
HAL Id: hal-00197567
https://hal.science/hal-00197567

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peeling of Polydimethylsiloxane Adhesives : the Case of
Adhesive Failure

Claude Verdier, Guillaume Ravilly

To cite this version:
Claude Verdier, Guillaume Ravilly. Peeling of Polydimethylsiloxane Adhesives : the Case of Ad-
hesive Failure. Journal of Polymer Science Part B: Polymer Physics, 2007, 45, pp.2113-2122.
�10.1002/polb.21045�. �hal-00197567�

https://hal.science/hal-00197567
https://hal.archives-ouvertes.fr


 

 

Peeling of Polydimethylsiloxane Adhesives : the Case of Adhesive 

Failure 
 

Claude VERDIER
(1) *,

 Guillaume RAVILLY
(2) 

 

(1) Laboratoire de Spectrométrie Physique 

CNRS and Université de Grenoble UJF (UMR5588) 

BP 87, 140 Avenue de la Physique 

38402 Saint-Martin d’Hères cedex 

France 

 

(2) Laboratoire de Rhéologie 

1301 rue de le piscine 

CNRS, UJF-INPG (UMR5520) 

BP53, 38041 Grenoble cedex 9 

France 

 

 

ABSTRACT 

 

 

The adhesion properties of high molecular weight Polydimethylsiloxane adhesives are measured 

using 90°-peel adhesion tests, in the high velocity range. Such adhesives undergo mainly 

adhesive failure in this regime. The influence of viscosity (non-Newtonian), adhesive thickness, 

peeling velocity, and backing properties are studied, and new unexpected behaviours are shown. 

The role of rheology and peeling velocity can be explained by an extension of a model already 

presented for cohesive failure, by using a power-law fluid for the adhesive. On the other hand, the 

influence of the backing rigidity reveals to be coupled with the adhesive elastic properties, this 

effect being correlated to the introduction of a new parameter in the model, the Weissenberg 

number for viscoelasticity. 
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INTRODUCTION 

The adhesive properties of pressure-sensitive adhesives (P.S.A.) have been studied by a large 

number of researchers over the years, using different methods for predicting adhesive failure in 

particular using peeling tests
1,2
 and probe-tack tests

3,4
 but also other various approaches such as 

the JKR (Johnson-Kendall-Roberts) technique
5
. Prediction of the adhesive properties in terms of 

interfacial and rheological properties is still a challenge, and although several studies already 

focused on such correlations
6-9

, there is still a lack of prediction of the effect of such properties as 

well as geometrical effects. Recently, model polymers (Polydimethylsiloxanes, PDMS) were 

used
10
 to investigate the peeling properties of Newtonian adhesives. Although this analysis was 

found to predict well experimental data, it was only obtained in a rather limited range of 

velocities which corresponds to two-dimensional adhesive flow of the cohesive peeling branch. 

Indeed, previous studies reported on the complex flow behaviour of the adhesive in both cohesive 

and adhesive regimes, close to the peeling front
2,11

. After a certain threshold velocity is reached, 

both cohesive and interfacial flow or deformation regimes show the appearance of instabilities 

leading to three-dimensional deformations corresponding to stable regimes for the energy release 

rate G (N/m) or Force per unit width (
b

F
G = , F is the force required to peel the adhesive strip, 

and b is the adhesive strip width). 

To model the effect of the adhesive and rheological properties on the energy release rate G, 

several studies
12,13,14,15

 focused on the possible decomposition of G into the product of two 

different terms, Wa, the Dupré adhesion energy, and a rheological parameter (V)φ to be 

determined. (V)φ contains the viscoelastic contribution of the adhesive in terms of rheological 



properties and the velocity of peel V, and is intimately related to the rate dependence of the 

microscopic motions of elements (polymer chains, networks, particles, etc.), within the adhesive : 

     (V)  WG a φ=       (1) 

It has been a source of interest to try to model this function, which can be assumed to contain 

both shear and elongational deformation types. Still the use of the Dupré energy of adhesion  in 

formula (1) is under debate and might be related to more complex microscopic phenomena, due 

to the presence of polymer chains of different molecular weights Mw for example
13
. Finally, the 

geometry of the system plays a role which renders the use of (1) difficult. 

