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The role of the Karakorum fault zone (KFZ) is debated. South of 33°N, ongoing dextral-

oblique slip along the SW edge of the Gar basin exhumes metamorphic and magmatic rocks 

of the Ayilari range. Minerals have recorded a continuum of deformation from temperatures 

>600-400°C down to <250°C. The 40Ar/39Ar ages, the oldest being 21.2±1.0 Ma, yield 

minimum estimates for the initiation of the KFZ. These are in agreement with the U-Th/Pb 

ages constraining the onset of deformation at >=25-22 Ma. Thermochronologic results show 

slow cooling for the period ~21-14 Ma, followed by rapid cooling between ~14-4 Ma. These 

data demonstrate that right-lateral motion was in progress in the early-Miocene and that 

shear continued at least until 4 Ma, pointing to >=20 My of deformation along the fault. 

Greenschist facies deformation superimposed upon the medium to high-grade deformation 

mark a kinematic change from pure dextral to dextral-normal motion associated with the 

onset of rapid cooling. At the regional scale, the coexistence of transtension in the Gar basin 

with transpression documented along the Pangong range further north suggests another 

example of the “zipper tectonics” model developed along the Red River fault.  The kinematic 
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shift induced the rise of the Ayilari range starting at 16-12 Ma and the incision of major river 

courses. The Indus River might have become captive of the relief at this time. The river's120 

km of apparent offset implies dextral motion at a long-term rate of >=8.5 ± 1.5 mm/yr. 

 

Keywords: Tibet, Karakorum, strike-slip, slip-rate, 40Ar/39Ar, Thermochronology 

 

1. Introduction 

 

The understanding of how strain is partitioned between shortening and lateral extrusion 

during continent-continent collision hinges on the determination of the geometry, kinematics, 

slip rate, and life span of major crustal-scale faults. In the Indo-Asian collision, it is clear that 

thrusting in the Himalaya absorbs a significant portion of the northward indentation of India 

through north-south shortening. It remains debated, however, whether strike-slip shear zones 

are long-lasting, lithospheric features, steadily accommodating large amounts of strain 

during long time spans (e.g., [Tapponnier et al., 2001]), or short-lived transient features, 

restricted to the crust, that contribute to distributed regional deformation (e.g., [Molnar and 

Houseman, 2004]). 

In southern and western Tibet, north of the Himalayas, the 1000 km long dextral 

Karakorum Fault zone (KFZ) may be a key to assess this issue (Figure 1). Published 

estimates of the age of initiation of the KFZ vary greatly between ≥11 Ma [Matte et al., 

1996], <5 Ma (Searle, 1996), <18 Ma [Searle et al., 1998, and references therein], <13 Ma 

[Murphy et al., 2000; 2002], ≥23 Ma [Lacassin et al., 2004], and between 13.7 ± 0.3 and 

15.7 ± 0.5 Ma [Phillips et al., 2004],  Long term slip-rate estimates averaged on the 

Pleistocene to present time period also vary over more than one order of magnitude, from 
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~30 mm/yr [Avouac and Tapponnier, 1993; Liu, 1993; Matte et al., 1996], 10.7 ± 0.7 mm/yr 

[Chevalier et al., 2005], to ~ 4 mm/yr [Brown et al., 2002; Murphy et al., 2002]. A slip-rate 

of 10 ± 3 mm/yr was averaged for the entire life span of the fault [Lacassin et al., 2004]. 

The present article focuses on the Ayilari range west of the Gar-Baer pull-apart basin, 

where metamorphic rocks deformed by the KFZ are locally exhumed. 40Ar/39Ar dating on 

syn-tectonic minerals yield estimates for the minimum initiation age of the KFZ and provide 

indications of continuous fault activity. Together with fission track and U-Th-He ages on 

apatite, they provide the time-temperature evolution of metamorphic rocks and allow 

estimates of the minimum long-term slip-rate of the KFZ.  

 

2. Geological frame framwork ? 

 

The KFZ is one of the most impressive morphological feature of Asia, visible on all 

regional satellite images and Digital Elevation Models (DEM). The active Karakorum fault is 

mainly strike-slip and exhibits a 142°N trending, ~700 km long, linear trace, linking the 

Mustag Ata region in the Chinese Pamir (~38°20’N, 75°10’E) to the Shiquanhe area 

(~32°30’N, 80°00’E; Figure 1).  

