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Abstract 
 

The increase in uncertainty throughout the viscosity scale being the principal disadvantage of 

capillary viscometry, the BNM-LNE decided to develop an absolute falling-ball viscometer making it 

possible to cover a wide range of viscosity while keeping a weak uncertainty. The measurement of 

viscosity then rests on the speed limit measurement of falling ball, corrected principal identified 

effects (edge effects, inertial effects, etc). An experimental bench was developed in order to reach a 

relative uncertainty of the order of 10-3 to the measure of viscosity. This bench must allow to observe 

the trajectory of the ball inside a cylindrical tube filled with liquid for which the viscosity is to be 

measured, and to obtain the variations in speed throughout the fall in order to determine the area 

where the speed limit is reached. 

 

 

Introduction 
 

 

The measurement of the fluids’ viscosity is nowadays important in many industrial processes 

such as forming of polymers, manufacturing of varnishes, cosmetics, certain food products and 

various suspensions. There are various measurement techniques like the capillary or rotary rheometry. 

The viscosity laboratory of BNM-LNE provides reference oils, and calibrates capillary tube 

viscometers of all types to ensure the traceability of national standards. Materialization of the national 

range of viscosity is based on the kinematics viscosity of bi-distilled water at 20°C (1.0034mm².s-1). 

This value can be used to calibrate primary U-tube viscometers, which are used to calibrate the 

Ubbelhode type work viscometers. 

The main disadvantage of capillary viscosimetry is the increase in uncertainty at each stage of 

the procedure [1]. This comparative method known as "step up" is based on the water's viscosity 

which itself is a value measured and subjected to uncertainties [2] but also disputed by a part of the 

scientific community. 

Thus, it is important to install an absolute viscometer, allowing on the one hand to cover a wide range 

of viscosity measurement while keeping a weak uncertainty, and on the other hand to ensure the 

traceability to base quantity of the International System. 

 We decided to develop a method based on the falling ball in a fluid because it is simple to 

implement and the only one which makes it possible to obtain desired uncertainty. Its operating 

principle is simple. A rigid solid sphere, with diameter d and density ρb, falls under the effect of 

gravity in the Newtonian liquid study, density ρ and viscosity coefficient η. For Newtonian fluids, the 

principle of measurement is based on relative balance between the forces of pressure, viscosity and 

gravity.  

The Stokes theory constitutes the theoretical base for the problem. It is valid with very small Reynolds 

numbers, in steady state and infinite medium.  

The falling speed of the ball is then inversely proportional to viscosity, and is given by the expression: 
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with : 

η : Fluid dynamic viscosity (Pa.s) 

d : Ball diameter (m) 

U∞ : Ball speed limit (m.s-1) 

bρ : Ball density (kg.m-3) 

ρ : Fluid density (kg.m-3) 

g : Gravity acceleration (m.s-2) 

 

Nevertheless, this equation is valid only when the speed limit is reached, and for a falling sphere in an 

infinite medium without inertial effects [3]. It is why a certain number of corrections must be applied 

to the speed U∞. We can therefore distinguish the corrections due to the inertial effects, the edge 

effects, the end effects and finally to the rotation of the ball. 

This article describes the first development stages of this viscometer. The bibliographical study 

highlights the various corrections, which must be applied so that the formula connecting viscosity to 

the falling ball speed in a tube and the associated calculation of uncertainties are valid (§ 1). The 

following part presents the experimental set-up (§ 2), and finally, the results are presented in the last 

part (§ 3).  

 

1. Bibliographical Study 
 

The Stokes theory, which allows to express viscosity according to the speed limit of the falling 

ball applies only if the ball falls in an infinite medium, and to the borderline case where Re→0 

(creeping flows). It is thus necessary to consider the influence of the diameter of the tube as well as 

that of the Reynolds number. Indeed, the walls and the extremities of the cylinder tend to slow the ball 

down while the inertial effects increase the falling speed. Moreover, one rough ball can even revolve 

around itself and shift from the cylinder axis. 

