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The adiabatic invariant of any harmonic oscillator :

an unexpected application of Glauber’s formalism

M Devaud, V Leroy,† J-C Bacri and T Hocquet

Laboratoire Matière et Systèmes Complexes,
Université Paris 7 and CNRS UMR 7057,
10 rue Alice Domon et Léonie Duquet, 75013 PARIS, France

E-mail: Thierry.Hocquet@upmc.fr

Abstract. In this theoretical paper, we propose a general derivation of the
adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available
whichever the physical nature of the oscillator and of the parametrical excitation
it undergoes. This derivation is founded on the use of the classical Glauber
variables and ends up with this simplest result: the oscillator’s adiabatic invariant
is just the sum of all the semiclassical quanta numbers associated with its different
eigenmodes.

PACS numbers: 45.20.-d, 45.20.Jj, 45.05.+x

1. Introduction

The adiabatic invariance is generally put on short allowance in most elementary or even
undergraduate level textbooks and courses of lectures about mechanics. Moreover,
when mentioned, it is usually restricted to the mere one-degree-of-freedom harmonic
oscillator (HO1) case. The reason for this is at least twofold. First, adiabatic
invariance is commonly regarded as but a curiosity and its teaching as a blind-
alley occupation. Second, there is no simple and general theory to be applied to
any case. Establishing the correct adiabatic invariant for a given harmonic oscillator
consequently requires subtle – and often very smart [1] – reasonings that must be
started afresh for any other oscillator. The case of many-degree-of-freedom oscillators
is even more arduous, of course.

The aim of the present paper is to propose a simple theory of the adiabatic
invariance of the harmonic oscillator, in the general n-degree-of-freedom case. The
prerequisite for an easy reading of this article is a rudimentary knowledge of
hamiltonian (classical) mechanics, nothing more. The paper is organized as follows.

In section 2, we begin with the HO1 case. We introduce the so-called standard
variable, its conjugate momentum, and build the classical Glauber variable associated
with the HO1. We deliberately use the same notations as in our foregoing paper
[2], which was devoted to the particular case of the pendulum. More generally, this
section 2 can be regarded as a recall of section 2 and subsection 4.1 in [2], which
we include here for the sake of self-consistency. We end up with a most simple and

† Present address: Laboratoire Ondes et Acoustique, ESPCI, 10 rue Vauquelin, 75005 PARIS
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general expression of the HO1’s adiabatic invariant, as well as a very simple physical
interpretation.

Section 3 is devoted to the extension of section 2’s results to the HOn case. The
notion of standard variables is generalized as well as that of Glauber variables. An
unpublished calculation is presented that allows to build the HOn’s adiabatic invariant,
the physical interpretation of which is straightforward.

Several comments are gathered in the conclusion section 4.

2. The HO1 case

2.1. General definitions

At which condition a one-degree-of-freedom physical system can be regarded as a HO?
A simplest answer to this question may be: “there should exist a parametrization with
a dynamical variable θ such that the kinetic energy Ek and the potential energy Ep

read

Ek =
1

2
Mθ̇2, Ep =

1

2
Kθ2, (1)

where M and K are positive coefficients, respectively accounting for inertia and
elasticity. In the widely taught case where θ has the units of a length, M is a mass ans
K a stiffness. If θ is an angle, as in the case of the pendulum considered in [2], then
M is an inertia momentum and K an angular stiffness. And so on. In fact, the above
definition may be extended to nonmechanical systems for which the notion of kinetic
or potential energy makes no particular sense. For example, in the case of the self-
capacitor (L, C) electric circuit, the dynamical variable can be chosen as the charge Q

of the capacitor, and the magnetic 1
2LQ̇2 and electric 1

2
Q2

C
energies respectively stand

instead of Ek and Ep. Nevertheless, whichever the exact physical nature of the HO1
under consideration and of the variable θ chosen to describe its dynamics, the motion
equation ruling θ can be derived from the Lagrangian

L(θ, θ̇) = Ek − Ep =
1

2
Mθ̇2 − 1

2
Kθ2. (2)

If both inertia and elasticity parameters M and K are time-independent, the motion
is said to be free. If one at least of these parameters is time-dependent, the motion is
said to be parametrically excited. In the latter case, the Lagrangian explicitly depends
on time and should be noted L(θ, θ̇, t). However, in both above cases, the Lagrange
equation holds and reads

d

dt
(Mθ̇) = −Kθ, (3a)

i.e. in fine

θ̈ + Γ θ̇ + ω2θ = 0, (3b)

with

Γ (t) =
Ṁ

M
, ω2(t) =

K

M
. (3c)