In the present work, we pay attention to the adhesive (interfacial) regime of failure in a 90°-peel 

test and try to analyse the effect of the governing parameters, i.e. the adhesive thickness, the 

velocity of peel, the influence of the backing rigidity as well as the rheological adhesive 

properties. In the first part, experimental results are presented
16
, illustrating the dependence of the 

energy release rate as a function of the governing parameters described above. The interfacial 

parameters are also described and their importance is mentioned in terms of interfacial energies, 

determined through wetting measurements. In the second part, an explanation is proposed 

through the use of a power law fluid, which is typical of the PDMS adhesive used in this study. 

The model predicts fairly well the importance of the governing parameters in terms of the peeling 

velocity. To explain these results further, a new explanation is proposed in the last part, 

accounting for the viscoelasticity effects which appear in the high velocity regime where 

adhesive failure occurs. Dimensionless numbers are introduced through an empirical model. The 

model is in good agreement with the experimental data and might be used for other systems.  

The transition from cohesive to adhesive mode of failure is also discussed. 

 



EXPERIMENTAL MEASUREMENTS 

 

 

Experimental set-up and adhesive properties 

 

In a previous study
10
, model PDMS adhesives have been investigated using a peeling experiment. 

The set-up has been already described and is briefly recalled here. An adhesive is coated thanks 

to a blade coating system (thickness in the range 30-400 µm) onto an initially treated backing. In 

the present study, different backings are used (stainless steel of different thicknesses, 10µm and 

20µm, and PolyEthylene-Terephtalate PET, 23 µm). After the coating is achieved, the system is 

rapidly set into contact with the substrate, i.e. a High density Polyethylene (HDPE). This system 

was selected because it enables to obtain adhesive failure at the polymer-substrate interface 

which is required for practical applications. The peeling system consists of two micrometric 

tables X and Z moving at the same velocity V, this enabling to obtain a fixed point for 

observations of the peeling front
2,7,8

. The adhesive strip (adhesive and backing) is attached on the 

force transducer located on the vertical micrometric table moving in the Z-direction with velocity 

V. The substrate is located in the X-Y plane and moves in the X direction with velocity V. The 

whole set-up is located in a controlled chamber (fixed temperature T=20°C ± 0.1°C, and relative 

humidity 10% ± 2%). As the experiment is started, corresponding to simultaneous motion of the 

two micrometric tables, a transient regime is found which will lead to a stable regime after a 

certain time, depending on the geometry as well as the viscoelastic parameters of the adhesive. 

The adhesive which was selected is a long molecular weight linear PDMS (Rhodia silicones, 47V 

2500,000), its zero-shear viscosity is η0=2500 ± 100 Pa.s and its surface tension γ = 21 ± 1 

mN/m at 20°C (measured by the pendant drop technique, Digidrop GBX, France). A more 

complete rheometrical study
17
 (rotational rheometer RMS, cone-plate geometry) shows the 

following shear-rate dependence for this polymer (figure 1): 
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Figure 1. Shear rheometry of the PDMS adhesive polymer (T= 20 °C). Determination of the 

longest relaxation time of the polymer gives approximately λ = 3 s. 
 

This polymer has the advantage to present a large viscosity, followed by a strong shear-thinning 

behaviour at high shear rates, and to exhibit viscoelastic effects when the time scales are smaller 

than the relaxation time λ, which is the case (as will be shown later) for high peeling velocities. 

λ, the longest relaxation time, can be found at the onset of decrease on the viscosity curve (figure 

1), corresponding to a critical shear rate of about 0.3 s
-1
, therefore λ =1/0.3 ≈ 3s. 