 

1.1. Inertia 
 

A Reynolds number is defined based on the diameter of the ball: 

η

dUρ
Re ∞=  

When the inertial effects are negligible, the drag coefficient is written : 
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24
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Oseen [5] extended the Stokes law by considering the fluid inertia : 
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This equation gives the value of the drag coefficient for 1Re0 << . This formula was improved by 

Proudman and Pearson [6], then by Ockendon and Ewans [7] who respectively obtained terms of 

higher degrees : 
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Goldstein [8] carried out a theoretical analysis on the corrections of inertia in the absence of walls. 

The following coefficient was obtained : 

[ ]...ReaReaRea²ReaRea1
Re

24
C 5

5
4

4
3

321D −+−+−+=          (5) 

with: 

16

3
a1 =   

1280

19
a 2 =   

20480

71
a 3 =   

3440640

30179
a 4 =   

560742400

122519
a5 =  



 3 

 

 

These works were verified by those of Shanks [9], who obtained for the 5th term level : 

550502400

122519
a5 =  

 

Maxworthy [10] carried out an experimental study of the inertial effects for 11Re0 << . 

Other solutions are available in the literature, abstracted by Clift [3] or Khan and Richardson [11]. 

 

1.2. Edge effects 
 

The analytical solution for a sphere of diameter d in translation with a constant speed UStokes was 

developed by Stokes [12] within the limit of Re<<1 and in an infinite medium. 

In a finite field of diameter D (cylindrical tube of diameter D filled with oil), the effects caused by the 

rigid walls involve an increase in the viscous dissipation which decreases the sphere’s speed [13]. 

The correction factor due to the wall-attachment effects K(d/D) for a creeping flow of a Newtonian 

fluid describes the decrease in the speed resulting from the presence of the walls as a function from 

the ratio of the rays between those of the sphere and the tube (d/D). It is defined in experiments by : 
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U
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∞
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The drag force can thus be defined by : 

KdUπη3F ∞=  

Faxen [14] solved the equation of motion while taking into account the boundary conditions 

simulating the walls and by using the approximation of Oseen [5]. He obtained a coefficient of 

correction applied to the Stokes force for a sphere falling into a cylinder: 
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where the function f has the following values : 

f(0)=2.104 f(0.5)=1.76 f(1)=1.48 f(2)=1.04 f(5)=0.46 

Bohlin [15], in a theoretical study using an extension of Faxen’s method of reflections obtains the 

following correction, for Re<<1 and d/D<0.6 : 
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In an experimental study, Francis [16] gives for d/D<0.97 and Re<1 : 
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Haberman and Sayre [17] also determined in experiments the coefficient K for d/D<0.8 and Re<2 : 
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Faxen’s formula was confirmed in experiments by Kawata [18], who expressed the wall effects, for 

d/D<0.07 and Re<1, by : 
1

wp
D

d
a1K

−







−=                (11) 

The aw function has the following values : 

aw=2.104  for d=2.0mm 

aw=2.103  for d=2.4mm 

aw=2.099  for d=3.2mm 

 

Sutterby [19] also carried out experimental works on the wall and inertial effects for 0<d/D<0.13 and 

0.0001<Re<3.78. 

 As a result, an empirical correlation for the wall to wall correction factor : 

)Dd(Re,fK p =  

 

1.3. Lift force 
 

Dealing with this problem relating to the hypothesis of the creeping flows does not reveal the 

presence of lift forces tending to move the sphere perpendicularly to the tube axis (Case of a rough 

sphere revolving around itself). 

Calculations of Rubinov and Keller [20] indicate that a sphere in rotation falling into a stationary fluid 

experiences a lift force FL which is orthogonal to the motion direction. This force is given by : 
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Ω
v

: angular speed of the sphere 

U
r

: sphere speed 

For low values of Reynolds numbers, the transverse force is independent from viscosity [20]. 

Rubinov and Keller [20] tried to apply their results to the problem of the lateral motion of a sphere 

freely suspended in a Poiseuille flow. The transverse force is always directed in order to bring back 

the sphere towards the centre of the tube and would be cancelled on the tube axis. 

 

1.4. End effects  
 

The end effects were theoretically studied by Lorentz [21] in a length L tube, without considering 

the wall effect modelled later by Faxen [14]. For a sphere approaching a rigid infinite plan, he 

obtained the following correction : 
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where z is the distance between the sphere and the cylinder base. 