Allowing for (3b), the parametrical excitation of a HO1 results in a time-dependent
proper angular frequency ω(t), accompanied with an effective viscosity. Note that the
effective viscous rate Γ is time-dependent and may be negative as well as positive. By
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smartly playing on the sign of Γ , one can induce a parametrical amplification, like for
instance children pumping a swing.‡

If M and/or K are varied slowly with respect to the proper oscillation rate ω
(more precisely: if all nonzero Fourier components of M and/or K correspond to
angular frequencies much smaller than ω), the parametrical excitation is said to be
adiabatic (in the Ehrenfest sense). In the latter case, it is easy to check that Ṁ/M ,
K̇/K (and consequently ω̇/ω) are small compared to ω.

It is the aim of this section 2 (and of section 3) to find out a relevant physical
quantity of the oscillator which is conserved in the course of time when an adiabatic
parametrical excitation is performed. This quantity is referred to as the adiabatic
invariant of the HO.

2.2. Standard and Glauber variables

As said above, parameters M and K and variable θ have various units, according to
the physical nature of the oscillator. For the sake of universality, it is convenient to
introduce a new dynamical variable the unit of which is fixed once for all. Let us
define the so-called standard variable

q =
√

Mθ. (4)

Note that, in the case of a time-dependence of M , variable q depends explicitly on time
(through M), and not only implicitly (through θ). As a consequence, the Lagrangian
now reads

L(q, q̇) =
1

2

(

q̇2 − Γqq̇
)

− 1

2

(

ω2 − 1

4
Γ 2

)

q2, (5a)

so that the motion equation (3b) becomes

q̈ + ω′2q = 0 (5b)

with

ω′2(t) = ω2(t) − 1

2
Γ̇ (t) − 1

4
Γ 2(t) = ω2(t) − 1√

M

d2
√

M

dt2
. (5c)

It is noteworthy that, using the standard dynamical variable q instead of θ, the
motion equation (3b) is simplified in (5b), where all the effect of the parametrical
excitation is concentrated in the time-dependence of the effective angular frequency
ω′(t). Nevertheless, although simple, equation (5b) is (as any Lagrange equation) a
second-order (time) differential equation. It will turn out in the following to be more
convenient to deal with a couple of first-order (time) differential equations. In this
prospect, we should build the Hamiltonian H through a Legendre transformation of
Lagrangian L. Let σ be the conjugate momentum of variable θ. We have, using (2),

σ =
∂L

∂θ̇
= Mθ̇  H = σθ̇ − L =

σ2

2M
+

1

2
Kθ2. (6)

We can also define p as the conjugate momentum of the standard variable q (using
(5a)) and rewrite Hamiltonian (6) :

p =
∂L

∂q̇
= q̇ − 1

2
Γq =

√
Mθ̇ =

σ√
M

 H =
p2

2
+

1

2
ω2q2. (7)

‡ A complete theory of the parametrical amplification is presented in [2] (and experimentally
illustrated with a pendulum). An extensive discussion of the pumping of a swing can be founded in
[3] and [4].
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We shall see below the usefulness of the above expressions. We would nevertheless
underline that Hamiltonian H is basically a function of variables θ, σ and t §.

Using either of the above both expressions of H, we obtain a set of two coupled
first-order equations. Now, Glauber [5, 6] proposed an elegant formalism in which
the oscillator’s dynamical variable (θ or q) and its conjugate momentum (σ or p) are
combined in a unique complex hamiltonian variable α defined as

α =
1√
2~

(√
Mωθ +

i√
Mω

σ
)

=
1√
2~

(√
ωq +

i√
ω

p
)

, (8)

where ~ is the usual quantum constant‖. For reasons that will appear hereafter, we
deliberately keep this constant in the above definitions, although our problem is utterly
classical. Using the Poisson brackets

{θ, σ} = {q, p} = 1, (9a)

one easily derives

{α, α∗} =
1

i~
. (9b)

On the other hand, the Hamiltonian reads, in the Glauber formalism,

H = ~ω|α|2. (10)

It is tempting to propose the following physical interpretation of the above expression:
since ~ω is the energy quantum and H the total oscillation energy, then N = |α|2 can
be regarded as the (semi-classical) quanta number in the HO1’s oscillation.