The elongational properties of such a polymer have not been measured here, but do not exhibit 

strain hardening
18
. This behavior was shown when pulling a PDMS sample at constant stretch 

rate (Ref. 18, stretch rates from 0.03s
-1
 to 3 s

-1
). The transient elongational viscosity undergoes a 

slow increase followed by a plateau (defining the elongational viscosity), but shows no strain 



hardening effects. On the contrary, hardening has been observed when using branched  

polydimethylsiloxanes
18
 at the highest velocity rates (around 3 s

-1
). 

When peeling is achieved, at the smallest velocities, cohesive failure is possible, but the most 

general behaviour corresponds to interfacial failure, i.e. the adhesive is being detached from the 

substrate. 

 

Surface energy measurements and surface treatment 

 

In order to obtain the desired peeling regimes, different backings were used and only one 

substrate (HDPE). The free surface energies of all materials were determined following wetting 

measurements using the contact angle technique coupled with a vizualisation technique 

(Digidrop, GBX, France). Fluids with known surface energy components were used . Two kinds 

of free surface energies decompositions were used, the one based on the Owens-Wendt
19
 

decomposition, as in equation (2)a, and the second one - equation (2)b - based on the acido-basic 

concept by van Oss et al.
20
 (Lewis concept): 

      PD γγγ +=       (2)a 

ABLW γγγ +=      (2)b 

where the surface tension γ has two components, a dispersive one ( Dγ ) and a polar one ( Pγ ) in 

the first case, and a Lifshitz-van der Waals ( LWγ ) one and an acido-basic component ( ABγ ) in the 

second case. The ABγ  component (acido-basic) is defined in terms of the electron donator (Lewis 

base, −γ ) or acceptor (Lewis acid, +γ ) character of the fluid or solid and is written as 

-AB 2 γγγ += . 

This leads to the Dupré adhesion energy expression Wa given by : 



( ) P

S

P

L

D

S

D

LLa γγ2γγ2cosθ1γW +=+=     (3)a 

( ) +−+
++=+= S

-

LSL

LW

S

LW

LLa γγ2γγ2γγ2cosθ1γW   (3)b) 

where θ is the wetting angle between the drop (L) and a substrate (S), and Lγ  is the liquid surface 

tension. The surface tension or free energy components of the liquids and the solids are denoted 

with a subscript L or S respectively, and the superscripts LW and AB are used for the van Oss 

decomposition
20
, whereas D and P are used for the Owens-Wendt method

19
.  

Four different liquids were used for the study, water, glycerol, formamide, and diiodomethane. 

They span the whole range of fluids going from dispersive to polar liquids, which is useful in 

particular for the first decomposition (Owens-Wendt). Their components, as described 

previously
19,20

, are shown in Table 1: 

Acido-basic
20 

Polar-dispersive
19 

Liquids
 

Lγ  
LW
Lγ  +γ  −γ  

Pγ  Dγ  

Water 72.8 21.8 25.5 25.5 51 21.8 

Glycerol 

(99% pure) 
64 34 3.9 57.4 30 34 

Formamide 

(99.5% pure) 
58 39 2.3 39.6 19 39 

Diiodomethane 

( 98% pure) 
508 50.8 0 0 0 50.8 

 

Table 1 : Liquid components as given by van Oss et al.
20
 and Owens-Wendt

19
 (mN/m). 

Contact angles have been measured for each liquid on the two different backings (stainless steel 

and PET) and also for the HDPE substrate. Table 2 gives the values of the Dupré adhesion 

energies between a substrate and the PDMS adhesive, obtained using the two methods of 

decomposition, and follow equations (3)a and (3)b. 

 

 



 S
γ (van Oss et 

al.)
 