Tanner [22], reusing the method of reflections taking into account the wall effect, modelled the end 

effect, and studied its influence on the total drag (Re<<1). He gives the increase in the drag due to end 

effect according to the 2z/D ratio where z is the distance between the ball and the cylinder base and D 

the tube diameter. 

For Sutterby [19], the corrections due to the end effects are useless for :  
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Works of Flude and Daborn [4] confirm the results obtained by Sutterby [19]. Indeed, it is not 

necessary to apply at the same time the corrections due to the end effects and the corrections due to 

the edge effects, except if the ball is only a few diameters away from the tube base. 

Equation 1 being valid only when the speed limit is reached, and if the sphere falls in an infinite 

medium without inertial effects, one will use, at first approximation, the coefficient of correction of 

Faxen (Equation 7) which makes it possible to consider at the same time edge effects and inertial 

effects. By considering that measurements are taken sufficiently far from the tube extremity, no 

coefficient relating to the end effects will be applied. Moreover, a possible rotation of the ball will not 

be taken into consideration. 

The expression of viscosity then becomes : 
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1.5. Uncertainties calculations on the measurement system 
 

The interest of this study being primarily metrological, it is important to determine uncertainty on 

the speed measurement system in order to reach the following viscosity measure objective : 10-3. 

The expression of the viscosity variance )(u 2 η , by taking into account the previous non correlated 

parameters becomes : 
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We then calculate the uncertainty, with which the measurement principle must comply. This 

calculation is carried out using the parameters of Table 1 

 

Parameter Value Standard-Uncertainty Preponderance (%) 

Fluid density (kg.m-3) 898 2.25.10-2 0 

Ball density (kg.m-3) 6000 4.5.10-2 1.9 

Ball diameter (m) 2.10-3 1.10-6 47.7 

Tube diameter (m) 10.10-2 1.10-6 0 

Falling speed (m.s-1) 9.5.10-3 9.5.10-6 49.9 

Gravity acceleration (m.s-2) 9.81 91.10-8 0,5 

Viscosity (Pa.s) (20 °C) 1.133 1.416.10-3 / 

 

Table 1 : Values used for the uncertainty calculation   
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It is noted that the two dominating parameters when calculating uncertainties are the ball diameter and 

its falling speed. According to these parameters, the relative uncertainty of the speed measurement 

system must be of 10-3 to obtain a relative uncertainty of 10-3 to the viscosity measure. This value thus 

will enable us to determine the most suitable measurement principle. With regard to the ball diameter, 

our means of calibration enable us to have an uncertainty-type of 1 µm. 

 

2. Speed measurement method 
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2.1. Measurement of U∝∝∝∝ 
 

The authors having worked on the falling balls developed various speeds measurement 

systems. To compare the measurements of viscosity obtained by capillary viscosimetry and with a 

falling ball viscosimeter, Flude and Daborn [4] used a laser technique with Doppler effect. The sphere 

speed is continuously measured as it falls into a cylinder filled with oil. Arigo and McKinley [23] 

visualized the falling ball using a fixed camera. Lommatzsch [24] proposed the following 

measurement method : the camera is given a speed close to that of the ball. 

 The ball speed ( ∞U
r

) is then determined by the sum of its speed in the field of the camera ( bcU
r

) and 

the camera speed  ( cU
r

) : cbc UUU
rrr

+=∞      (16) 

As for Tran-Son-Tay [25] and Mordant and Pinton [26] they developed systems of acoustic 

measurement based on the Doppler effect of an ultrasonic wave returned by the falling particle. In 

comparison with the various methods already used, it was thus decided to develop a method using a 

line scan CCD camera. The linear camera makes it possible to obtain very high resolutions and 

frequencies of acquisition and give us the possibility of taking quasi-instantaneous speed 

measurements. This technique enables us to measure the variations in the ball speed along the tube 

and to observe its trajectory. 

Finally, the stages allow us to move along the tube (Figure 1). 