South of Shiquanhe, the KFZ widens into a long (150 x 15 km) double rhomb-shaped 

basin limited by NNW-SSE striking active faults (Figure 2 and 3) with geomorphic 

characteristics indicating a normal component of slip ( [Armijo et al., 1989; Lacassin et al., 

2004; Matte et al., 1996]). Southeastward, the active trace of the Karakorum fault (KF) 

continues for at least 150 km and becomes parallel to the Indus suture (105°N, [Lacassin et 

al., 2004; Ratschbacher et al., 1994]). 
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Along the southwestern edge of the northern rhomb-shaped basin (the Gar basin), 

cumulative scarps tens of meters high cutting late Pleistocene moraines, 2 km high triangular 

facets, and perched glacial valleys attest to a recent vertical throw on the fault (Figure 3 and 

4, [Matte et al., 1996]). These characters led Armijo et al.  [1989] to interpret the Gar basin 

to be an active, dextral pull-apart basin. Uplift due to movement along the active normal 

faults brings to the surface deformed metamorphic and magmatic rocks that form the North 

Ayilari range. The samples studied in this paper come from this range. 

Northwest of the Zhaxigang village (Z on Fig. 2), and adjacent to the North Ayilari 

metamorphic and magmatic rocks, a sliver of ophiolitic rocks (gabbro, pyroxenite and basalt) 

outcrops between two strands of the active fault and most likely represents a piece of the 

Shyok suture dextrally offset by the Karakorum fault (Figures 1 and 2, [Lacassin et al., 

2004]). 

Around Shiquanhe (S on Fig. 2), Lower Cretaceous, shallow marine and terrestrial 

deposits, intruded by granitoids belonging to the Gangdese batholith [Schwab et al., 2004], 

uncomformably overlie kilometre wide massifs of ophiolitic mélange and locally Permian 

metasediments [Kapp et al., 2003; Matte et al., 1996]. These are remnants of a late Mesozoic 

suture [Cheng and Xu, 1987; Kapp et al., 2003; Matte et al., 1996; Ratschbacher et al., 

1994]. The Lower Cretaceous formation is in turn uncomformably overlain by Tertiary red 

conglomerates [Matte et al., 1996]. These series are cut by the Shiquanhe fault, which 

branches off the well-defined trace of the KF (Figure 2, [Ratschbacher et al., 1994]). This 

fault bounds the Tertiary Shiquanhe basin to the north and thrusts the Permian-Tertiary 

sequence above vertical Pliocene-Quaternary sedimentary beds [Matte et al., 1996]. 

Sedimentation in the Tertiary Shiquanhe basin was interpreted to be contemporaneous with 

displacement along the fault, suggesting an Oligocene onset of thrusting[Kapp et al., 2003]. 
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Crosscutting relationships and thermochronologic data show that the Shiquanhe fault is 

younger than the other thrusts parallel to it that are mapped northward up to the Risum 

anticlinorium (Jaggang, Zaduo and Narangjiapo thrusts of Kapp et al. [2003], also see 

references therein). The thermal history calculated for a granite in the hanging wall of the 

Shiquanhe fault suggests a maximum shortening of 10 km across the fault since at least the 

Oligocene [Kapp et al., 2003], whereas a minimum shortening of 3 km is estimated for the 

same period of time from the depth of the Tertiary Shiquanhe basin. The Shiquanhe fault 

may also have accommodated a recent dextral component of deformation and be connected 

to the N-S trending rifts of western Tibet [Armijo et al., 1989; Ratschbacher et al., 1994]. 

South of the Ayilari range, the Sutlej basin is composed of conglomerates, sandstones, 

and siltstones cut by the impressive, up to 1000 m deep, canyons of the Sutlej river and its 

tributaries [Gansser, 1964]. The basement is composed of folded Meso-Cenozoic rocks 

pertaining to the Tethian  series [Jiao et al., 1988]. Fold axes have a roughly constant 

orientation of N125°E, oblique to the trend of the Ayilari range (Figure 2). Syn-sedimentary 

deformation features indicate that these folds were active during Mio-Pliocene time [Zhang 

et al., 2000], and may still be active since rivers form deep and narrow gorges where they 

cross anticlines. The contact between this basin and the Ayilari range is sharp, parallel to the 

active KFZ, and presents a strong topographic gradient (slope >25%) with a differential 

elevation of more than 1000m. This suggests recent vertical displacement along the southern 

flank of the Ayilari range. From large-scale mapping, Lacassin et al. [2004] postulated right-

lateral strike-slip motion along this flank that would correspond to a southern strand of the 

KFZ (Figure 1). 