Thanks to (9b), and using the Ehrenfest theorem, one immediately gets α’s motion
equation

α̇ =
∂α

∂t
+ {α,H} = − iωα + fα∗, (11a)

where

f(t) =
1

2Mω

d(Mω)

dt
=

d ln
√

KM

dt
. (11b)

Looking for an exact solution of the above equation (11a), one can set

α(t) = e−iϕ(t)A(t), (12a)

where A(t) is a complex amplitude and ϕ(t) a phase defined as

ϕ(t) =

∫ t

−∞

ω(t′)dt′. (12b)

One then gets

Ȧ = f(t)A∗e2iϕ(t), (12c)

which is equivalent to (11a).

§ If one chooses expression (7) of H with variables (q, p), the Hamilton equations should be written

q̇ = ∂q

∂t
+ ∂H

∂p
and ṗ = ∂p

∂t
− ∂H

∂q
.

‖ Glauber introduced his formalism in the quantum mechanics domain, in order to describe the
quasi-classical (“coherent”) states of the HO. Hence the presence of ~ in the above definition (8) of α.
More details can be found in [7, 8].
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2.3. Adiabatic invariant of the HO1

In the case of an adiabatic parametric excitation of the oscillator, and according with
the above-recalled definition of the Ehrenfest adiabaticity, f is small compared to ω,
so that

∣

∣

∣

∣

Ȧ

A

∣

∣

∣

∣

= |f | ≪ ω, (13)

which means that the amplitude A(t) itself varies slowly with respect to ϕ(t).
Integrating (12c) we have

A(t) = A(0) +

∫ t

0

dt′ f(t′)A∗(t′)e2iϕ(t′). (14a)

In the integral on the right-hand side of the above expression, the product fA∗ varies
slowly, so that its contribution to the time evolution of amplitude A(t) is averaged out
by the brisk oscillation of the phase factor e2iϕ(t′). One easily convinces oneself that
(14a) reads

A(t) = A(0)

(

1 + o

(

f

ω

))

. (14b)

The so-called Secular Approximation (SA) consists in neglecting the o
(

f
ω

)

term. At
this approximation, we are left with A(t) = constant. In the complex plane of the
Glauber variable α, the trajectory of the representative point (the so-called “phase
portrait”) is then a circle, with centre at the origin of the coodinates and (non
uniformly) followed clockwise. The adiabatic invariant of the HO1 is thus simply
the radius of this circle, or equivalently the quanta number N = |α|2. Allowing for
(10), it is then straightforward to calculate the power P needed to vary the oscillator’s
parameters M and/or K. If the latter variation is adiabatic, we have N = constant,
and consequently

P = Pad = N~ω̇, (15a)

the physical interpretation of which is straightforward. Coming back to the initial
variable θ, an approximate solution of equation (3b) reads

θ(t) = Θ(t) cos ϕ(t), (15b)

where Θ(t) is a slowly varying amplitude and ϕ(t) the phase defined in (12b). The
oscillation energy is consequently

E(t) =
1

2
K(t)Θ2(t) = N~ω(t), (15c)

hence the adiabatic invariant

K(t)

ω(t)
Θ2(t) =

√

K(t)M(t)Θ2(t) = constant, (15d)

which can be derived as well by trying to satisfy equation (3b) with solution (15b)
(the slowly varying envelop approximation to be made is, under the circumstances,
equivalent to the SA).

In the next section, we shall show that the above results and considerations can
be transposed to the HOn case.
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3. The HOn case

3.1. Matricial notations

A n-degree-of-freedom physical system can be regarded as a HOn if there exists a
parametrization with dynamical variables (θ1, θ2, . . . , θi, . . . , θn) such that, setting

θ =

















θ1

...
θi

...
θn

















, (16)

its Lagrangian reads

L =
1

2
(tθ̇Mθ̇ − tθKθ), (17)

where superscript t indicates matricial transposition and M and K stand for the
effective mass and effective stiffness matrices. M and K are n×n symmetrical matrices
of “positive type”, i.e. associated with positive quadratic forms. M and K can be
diagonalized. Their eigenvalues are real and positive, associated with orthogonal real
eigenvectors. Of course, if a parametric excitation of the HOn is performed, M and
K may depend on time.

3.2. Standard, normal and Glauber variables

Let us consider in particular the effective mass matrix M . As for any positive-type
symmetrical matrix, there exists an orthogonal matrix Pd diagonalizing M , i.e. such
that

P−1
d MPd = D =



















m1 0 · · · · · · 0

0
. . .

...
... mj

...
...