 
 

Figure 1 : Diagram of the experimental set-up 

 

2.2. Experimental set-up 
 

This part presents the various options chosen concerning the assembly of the experimental set-up. 

The video system of measurement must enable us to observe a ball of 2 mm out of 2000 pixels with a 

resolution of 1 pixel.  

The camera used comes from the Lord Ingenierie Company (Corbreuse) associated with a video 

acquisition board National Instruments (PXI 1422) (Le Blanc-Mesnil). It is made of a 5150 pixel 

linear CCD sensor and a line frequency going up to 3.7 Khz. 

In order to exploit the camera’s possibilities, Silloptics Company provided the used lens (Wendelstein, 

Germany). This telecentric lens fitted with an extension tube, which has an enlargement x10. 

Monochromatic and shadowscopic lighting makes it possible to observe the ball with well-contrasted 

edges. For this purpose, a red LED provided with a condenser moves facing the camera.  

The aluminium tube was treated in order to make it matt and to reduce the parasitic reflections of 

light. Four openings were cut out facing the cameras and lightings in order to place plane plates of 

glass making it possible to reduce the optical deformations which would have generated a tube out of 

traditional cylindrical glass.  
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The camera must move along the tube in order to follow the ball. To do so we use a Micro-control 

(IMS300) (Evry) stage provided with a direct current engine. This stage makes it possible to move the 

camera at a distance of 300 mm, but generates errors of positioning due to the pitch, roll and yaw 

angles [27-28]. 

Indeed the stage has a ball bearing guidance system and a precision ballscrew drive. However, a ball 

guidance is not repeated on the scale of the micrometer. It is consequently important to be able to 

correct the stage’s defects. 

The measurement of the hunting will be made with the assistance of an electronic level, which directly 

gives us the value of the angle. The measurement of the roll angle is made with the assistance of two 

length gauges. These length gauges are placed facing a reference surface (Granite block). One 

calculates the camera’s angle of rotation by knowing the distance between the detectors and the 

displacement measured by each one of them. Finally, pitch angle is measured with another electronic 

level (Figure 2). 

 

 
Figure 2 : Pitch, roll and yaw angles measurement  

 

The balls used must be selected so as to keep very low Reynolds numbers. The tests will be carried 

out with ceramics balls, glass balls… 

In order to maintain the ball in oil and to release it at rest in the centre of the tube, we developed an 

aspiration release device. This method thus enables us to use any ball materials to carry out the tests, 

contrary to an electromagnet. A device then enables us to accurately position the ball in the centre of 

the tube. Finally, the temperature is controlled with the assistance of a 25 Ohms platinum probe. 

Finally, all the instruments are interfaced under LabView. Figure 3 shows the bench described 

previously. 
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Figure 3 : Experimental bench 

 

1: Cylindrical tube 

2: Lighting 

3: Stage allowing lighting displacement 

4: Ball releasing device 

5: Stage allowing camera control 

6: Camera 

7: Granite Block  

8: Detectors 

9: Electronic Levels 

 

3. Experimental results 
 

3.1. The system used 
 

First measurements were taken for two batches of oil and for different temperatures. Table 2 

presents the values of the various parameters and their associated uncertainties. 

 

 Value  Uncertainty 

d (m) 2.000.10-3 1.10-6 

D (m) 9.947.10-2 1.10-6 

ρb (kg.m
-3

) 3963 2 

g (m.s
-2

) 9.81 91.10-8 

Ρ (kg.m
-3

) 350 (1
st
 batch) 22.389 °C 895 2 

ρ (kg.m
-3

) 350 (2
nd

 batch) 19.149 °C 887 2 

Ρ (kg.m
-3

) 350 (2
nd

 batch) 21.114°C 885 2 

ρ (kg.m
-3

) 350 (2
nd

 batch) 24.617 °C 884 2 

 

Table 2 : Parameters 

 

3.2. Speed measurement  
 

The following image (Figure 4) presents the ball seen by the line scan camera when passing in 

front of the lens at the time of its fall. The position of the ball edge is given by finding the point where 

the gradient of grey level is maximum. This data enables us to measure the ball diameter and to obtain 

the barycentre position. By knowing the time interval between two images and the displacement of the 

barycentre, the falling ball speed is obtained. 
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Figure 4 : Ball passage 

 

Several measurements are taken along the tube. The camera remains fixed and in order to 

measure the ball speed in the field of the camera. Once the ball has passed, the camera is displaced for 

the following measurement. 