This southern fault strand would connect with the northern strand of the KFZ by ~ 

N110°E trending faults, which isolate kilometer to tenths of kilometers wide slivers of Paleo-
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Cenozoic metasediments, black slates, meta graywackes,granitoids; ophiolites and 

conglomerates formed of peridotites, gabbros and basalts, a tectonic mélange consisting of 

blocks of serpentine, harzburgite, radiolarite, and Permo-Triasic hallstatt limestone, and 

Tertiary sandstone and conglomerate with boulders of volcanic rocks, granodiorite, 

sandstone and radiolarite (Fig. 2). The slivers of ophiolites and of tectonic mélange probably 

represent the Indus suture zone dismembered by strike slip deformation [Armijo et al., 1989; 

Lacassin et al., 2004]. The Meso-Cenozoic meta graywackes might be deformed equivalents 

to the Cretaceous Xigaze group which widely outcrops ~400 km eastward (e.g., Burg, 1983) 

as a 20 km wide strip along the northern side of the Indus suture. 

 

3. Field observations in the North Ayilari range 

 

The North Ayilari Range consists of high grade metamorphic rocks and of variously 

deformed granitoids that we studied along 6 sections in valleys perpendicular to the trend of 

the range (Figures 2 and 4). 

 

3.1. Structural observations 

 

Frontal parts of sections 2, 3 and 6 show the development of strong cataclasis, including 

pseudotachylites, and low-temperature brittle-ductile deformation (Figure 4). The 

corresponding foliation was acquired in greenschist facies metamorphic conditions 

characterized by chlorite growth and is parallel to the active fault. The mean foliation trends 

~N129°E and dips ~36°E on section 2, ~N123°E - 45°NE for section 3, and ~N168°E – 

40°NE on section 6 (Figure 5). Lineations are underlined by chlorite and indicate a dextral-
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normal sense of shear characterized by either an oblique lineations with a pitch of 35-60°SE 

(section 6), or a partitioning between purely normal and purely strike slip deformation 

components with two groups of lineations trending N104-140°E and 29-67°NE, respectively 

(sections 2, 3). This kinematics of low-grade deformation is consistent with the right-lateral 

motion deducted from the morphology along the adjacent active fault. 

This predominant greenschist facies foliation is superimposed upon, and partially 

overprints, a higher-grade deformation. A few tens of meters inside valleys 2, 3, 6, and 

straight from the front of valleys 1, 4 and 5, chlorite is absent and the rocks were mainly 

deformed under higher-grade metamorphic conditions. Lineations, made of stretched 

feldspars and micas, are nearly horizontal and its trend is exceptionally constant from one 

section to another, and from the frontal parts of sections to ~10 km inside the range (N139 ± 

6°E, at 2σ confidence level, Figures 5 and 6a). Foliation trend also remains roughly constant 

at ~N140°E; the dip angle decreasing progressively from the valley front (60°NE, Figures 4 

and 6b) to less than 10°NE, ~3-5 km inside the Ayilari range (sections 1 and 4). The sense of 

shear, mainly indicated by S-C structures (Figure 6c) and sigmoidal feldspars (Figure 6d), is 

unambiguously right-lateral where foliation is steep, and top to the south where it is gently 

dipping (section 1). Such geometry of the foliation and lineation is consistent with a convex 

Karakorum strike-slip shear zone with the rocks of the top-northeastern edge displaced 

dextrally and southeastward. 

 

3.2. Field relationship, samples location, and geochronological framework 
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In the following, the prefix “leuco” is used to qualify rocks rich in leucocratic minerals 

such as quartz-feldspar-muscovite (>95% of the rock volume). The attribute “two-mica” is 

assigned to rocks showing a content ≥5% in both white and black mica, whereas the term 

“biotite-rich” applies to rocks having biotite and muscovite contents  >10% and <5%, 

respectively. In places biotite-rich, leucocratic and two-mica bands and lenses alternate, with 

the two systematically in contact. We call these rocks “migmatites”, as their biotite-rich, 

leucocratic and two-mica bands and lenses might represent mesosome, leucosome, and 

melanosome, respectively. 