S
γ (Owens-

Wendt)
 

Wa (van Oss et 

al.) Wa (Owens-Wendt) 

HDPE 37.7 ± 2.1 38.2 ± 2.3 54.1 ± 3.1 51.9 ± 2.8 

stainless Steel 59.1 ± 3.2 56.2 ± 3.4 57.3 ± 3.3 54.3 ± 3.4 

PET 49.7 ± 2.7 45.5 ± 2.7 59.5 ± 3.5 55.7 ± 3.2 

 

Table 2 : Free energies 
S

γ  (mN/m) and Dupré adhesion energies Wa (mN/m)  

using the two methods. 

 

From these measurements, it appears that the PDMS adhesive is more likely to develop affinities 

with respect to Stainless steel and PET, as compared with the substrate (HDPE). This is for this 

reason that such a substrate and backings were used. In fact, to obtain such data, we also had to 

use a primer for increasing the adhesion towards the PET backing. The primer which was used 

(typical thickness 20 µm, using a blade coating system) is an industrial one, containing acrylic 

copolymers filled with titanium dioxide and chloride charges. Its main effect is to increase 

surface roughness of the PET backing, as shown in figures 2a and 2b. 

     

Figure 2. PET surface visualized with a SEM (X200). a) before treatment b) after treatment 

 

The roughness is clearly increased by etching, as seen on the SEM photograph corresponding to 

the PET surface, after the primer was used. 



To summarize this analysis, the systems used will tend to be in favour of an adhesive regime of 

failure at the interface between the adhesive and the HDPE substrate, and this is what is discussed 

next. 

 

 

Peeling experiments 

 

The peeling measurements were obtained at T=20°C using the peeling experiment described 

above
16
. The influence of the following parameters has been studied: adhesive thickness, peeling 

velocity and backing rigidity. In figure 3, we present the peeling properties of the PDMS 

adhesive coated onto the HDPE substrate. 
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Figure 3. Peeling curve. Influence of the peeling velocity and adhesive thickness (T= 20 °C, PET 

backing). Cohesive to adhesive failure transition corresponds to changing from open to filled 

symbols 

 



As can be seen, the rate of restitution of energy 
b

F
G =  is plotted as a function of the peeling 

velocity at different adhesive thickness (e). A first regime corresponding to cohesive failure is 

first observed, governed by three-dimensional motion of the adhesive at the peeling front. The 

mechanisms associated with this regime correspond to the formation of regularly spaced 

filaments, as observed previously for uncross-linked PSAs
2,7
. This is shown in figure 4a, and 

verified for different adhesive thicknesses (40-160 µm). The transition between cohesive and 

adhesive regimes occurs at a certain critical velocity Vc and will be discussed in the final part.  

We will now pay more attention to the second regime, appearing in the velocity range 0.1 cm/s < 

V < 1 cm/s, i.e. the adhesive (or interfacial) regime of failure. Again, the mechanisms of peeling 

are shown in figure 4b. They correspond to two-dimensional flow or deformation, the adhesive 

being stretched until it releases its bonds at the substrate-adhesive interface. 

a)  b)  

Figure 4. Photographs of the peeling front (PET backing, adhesive thickness e=80 µm).  

a) cohesive failure with formation of regularly spaced filaments, V=0.1 cm/s.  

b) adhesive two-dimensional peeling regime, V=0.75 cm/s. 

 

This regime seems to exhibit a typical slope of 0.25 (log-log scale) in terms of the velocity, thus 

showing a rather slow change with peeling velocity. Figure 5 is deduced from these experiments 

and shows the influence of adhesive thickness for three different velocities. The change in the 



slope (log-log scale) is typical of a power law relationship with index 0.33, in this velocity range 

and for this kind of adhesive and backing. 
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Figure 5. Influence of the adhesive thickness for different velocities (T= 20 °C, PET backing) 

 

 

Finally, we present the variations of the energy restitution rate as a function of velocity, using 

different backings. Two stainless steel strips have been used, showing different thickness 

(2h=10µm or 20 µm), as well as a PET pre-treated backing (see previous part). The important 

parameter is the product of the backing Young’s modulus E by the momentum of inertia I (from 

beam theory), as shown previously
10
. 