. . . 0
0 · · · · · · 0 mn



















, (18)

with all the mj positive. Setting

√
D =



















√
m1 0 · · · · · · 0

0
. . .

...
...

√
mj

...
...

. . . 0
0 · · · · · · 0

√
mn



















, (19a)

we can then write:

M = PdDP−1
d = S2, with S = Pd

√
DP−1

d . (19b)

Since P−1
d = tPd, S is itself a n × n positive-type symmetrical matrix. The above

equation (19b) is known as the Cholewski factorization of matrix M ; matrix S can
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thus be regarded as M ’s square root. Using matrix S, one can generalize definition
(4) in

q = Sθ, (20a)

where

q =

















q1

...
qj

...
qn

















(20b)

is the generalized set of standard variables. In these new variables, Lagrangian L reads

L =
1

2
t

˙✄ �

(

S−1q
)

M
˙✄ �

(

S−1q
)

− 1

2
tqS−1KS−1q

=
1

2
tq̇q̇ + tq̇S

˙✄ �

S−1q − 1

2
tq

(

Ω2 − ˙✄ �

S−1M
˙✄ �

S−1
)

q , (21a)

with

Ω2 = S−1KS−1. (21b)

Note that the n×n matrix Ω2 is symmetrical and associated with a positive quadratic
form (i.e. of positive type); it is a priori time-dependent and it generalizes quantity
ω2 defined in (3c). Note too that (21a) is the generalization of (5a).

Let σ = ∂L

∂θ̇
= Mθ̇ (see (17)) be the conjugate momenta of variables θ, and p the

conjugate momenta of variables q. We have

p =
∂L

∂q̇
= q̇ + S

˙✄ �

S−1q

= q̇ − ṠS−1q (since SS−1 = I = cst.)

=
˙✄ �

Sθ − Ṡθ = Sθ̇

= S−1Mθ̇ = S−1σ , (22)

which is just the generalization of (7). Then, performing a Legendre transformation
of L, we obtain the hamiltonian H which equally reads

H =
1

2

(

tσM−1σ + tθKθ
)

=
1

2

(

tpp + tqB2q
)

, (23)

thus generalizing expressions (6) and (7).
We shall now introduce the normal variables of the oscillator. Let Pe be the

orthogonal passage matrix that diagonalizes Ω2. We thus have

P−1
e Ω2Pe = Ω2

e , (24a)

with

Ωe =



















ωe1 0 · · · · · · 0

0
. . .

...
... ωem

...
...

. . . 0
0 · · · · · · 0 ωen



















, (24b)
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where ωem (m ∈ [1, n]) is the (eigen)angular frequency associated with eigenmode m,
hence the subscript e to avoid any confusion. The normal variables are then defined
by

q = Peϕ, p = Peπ. (25)

It is noteworthy that the above variable change is canonical: indices m and m′ referring
to the normal variables (i.e. eigenmodes) and indices j and j′ to the standard variables,
with understood summation over repeated indices and using {qj , pj′} = δjj′ , one
calculates the Poisson brackets

{

ϕm, πm′

}

=
{

(P−1
e )mjqj , (P

−1
e )m′j′pj′

}

= (P−1
e )mj(P

−1
e )m′j′δjj′

= (P−1
e )mj(Pe)jm′ (since P−1

e = tPe)

= δmm′ . Q.E.D. (26)

Using the variable change (25) to rewrite Hamiltonian (23), one gets

H =
1

2

(

tππ + tϕΩ2
eϕ

)

. (27)

It is remarkable that, in the above expression, H reads as the sum of n independent
HO1’s Hamiltonians :

H =

n
∑

m=1

1

2

(

π2
m + ω2

emϕ2
m

)

=

n
∑

m=1

Hm. (28)

Then, we can define the Glauber variables of the eigenmodes as in (8) by

αem =
1√
2~

(√
ωemϕem +

i√
ωem

πem

)

, (29a)

or equivalently in matricial form, with Ωe displayed in (24b) and with

αe =

















αe1

...
αem

...
αen

















, (29b)

by

αe =
1√
2~

(

√

Ωeϕ +
i√
Ωe

π
)

=
1√
2~

(

√

ΩeP
−1
e Sθ +

i√
Ωe

P−1
e S−1σ

)

. (29c)

We finally get the following expression of the Hamiltonian:

H =
∑

m

~ωem|αem|2 = tα∗
e~Ωeαe = α†

e~Ωeαe , (30)

superscript † standing for hermitic conjugation (h.c.).
Next, using (26) and (29a), one easily derives