Seven measurements are made along the tube. The first one is made just after its release and the 

following ones are every 3 cm. 

The first measurement makes it possible to feature the transient of the ball, the others give the speed 

limits reached by the ball (Figure 5). 

 

  
Figure 5 : Variations in the ball’s speed (acquisitions at 100 Hz) 

 

3.3. Results 
 

Table 3 summarises the measurements made all along the fall for various frequencies of acquisitions, 

when the ball reaches its speed limit. The speed value is calculated from the average of the results 

obtained for each measurement. 

 
1000 Hz 100 Hz 10 Hz 

 
Speed  (mm/s) 

Standard 

deviation 
Speed  (mm/s) 

Standard 

deviation 
Speed  (mm/s) 

Standard 

deviation 

Measurement 1 7.03 0.11 7.05 0.08 7.050 0.002 

Measurement 2 7.06 0.1 7.06 0.01 7.051 0.003 

Measurement 3 7.05 0.09 7.05 0.02 7.048 0.001 

Measurement 4 7.04 0.08 7.04 0.02 7.047 0.004 

Measurement 5 7.04 0.09 7.04 0.03 7.040 0.002 
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Measurement 6 7.03 0.1 7.04 0.01 7.043 0.003 

 

Table 3 : Measurement results 

 
1s.mm012.0045.7U −

∞ ±=  (k=1) 

Therefore, the obtained viscosity is :   

 s.Pa002.0909.0η ±=  (k=1) 

By using a capillary viscosimeter, the obtained viscosity, for the same temperature is : 

s.Pa004.0908.0η ±=  (k=1) 

 

3.4. Viscosity measurements at other temperatures  
 

 Complementary tests were conducted at 19.149°C, 21.114°C and 24.617°C by using a second 

oil and a 2-mm diameter ceramic ball. The results obtained are shown in figure 6 and are compared 

with the value of viscosity obtained by measurement with a capillary tube viscometer (Table 4). 

 
 

Figure 6 : Falling speed of a 2 mm- ceramics ball in a 350-oil (Batch 2) at 19.149°C, 21.114°C and 

24.617°C 

 

 Falling ball viscosimeter Capillary viscosimeter 

Temperature °C Viscosity (Pa.s) 

Standard-

Uncertainty (Pa.s) 

(k=1) 

Viscosity (Pa.s) 

Standard-

Uncertainty (Pa.s) 

(k=1) 

19.149 0.987 0.002 0.985 0.004 

21.114 0.843 0.002 0.842 0.004 

24.617 0.644 0.002 0.644 0.004 

 

Tableau 4 : Comparison between the results obtained by capillary viscometer and the falling-ball 

viscometer. 

. 

 

These first results make it possible to obtain the variations in the falling speed of the ball along the 

tube, with high frequencies (1000 Hz and 100 Hz), the possibility of taking transitional measurements 

and consequently following the speed variations, and for weaker frequencies (10 Hz), the possibility 

of having excellent uncertainties on the speed measurement (standard deviation of repeatability 

ranging between 0.001 and 0.004 mm.s-1). 
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The results are in perfect compliance with those obtained by capillary viscometry. If the values 

obtained are compared, a 0.2 % variation is obtained. 

 

Conclusions 
 

The experimental bench of viscosity measurement was designed so as to follow the trajectory 

of the ball, to obtain the speed evolution throughout the fall, to achieve the goals in terms of 

uncertainties and to make it possible to ensure the basic sizes traceability of measurements of the 

International System base quantity. The results obtained show that the principle of measurement 

perfectly complies with our expectations. In fact, at the time of the same experiment, we could 

highlight the acceleration of the ball as well as the area where its speed limit of the fall is reached. The 

use of a linear camera enables us to take measurements at high frequency while keeping an excellent 

resolution. Finally, this method of absolute measurement enables us to reduce the uncertainties 

obtained by capillary viscometry.  
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