The characteristics of the three backings (2h and E I) used are given in Table 3. 

 

 

 



Backing type Thickness (2h) Rigidity (EI) 

PET 23 µm 3.8 10
-7
 Pa.m

4
 

stainless Steel 10 µm 1 10
-6
 Pa.m

4
 

stainless Steel 20 µm 7.1 10
-6
 Pa.m

4
 

 

Table 3 : Different backing characteristics. E is Young’s modulus, 
3

2 3bh
I = , b=strip width, 

2h=backing thickness 

 

The peeling curves of the different strips, corresponding to the three backings are shown in figure 

6. Again, the velocity dependence is the same (typical slope 0.25) for the three adhesive strips. 

Only in the case of the Polyester backing (PET), a cohesive branch was obtained at the lower 

velocities, whereas in the other cases, the only regime observed is the interfacial one. 
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Figure 6. Peeling curve. Influence of the peeling velocity and backing rigidity  

(T= 20 °C, e=80µm) 

 



From this curve, we deduce the influence of the backing rigidity EI. Figure 7 shows that the 

dependence is a power law with a negative slope of -0.2, in the regime of velocities and 

thicknesses studied. 
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Figure 7. Influence of the backing rigidity for different velocities (T= 20 °C, e=80 µm). 

 

This result might seem unusual, but we may note that it is in agreement with Bikerman’s 

formula
21
. To sum up these results, we finally we obtain the dependence of the energy of 

restitution rate G in terms of the three parameters V, e, and 3Eh .
 

 

( ) 2.0333.025.0 −
≈ EheVG    (2(2)(2  )(4) 

 

We will now try to explain these results in the next part. 

 

 

 

 



THEORETICAL PEELING MODEL FOR A POWER LAW FLUID 

 

 

 To propose an explanation of the results previously obtained, we consider figure 8, as the 

starting sketch representing the locus of failure in the adhesive regime.  

 

Figure 8. Sketch of the adhesive regime of failure. Z=H(x) is the backing shape. u(z) is the x-

component of the velocity field. The velocity gradient 
dz

du
 is > 0 or < 0 depending on z.  z=h0(x) 

is the critical line where 0=
dz

du
. L is a typical length scale of the region of deformation. 

 

The adhesive is brought to the contact failure zone (point A) where it detaches from the substrate. 

During such a motion, the flow of the adhesive can be considered, according to lubrication 

theory, to be a homogeneous flow with its major component u = u(z) ez, where ez is a unit vector. 

According to lubrication theory, the z- component of the momentum equation is written by  

     
zdx

dp xz

∂

∂
=−

σ
      (5) 



where p is the pressure and xzσ the relevant shear component. Equation (5) can be integrated 

)()( xBzxAxz +−=σ      (6) 

where 0)( <−=
dx

dp
xA  is the non-zero pressure gradient, and B(x) a function of x to be 

determined. We follow the analysis carried out in previous work
10
 but we use a power-law 

relationship for the fluid
22
, i.e.  

n

xz m
•

= γσ       (7) 

where 
•

γ is the shear rate (s) (taken >0 here), n is the rheofluidification fraction exponent, 

typically 0 < n < 1, and m is a constant. This will allow to obtain different adhesive behaviours 

according to the power-law index n. Depending on the shear rate, the viscosity curve 
1−•

=
n

mγη  

exhibits an exponent n≈1 at low shear rates, and a value of n of the order n ≈ 0.4 at the higher 

shear rates, by inspection of figure 1. 