{αem, αem′} =
1

i~
δmm′ (31a)
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(which generalizes (9b)), so that the motion equations read, in matricial form

α̇e = {αe, H} +
∂αe

∂t
= − iΩeαe +

∂αe

∂t
. (31b)

At this step of the calculation, we are faced with an interesting feature. Matrix Ωe is,
by construction, diagonal. Therefore, in any free motion, the time-evolutions of the
eigenmodes Glauber variables αem are uncoupled. But things are not that simple in
a parametrically excited motion, because the ∂αe

∂t
term in the right-hand side of the

above equation couples the αem with one another. In the n-degree-of-freedom case,
the calculation of this term requires some care. This calculation may be omitted in a
first reading of this paper, with a jump to equation (35).

The time-derivation of (29c) yields indeed

∂αe

∂t
=

1√
2~

{

1

2

Ω̇e

Ωe

(

√

Ωeϕ − i√
Ωe

π
)

+

(

√

Ωe

˙✄ �

P−1
e Sθ +

i√
Ωe

˙✄ �

P−1
e S−1σ

)

+
(

√

ΩeP
−1
e Ṡθ +

i√
Ωe

P−1
e

˙✄ �

S−1σ
)

}

. (32a)

Since SS−1 = I  
˙✄ �

S−1 = − S−1ṠS−1 and P−1
e Pe = I  

˙✄ �

P−1
e Pe = − P−1

e Ṗe, one
finds, all calculations carried out:

∂αe

∂t
=

Ω̇e

2Ωe
α∗

e +
1√
2~

{

√

ΩeP
−1
e

(

ṠS−1Pe − Ṗe

)

ϕ

− i√
Ωe

P−1
e

(

S−1ṠPe + Ṗe

)

π

}

. (32b)

Now, using (29c) to substitute variables α, α∗ for ϕ, π in the above expression and
setting

T =
√

ΩeP
−1
e

(

ṠS−1Pe − Ṗe

) 1√
Ωe

, (33)

we finally obtain

∂αe

∂t
=

1

2

Ω̇e

Ωe
α∗

e +
1

2
(T − tT )αe +

1

2
(T + tT )α∗

e = Aαe + Sα∗
e , (34)

where A = 1
2 (T − tT ) is an antisymmetrical matrix and S = 1

2

(

Ω̇e

Ωe

+ T + tT
)

a
symmetrical one. Hence the motion equation (see (31b))

α̇e = − iΩeαe + Aαe + Sα∗
e , (35)

which should be regarded as the generalization of (11a). As announced before, matrices
A and S are non diagonal. The above equation (35) is in fact the corner-stone of the
derivation of the HOn’s adiabatic invariant, as will appear below. Exactly as we did
in section 2, we can look for a solution of (35) of the form

αe(t) = e−iφe(t) Ae(t), (36a)
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where the column-vector Ae(t) =

















Ae1(t)
...

Aem(t)
...

Aen(t)

















is a complex amplitude and φe(t) the

phase matrix defined as

φe(t) =

∫ t

−∞

dt′Ωe(t
′) =



















ϕe1(t) 0 · · · · · · 0

0
. . .

...
... ϕem(t)

...
...

. . . 0
0 · · · · · · 0 ϕen(t)



















, (36b)

with

ϕem(t) =

∫ t

−∞

dt′ωem(t′). (36c)

We then get the set of motion equations (equivalent to (35))

Ȧe = eiφeAe−iφeAe + eiφeSeiφeA∗
e , (37a)

or equivalently

Ȧem =

n
∑

m′=1

{

ei(ϕem−ϕ
em

′ )Amm′Aem′ + ei(ϕem+ϕ
em

′ )Smm′A∗
em′

}

,(37b)

which generalizes (12c).

3.3. Adiabatic invariant of the HOn

If the parametric excitation of the HOn (i.e. the time variation of whichever oscillator’s
parameter, M or K) is slow with regard to its free dynamics, then matrices A and S
are small compared to Ωe and the complex amplitude Ae varies slowly with respect to
the phase matrix φe. Consequently, if all nonzero Fourier components of any matrix
elements Smm′ correspond to angular frequencies much smaller than ωem +ωem′ , then
the contribution of the second term (with A∗

em′) in the right-hand side of equation
(37b) is averaged out by the oscillations of the phase factor eiφe . This term is neglected
at the secular approximation, so that (35) is simplified in

α̇e = − iΩeαe + Aαe at the SA. (38)