Triangular facets in the northeastern part of section 1 (Figures 3a, 4) exhibit dextrally 

sheared leucogranitoids (sample L91). The intensity of deformation decreases progressively 

to a non-deformed leucogranitoid ~300 m from the front. Landslides deposited at high 

elevation by glacial moraines prevented us from mapping 5 km of the section, after which 

penetratively deformed migmatitic gneiss crops out (L89). There, the foliation is sub 

horizontal, the lineation strikes ~N153°E roughly parallel to the KF, and the sense of shear, 

indicated by S-C structures and sigmoidal feldspars, is top to the south. The foliation is 

locally crosscut by leucocratic veins (L86, L90) that are differentiated magmas originating 

from a large two-mica granitoid body located ~500 m southwestward (L87). U-Th-Pb dating 

on zircons of sample L89 suggest crystallization of the migmatitic gneiss at 23.4±4.0 Ma, 

while monazites revealed post crystallization event(s) interpreted as hydrothermal activity 

until ~18 Ma (L89, [Valli, 2005; Valli et al., submitted]). 

On section 2 (Figure 4), two-mica gneisses, mylonites, and ultramylonites crop out as a 

band at least 500 m thick. Inside the valley, migmatitic gneisses crop out. The leucocratic 

mylonite sample C38 from the frontal greenschist part was selected for Ar/Ar dating, 
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whereas a similar sample (P34) yielded metamorphic and hydrothermal zircons 22.0 ± 4.7 

Ma old [Valli, 2005; Valli et al., submitted]. 

Frontal greenschist gneisses (C27) of section 3 (Figure 4) pass southwestward to high-

grade biotite-rich and two-mica gneisses (P18), and mylonites, inter-layered with sheared 

leucocratic veins (C30). Leucocratic veins increase in frequency toward the southwest, where 

leucogranitic pods (C31) invade biotite-rich and two-mica gneisses and lead to a complex set 

of deformed dykes which are connected to a dextrally sheared leucogranitoid massif (C32). 

The leucocratic veins are more or less deformed, with the oldest ones transposed in the 

foliation of the hosting gneisses and highly sheared (see Figure 4d of Lacassin et al., 2004). 

Strain intensity in the veins increases with decreasing angles between the vein and the 

foliation in the hosting gneisses. The younger veins crosscut the hosting gneisses foliation 

with angles up to 90° (Figure 4c of Lacassin et al., 2004), but still exhibit a slight foliation 

parallel to the one of the hosting rocks. This indicates that veins emplaced successively 

during right-lateral shear have been more or less rotated and deformed depending on their 

age [Lacassin et al., 2004; Valli, 2005] 

A concordant fraction of needle-like zircon grains yield the ~ 23 Ma crystallization age 

of the syn-kinematic leucogranitoid C32 [Lacassin et al., 2004; Valli, 2005;]. Zircons and 

monazites from the hosting biotite-rich and two-mica gneisses indicate that they are ortho-

derived and crystallized between ~26.8 and 19.2 Ma (samples P18 and P20 [Valli, 2005; 

Valli et al., submitted]). The crystallization of monazites occurred between ~19 Ma and ~16 

Ma, likely during hydrothermal alteration (samples P18 and C32). 

Section 4 (Figure 4) is exclusively composed of sheared leucogranitoid. A deformed 

sample was taken at the southwest end of the section (C43). U-Th-Pb dating of monazites 
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and zircons revealed the crystallization of hydrothermal and metamorphic zircons and 

monazites occurred between ~14 and ~22 Ma. 

Outcrop 5 (Figure 2) corresponds to a non-deformed two-mica granitoid (P56, P57). 

Section 6 (Figure 4) exhibits intensively fractured migmatites, dextral-normal 

greenschist two-mica gneisses (P32), and finally a slightly deformed two-mica granitoid 

crosscut by variously deformed tourmaline-bearing leucocratic veins. 

 

4. Petro-structural evidence for continuum shearing from high to near surface 

temperatures  

 

Rocks are mainly composed of quartz, feldspar and mica; other constituents, proportions 

and crystal sizes are detailed in Table 1. Samples P56, P57, L86, and L87 are isotropic and 

present a plutonic texture, they are herein called granitoids. All other samples (L90, L91, 

C27, C30, C31, C38, C43, P18, P32) are deformed to various extents under various 

temperature conditions . 