The shear rate 
•

γ is determined by 
dz

du
=

•

γ  since 
dz

du
 can be positive or negative according to 

this relation. There is a critical line 
)(

)(
 (x)h  z 0

xA

xB
==  (see figure 8), below which 0<

dz

du
, and 

above which 0>
dz

du
. Accordingly, the solution of (6)-(7)  will be divided into two parts, to 

preserve the correct signs: 

   •  z< h0(x)  zxAxB
dz

du
m

n

)()( −=







−    (8)a 

   •  z> h0(x)   )()( xBzxA
dz

du
m

n

−=







   (8)b 

 



The solution of (5) can easily be obtained and the integration yields: 

   •  z< h0(x)  )(

1
1

1
)(

1/1

zC
m

AzB

n

A

m
zu

n

−

+

− +






 −

+
=  (9)a 

   •  z> h0(x)   )(

1
1

1
)(

1/1

zC
m

BAz

n

A

m
zu

n

+

+

+ +






 −

+
=  (9)b 

 

)(zC − and )(zC + are integration constants to be determined. 

Using the proper boundary conditions, i.e., Vu =− )0( , VHu =+ )( , )()( 00 huhu +− =  and 

)()( 00 h
dz

du
h

dz

du +
=

−

=0 (this last one is satisfied because it corresponds to the critical line where 

•

γ =0), we obtain the unknown constants )(zC − , )(zC + and )(0 xh : 

   

1
1

2
1

1

1
)()(

+

+−









+
−==

n

m

AH

n

A

m
VzCzC     (10) 

   
2

)(
)(0

xH
xh =         (11) 

We note here that the line for which the shear rate changes sign corresponds to the “mid-line” 

2

)(xH
between the substrate and the backing. We next compute the flow rate Q: 

   ∫∫∫ ++=== −

)(

2/)(

2/)(

0

)(

0

)()()(

xH

xH

xHxH

dzzudzzudzzuQeV      (12) 

After a few simplifications, the integration is used to obtain the pressure gradient: 

   

n

n

n

H

eHV

H

m

dx

dp
xA 







 +−
=−=

12)(22
)(

2
    (13) 



This result can be checked with previous work
10
, where it was found that 

3

)(12

H

eHV

dx

dp −
−=

η
, 

in agreement with the Newtonian behaviour corresponding to the limiting case m=η and n=1. 

The pressure drop across a typical length scale L (see figure 8) is now expressed by: 

   dx
n

n

H

eHV

H

m
dx

dx

dp
p

nLL








 +−
−==∆ ∫∫

12)(22
2

00

   (14) 

This integral can only be evaluated when a typical function is used for H(x). In the present 

analysis, we use: 

R

x
exH

2
)(

2

+=      (15) 

where R is a radius. This radius is in fact the initial radius of curvature R (for x=0), and can be 

measured in our experiments, as seen for example in figure 9. Further careful  analyses of the 

shape of the backing confirms that this shape is in very good agreement with experimental data
16
. 

 

Figure 9. Shape of backing showing initial radius of curvature R (stainless steel, 2h=10 µm). 

V=10
-2
 m/s. T=20°C 

 



Finally, equation (14) can be integrated formally, using Matlab™, and the result is found to yield 

the following scaling laws, provided that eRL > , which is satisfied in our experiments 

(typically R=2mm, e=80µm, and L=2mm, so eR ≈0.4 mm) 

     
e

R

e

V
mp

n









≈∆       (16) 

Again, these results are checked with a previous analysis
10
 where it was found that 

e

R

e

V
p η≈∆  

for a Newtonian adhesive (n=1, m=η). The influence of the shear-thinning index n is therefore 

demonstrated to act through the power n of a typical shear rate 
e

V
. Proceeding further, the 

pressure is assumed to match the force applied at the ends of the ribbon, after considering the 

geometry of a small beam element: 

      F  Rb =∆p       (17) 

where b is the bond width and F is the applied force measured in the experiments. The radius of 

curvature also appears and is taken to vary as 
F

EI
R ≈ . Finally, we obtain: 

EIb

F

eF

EI

e

V
mp

n 2/34/1
1

 ≈















≈∆     (18) 

This leads to the energy of restitution rate spent to peel the adhesive strip (using 
3

2 3bh
I = ): 

( ) 7/33

7/)24(

4n/7
7/4

e

V
 Ehm

b

F
n+

≈      (19) 

This final result demonstrates the ability of the model to account for rheofluidification with index 

n, the case of the Newtonian fluid being recovered by setting n=1 and m=η (the Newtonian 

viscosity).  