From the above equation, it is then easy to build the HOn’s adiabatic invariant.
Introducing the total eigen quanta number

Ne =

n
∑

m=1

|αem|2 = tα∗
eαe = α†

eαe, (39a)

we easily get at the SA

Ṅe = α†
eα̇e + h.c. = (− iα†

eΩeαe + α†
eAαe) + h.c. = 0. (39b)

The above result means that the HOn’s adiabatic invariant is simply Ne.
This result, which generalizes subsection 2.3’s conclusion, is, for aught we know,

never taught. It should nevertheless be kept in mind that, if the total eigen quanta
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number Ne undergoes no secular evolution under an adiabatic parametric excitation,
the partial eigen quanta numbers |αem|2 may do. From (37b), we have indeed at the
SA

d|αem|2
dt

=
d|Aem|2

dt
=

n
∑

m′=1

(

Amm′ei(ϕem−ϕ
em

′ )A∗
emAem′ + c.c.

)

. (40)

In the sum (over m′) in the right-hand side of the above equation, any mode m′ such
that the Bohr angular frequency ωmm′ = ωem−ωem′ corresponds to a nonzero Fourier
component of the matrix element Amm′ will give a secular contribution to the time
evolution of |αem|2. This is exactly the classical equivalent to the so-called quantum
resonant transition.

We would now end this discussion with a last remark. Matrix Ω2 introduced in
(21b) if of positive type. Its diagonal terms are therefore positive. Let us set

(

Ω2
)

jj
= ω2

j (ωj > 0). (41a)

With the above notation, any element of matrix Ω2 can read
(

Ω2
)

jj′
= κjj′ωjωj′ , (41b)

with the dimensionless coupling coefficients κjj′ satisfying (positive type of Ω2 again)

− 1 6 κjj′ = κj′j 6 1. (41c)

It is possible to define the set of Glauber variables associated with the standard

variables

α =

















α1

...
αj

...
αn

















, (42a)

with

αj =
1√
2~

(√
ωjqj +

i√
ωj

pj

)

. (42b)

We would nevertheless recall that, despite the simple relation (25) between the
standard and normal variables, namely q = Peϕ and p = Peπ, the relation between
α and αe is not simple. As already emphasized in the 2-degree-of-freedom case in a
foregoing paper (see formulas (20) through (21b) in [9]), one has indeed

α =
1

2
(Qe + tQ−1

e )αe +
1

2
(Qe − tQ−1

e )α∗
e , (43a)

where Qe is the n × n marix defined as
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Qe =



















√
ω1 0 · · · · · · 0

0
. . .

...
...

√
ωj

...
...

. . . 0
0 · · · · · · 0

√
ωn



















× Pe ×



















1/
√

ωe1 0 · · · · · · 0

0
. . .

...
... 1/

√
ωem

...
...

. . . 0
0 · · · · · · 0 1/

√
ωen



















. (43b)

As in the n = 2 case, due to the presence of the different
√

ω factors in the above
definition, matrix Qe is neither equal to Pe nor even orthogonal. It is then easy to
check that number N = |α1|2 + · · · + |αj |2 + · · · + |αn|2 is not equal to Ne, and is
consequently not conserved in the course of an adiabatically excited motion of the
HOn.

4. Conclusion

In this study, we have considered the most general n-degree-of-freedom harmonic
oscillator (HOn), as well as the most general parametrical excitation it might undergo.
We have introduced its standard variables q and the Glauber variables αe associated
with its eigenmodes. In the case of a parametrical excitation of the HOn, we
have calculated the explicit time variation of αe and shown that it brings in phase-
conjugated term, i.e. a term proportional to the complex-conjugate Glauber variable
α∗

e . The derivation is easy for n = 1, a bit more technical for n > 1. If the parametrical
excitation is adiabatic (in the Ehrenfest sense), it is shown that the phase-conjugated
term can be neglected, for it brings no secular contribution to the time evolution of αe.
Although transitions between eigenmodes may occur if the excitation involves Fourier
components in speaking term with the Bohr angular frequencies ωmm′ of the HOn,
the total (eigen) quanta number Ne = α†

eαe, that is the sum of the squared moduli
|αem|2 of the different eigenmodes’ Glauber variables, is a constant of the motion. We
have thus established that the HOn’s adiabatic invariant is simply Ne.

It is our opinion that this result is so simple that it could be at least mentioned
in undergraduate level textbooks or lectures about the harmonic oscillator, which
suggests of course that the Glauber variables be systematically introduced, even
without any further quantum intentions.
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