small (the situation is worse otherwise!),

we have a term proportional to Ca. If one has in mind a physical situation, then it is known

that most experimental observations operate at Ca significantly larger than one[5, 6], and

that therefore the neglected terms are higher than those retained. If one has in mind a

formal spirit (or a mathematical spirit, in that Ca is taken of order unity), then ǫ should be

regarded as small. In that case the neglected terms are of order 1/ǫ, and are much higher

than the retained term in the Helfrich energy, namely cos 3Θ (which is of order one). As

a natural consequence of this, the so-called similarity equations (put forward in[8], in that

the evolution equations contain only 2 independent parameters, S and Λ; while T can be

absorbed in a redefinition of time) does not hold. Indeed, we have three parameters, which

are Ca, λ and ∆, the excess area (or equivalently ǫ); we could of course use S, Λ and ∆ as

well, but the community is used rather to the quantities Ca, λ and ∆, and there is no need

to contribute to proliferation of symbols.

VII. RESULTS

Equation (52) constitutes our basic result that we shall analyze now. We first analyze

the tt regime. Figure 3 presents the orientation angle as a function of λ and compares the

results with previous studies. Instead of a square root singularity found for the leading order

theory (and in the Keller-Skalak regime[15]), the angle crosses zero quasi-linearly. A point

which is worth of mention is that the tt angle becomes negative before the solution ceases

to exist (signature of the tb regime). Before the solution ceases to exist the vb mode takes

place, as discussed below.

In [4] it was predicted that in the tumbling regime a vb mode should take place. This

was found to occur as an oscillator (like in a conservative system), since the frequency of
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FIG. 3: The angle ψ0 in the tt regime. Dashed line: the leading order theory[4], dotted line: the

theory of Ref.[8], the full line: the present theory.

oscillation about the fixed point ψ = 0 was found to be purely imaginary. By including higher

order terms the frequency acquires a non zero real part[8], and the vb mode becomes a limit

cycle [in that all initial conditions in its domain of existence tend towards a closed trajectory

in phase space, (ψ, Θ)]. As expected from the original theory[4] the vb mode still occurs

in the vicinity of the tumbling threshold. This happens provided that the shape dynamics

evolve with time (breathing of the shape). Ca is a direct measure for the comparison between

the shape evolution time scale and the shearing time. The original theory[4] corresponds

formally to Ca → ∞, as can be seen from Eq.(59) and the definition of T and S. Including

higher order terms leads to the appearance of Ca in the equation.

In Fig. 4 we report on the phase diagram and compare it to previous theories[4, 8]. For

small Ca we find a direct (saddle-node) bifurcation from tt to tb, in agreement with Ref.[3].

At Ca → ∞ we recover the results of Ref.[4] (in that the vb mode coexists with tb and

whether one prevails over the other depends on initial conditions; this is not shown on the

figure 2). At intermediate values of Ca we find a belt (or a domain) of vb mode preceding

the tb bifurcation, in qualitative agreement with [8, 9], as shown on Fig. 4. The bifurcation

from the tt to vb is of Hopf type (the imaginary part of the stability eigenvalue of the tt

mode is imaginary). At larger Ca, the vb mode ceases to exist, while the tb mode takes

place. The tb mode occurs, at small Ca, as a saddle node bifurcation from tt. It merges at

larger Ca as a consequence of cessation of existence of the vb mode. Actually this coincides

with the cessation of existence of the tt branch (which becomes unstable– instability leading

to vb–, but it continues to exist until it hits the tb boundary).

The higher order calculation provided here shows significant differences with[8, 9], as

17



FIG. 4: The dotted line: theory in Ref.[8], the full line: the present theory. The same order of

discrepancy is found with Ref.[9].

shown in Fig. 4. The results presented in [8, 9] may be viewed as semi-qualitative given the

disregard of other terms of the same order, as commented in the previous section. Actually,

a simplistic phenomenological model [11] captures the main essential qualitative features of

Fig. 4.

Figure 5 shows a snapshot of the vb mode. Note that a pure swinging (a terminology

usually used for oscillation of rigid objects, and adopted in [9]) would be impossible within

the Stokes limit, since this is forbidden by the symmetry of the Stokes equation upon time

reversal. The breathing is a necessary condition for the present mode. In the upper half

plane (i.e. when ψ > 0) the shape in the vb regime (dashed line in the figure) is different

from the one in the lower plane (dotted line, rounded shape). This asymmetry makes this

dynamics possible owing to the fact that the two shapes (i.e. for ψ > 0 and ψ < 0) can

not be deduced from each other by a simple mirror symmetry with respect to the horizontal

axis.