In our experiment, the velocity ranges from 10
-3
 m/s < V < 10

-2
m/s, whereas the thickness is of 

the order of 100µm. The typical shear rate 
e

V
varies between 10 and 10

2
 s

-1
. This means, that, 

referring to figure 1, the viscosity behaviour is like 
6.0−•

≈ γη m , so n can be taken to be 4.0≈n . 

Inserting this into (19) leads to the relationship for the force per unit width:  

( ) 43.0351.00.23eV Eh
b

F −≈     (20) 

The model is therefore quite accurate for predicting the velocity dependence but fails to describe 

the behaviour in terms of the backing rigidity and adhesive thickness. Still it is helpful for putting 

the basis of a more careful analysis presented next. 

 

 

DISCUSSION 

 

 

Cohesive-adhesive transition 

 

We first investigate the transition between cohesive and adhesive failure modes in figure 3. 

According to a previous study
23
, elastic effects have been shown to play an important role in the 

deformation processes involved in probe-tack experiments, as suggested by the introduction of a 

Deborah number. At small Deborah numbers (De < 1), the viscous effects dominate, whereas for 

high Deborah numbers (De > 1), elasticity becomes important. Such effects (deformations) can 

be relevant here because mechanisms involved during probe-tack experiments are comparable to 

the ones in peel tests
24
. We will rather introduce the Weissenberg number Wi=λV/e (λ = 3s,  V is 

the velocity of peel, and e the adhesive thickness), as in our previous study
8
. This number is 

equivalent to the Deborah number described above
23
. For the transition from cohesive to adhesive 

failure, inspection of figure 3 gives the following transition velocities Vc= 0.5 10
-3
 m/s, 1.5 10

-3
 



m/s, 4.0 10
-3 
m/s corresponding to thicknesses of 40, 80, 160 µm. They correspond to the first 

unstable velocities of peel. In fact, in some cases, there is a wide region of instability. Such 

transition velocities can be related to the equivalent Weissenberg number. They correspond 

respectively to values of Wi = 37.5, 56.2 and 75, slightly smaller than the ones found 

previously
23
. According to this data, the transition velocity varies approximately with thickness 

(e) like a power law e
2/3
. This is in favor of the idea that the Weissenberg number cannot alone 

distinguish between the cohesive and adhesive regimes, but may come out in combination with 

another dimensionless parameter like one based on surface energies
8
. Further studies are still 

needed to provide such evidence. In any case, the values found for the Weissenberg number are 

typical of an elastic behavior, and they fall in the range of the ones indicated previously
23
 in the 

case of acrylic adhesives (between 100 and 1000 at the cohesive to adhesive transition). This 

enforces the fact that peel and tack experiments are clearly related. 

 

Model for predicting interfacial failure 

 

According to various authors, the peeling energy is closely related to the influence of the backing 

curvature
21,25

, because the flow induced within the adhesive generates stresses, which conversely 

modify the backing curvature changing again stresses inside the adhesive; finally an equilibrium 

is found with a complex interdependence of all the parameters, as just shown above. In practice, 

Bikerman
21
 proposed with the following expression :
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Where 0σ  is a typical stress, and E* is the adhesive’s Young modulus, when it is considered as a 

linear elastic solid. This expression also has the problem of the absence of velocity, and the 

wrong dependence on adhesive thickness (although better) and backing thickness. On the other 



hand, the dependence on the adhesive modulus E is rather accurate (power law -0.25 instead of -

0.2 in the experiments). This formula is difficult to use here and we will rather rely on the 

analysis from the previous part, based on the following ideas.  

1) The correct dependence in terms of the velocity V (shown to be close to 0.25) has shown the 

relevance of the power law index n, which should be used for modelling adhesive stresses 

and viscosity. 

2) Dimensional analysis
8
 shows the importance of the relevant numbers. The first one is the 

Weissenberg number for viscoelasticity iW . Indeed, simple models using either viscous or 

elastic adhesives fail to describe the problem. The Weissenberg number Wi has been defined 

previously as : 

e

V
Wi λ=       (22) 

ξ  is the second dimensionless number accounting for the competition between curvature 

effects and viscous stresses. 
3

3

Eh

eσ
ξ = where σ is a typical stress within the adhesive. Here a 

typical stress
16
 is 
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3) Finally the force per unit width G=F/ l  will depend on these numbers in a combined manner, 

and we may look for a solution of the kind : 

baWi
l

F
G  ξ≈=      (24) 



Using a=0.2 takes care of the backing rigidity influence, and we are left with the effect of the 

velocity V and thickness effects. Choosing the velocity V, we need to insure from (4) and (24) 

that 25.0=+ ban . Since n=0.4 from figure 1, we find that b=0.13. The power law dependence in 

terms of the adhesive thickness e is deduced to be e
(3-n)a-b 

= e
0.39

, which gives a very nice 

comparison with experiments (slope 0.33). Finally, we find : 
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The dimensionless coefficient k in front of (25) has been found experimentally
16
 to be around 

k=500. This analysis has not taken into account the surface energy properties, since one substrate 

(HDPE) and one adhesive only were used, therefore (25) does not contain the surface energy 

parameters. Following the work of Gent and Schultz
12
 and other authors

13,14,15
, we suggest a 

possible extension of the model in terms of the surface parameters, in particular the Dupré work 

of adhesion Wa: 

)  1( 
b

i

a

a WkW
l

F
G ξ+==     (26) 

The parameters k, a and b are very likely to be different depending on the adhesives. In our case, 

for the present adhesive (PDMS), in the range of parameters used (velocity of peel, thickness, 

backing rigidity), we found that k≈500, a=0.2 and b=0.13. Note that the Dupré work of adhesion 

Wa might, in some cases, be replaced by other modified expressions, as suggested in previous 

works
5,13

. To summarize, this analysis is based on the shear rheological properties of the adhesive 

only and is therefore relevant to the linear PDMS polymer studied here, but would need to be 

modified when elongational effects become relevant (branched polymer adhesives
23
, or strain 



hardening materials, as in previous studies
2,7-8

). This would probably affect the values of the 

parameters k, a and b determined above. 

 

CONCLUSIONS 

 

In the present analysis, it has been shown that modelling the peeling behaviour of viscoelastic 

adhesives is still a challenge. After obtaining peeling data corresponding to a variety of 

parameters, it has been shown that the competition between backing rigidity and viscous 

behaviour is of importance, as shown in previous studies
10,21

, and leads to the introduction of a 

dimensionless parameter ξ, modified to take into account the shear-thinning behaviour of the 

adhesive. A detailed analysis showed indeed that the peeling force model predicts very well the 

velocity dependence when a power-law fluid dependence is used. This non-Newtonian effect is 

typical of the most common adhesives. 

On the other hand, to predict correctly the dependence of the peel force in terms of adhesive 

thickness and backing rigidity, an empirical model has been proposed, based on the use of 

another dimensionless number for viscoelasticity, the Weissenberg number iW . Although the 

peel force depends slightly on iW  (small power law exponent), it is necessary to introduce it in 

order to derive a correct description of the results for viscoelastic adhesives
5,13

. 
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