The basic understanding of the vb mode is as follows. First we recall that a shear flow is

a sum of a straining part along ±π/4 (which elongates the vesicle for ψ > 0 and compresses

it for ψ < 0) and a rotational part, tending to make a clockwise tb. Due to the membrane
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FIG. 5: A snapshot of the vb mode. Solid line: ψ = 0. Dotted line: ψ ≃ −0.5. Dashed line ψ ≃ 0.5

fluidity the torque associated with the shear is partially transferred to tt of the membrane,

so that (due to torque balance) the equilibrium angle for tt is 0 < ψ0 < π/4. Further, an

elongated vesicle tumbles more easily than a compressed one[3]. Suppose we are in the tt

regime (ψ0 > 0), but in the vicinity of tb, so ψ0 ≃ 0 . For small Ca the vesicle’s response is

fast as compared to shear, so that its shape is adiabatically slaved to shear (a quasi shape-

preserving dynamics): a direct bifurcation from tt to tb occurs[3]. When Ca ≃ 1, the shape

does not anymore follow adiabatically the shear. When tumbling starts to occur ψ becomes

slightly negative. There the flow compresses the vesicle. Due to this, the applied torque is

less efficient. The vesicle feels, so to speak, that its actual elongation corresponds to the

tt regime and not to tb. The vesicle returns back to its tt position, where ψ > 0, and it

feels now an elongation (which manifests itself on a time scale of the order of 1/γ̇). Due

to elongation in this position, tumbling becomes again favorable, and the vesicle returns to

ψ < 0, and so on. We may say that the vesicle hesitates or vacillates between tb and tt. The

compromise is the vb mode.
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FIG. 6: The dashed line in the outer graph corresponds to the leading order theory where a cusp

singularity is observed for any Ca. φ is the label of the vertical axis is the suspension volume

fraction.

VIII. A BRIEF DISCUSSION OF RHEOLOGY

We discuss briefly the implication of the higher order theory on rheology. A complete

discussion on this topic, and the comparison between droplets and capsules theory will be

presented in the future.

Recently a link between the different modes and rheology has been presented[10]. It is

thus natural to ask how higher order terms would modify the reported picture. Eq. (52)

constitutes a basis for the derivation of the constitutive law, as in [10]. Here we focus only

on the effective viscosity as a function of λ. In the tb and vb regimes we make an average of

the effective viscosity over a period of oscillation. The results are reported on Fig.6.

We see that at small enough Ca, the cusp singularity (inset of Fig.6)[10] persists as in

the leading order theory, while at larger Ca the cusp is smeared out by the fact that the

transition towards the vb mode does not show a singularity as does a saddle-node bifurcation.
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IX. DISCUSSION AND CONCLUSION

We have extended in a consistent manner the original theory[4] to higher order, and have

analyzed the far reaching consequences. We have found that three parameters (i.e. the full

set of dimensionless parameters that we can construct from the original model) survive to

the next consistent leading order, thus ruling out some suspicions on self-similarity solutions,

as announced in[8]. We have then analyzed the phase diagram of the evolution equation,

and briefly discussed the behavior of the effective viscosity in the dilute regime. A particular

point is that the next order terms wash out the cusp singularity of the effective viscosity[10]

at the bifurcation point, provided that Ca is large enough. At low enough Ca the cusp

singularity persists.

We have checked that for high enough Ca ≃ 100 (a quite accessible value in the

experiments[6]) the full evolution equation produces a pseudo-coexistence of the vb and

tb solution. By pseudo we mean the following: if we start with an adequate initial condition

(say ψ small), but the physical parameters are such that the tb mode should be expected

from the phase diagram (Fig.4), then the system can spend a long time in the vb regime

(say about 50 cycles, or more; typically the number of cycles is of order 1/Ca), before it falls

onto the attracting mode, namely the tb one. If, on the contrary, the vb mode is expected

from the phase diagram, but the initial condition is such that ψ is large enough to enforce tb,

then the system spends a long period of time in the tb regime before it exhibits vb. Since, to

date, no systematic experimental study of the vb mode has been reported (the only reports

show about two temporal periods[5, 6]), our analysis shows that it may prove very difficult

to locate experimentally the boundaries of the various modes.

Finally, this model has focused on vesicles. In order to make a step forward towards red

blood cells, it is necessary to include the cytoskeleton structure, which is known to exhibit

nonlinear viscoelasticity. We hope to tackle this question in the future.
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