Feldspar porphyroclasts commonly show recrystallized grains at their boundaries, 

producing a core-and-rim structure diagnostic of dynamic recrystallization (e.g. [Passchier 

and Trouw, 1996], Figure 7a). Such dynamic recrystallization strongly depends upon 

temperature, and to a minor extent on other factors such as strain rate, differential stress, and 

the chemical activity of certain components such as water [Passchier and Trouw, 1996; 

White, 1975]. Consistent observations in several natural examples suggest that such dynamic 

recrystallization occurs at medium- to high-grade temperature conditions  (>600-400°C) 

during deformation, (e.g. [Gapais, 1989a; 1989b; Leloup et al., 1995; Passchier and Trouw, 

1996]). Other deformation characteristics in feldspar indicate that deformation continued 
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under retrograde conditions. Abundant myrmekite growth along the boundaries of K-feldspar 

porphyroclasts (Figure 7b), especially at high stress sites, suggests a deformation under 

medium-grade temperature conditions (400-600°C, [Borges and White, 1980; Gapais, 1989a; 

1989b; Gates and Glover, 1989; Passchier and Trouw, 1996; Simpson and Wintsch, 1989; 

Tsurumi et al., 2003; Tullis and Yund, 1991]). Bent twin lamellae (Figure 7c), undulose 

extinction, and kink bands suggest deformation under lower-grade temperature conditions 

(300-400°C, e.g. [Gower and Simpson, 1992; Jensen and Starkey, 1985; Ji and Mainprice, 

1990; Olesen, 1987; Olsen and Kohlstedt, 1985; White and Mawer, 1986]). Finally, brittle 

deformation of porphyroclasts, often in the form of “bookshelf” microfracturing (samples 

C30, P32), and, in place, patchy undulose extinction indicates even lower-grade conditions 

(below 300°C; [Passchier, 1982; Passchier and Trouw, 1996; Tullis and Yund, 1987]) during 

late increments of deformation. 

Dynamic re-crystallization through subgrain rotation (Figure 8a) or grain boundary 

migration (Figure 8b) occurs in quartz [Guillopé and Poirier, 1979; Passchier and Trouw, 

1996; Tullis and Yund, 1991]. These structures are typical at medium to high-grade 

conditions (700-400°C, [Hirth and Tullis, 1992; Passchier and Trouw, 1996]). Quartz grains 

also exhibit undulose extinctions typical of low-grade conditions below 300°C [Passchier 

and Trouw, 1996] during late deformation stages. 

Mica fish are thought to form due to combined slip on the basal plane, rigid body 

rotation, boudinage and re-crystallization at the edges [Eisbacher, 1970]. These mechanisms 

imply deformation at temperature higher than ~250°C [Stesky, 1978; Stesky et al., 1974]. 

Micas also show characters typical of very low-grade metamorphism below ~250°C, such as 

undulose extinction and, in some samples, kinking and folding (P36, C43, [Stesky, 1978; 

Stesky et al., 1974]). 
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The different temperature-dependent deformation mechanisms described above produce 

asymmetric microstructures indicating the sense of shear. Sigmoidal and δ-type feldspars, 

quartz subgrains rotation and re-crystallization, myrmekite formation at high stress sites, and 

asymmetric mica ‘fishes’ all indicate the same unambiguous dextral shear sense on NE 

dipping foliations, or top to the south shear in samples with flatter foliation planes. Such 

dextral and top to the south shear thus appears to have been continuous from temperature 

higher than 400-600°C down to low-grade conditions of <250°C. 

 

5. Analytical methods 

 

5.1. 40Ar-39Ar techniques 

 

Minerals were separated using heavy liquids, a Frantz magnetic separator and finally by 

hand picking under a binocular microscope. The samples were irradiated at the Phoenix 

Memorial Laboratory reactor of the University of Michigan, in the L67 position for 20 h with 

a 1018 neutrons cm-2s-1 flux. Irradiation interference on K, Ca and Cl were corrected by 

irradiating  and analyzing KCl and CaF2 pure salts. J factors were estimated by the use of 

duplicates of the Fish Canyon sanidine standard with an age of 28.48 Ma [Schmitz and 

Bowring, 2001; Schmitz et al., 2003]. 

The samples were analyzed in Clermont-Ferrand (samples L90, L91, L86, C38, C27, 

C29, C30, C31, C43) and Montpellier (samples P32, P56 and P57) using the same apparatus 

and the same protocol, as described in [Arnaud et al., 2003]. Samples were loaded in 

aluminum packets into a double vacuum Staudacher type furnace and step heated; 

temperature is calibrated by means of a thermocouple. The gas was purified using cold traps 
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with liquid air and Al-Zr getters. Once cleaned, the gas was introduced into a VG3600 mass 

spectrometer and allowed to equilibrate for 2 min prior to analysis was done statically. 

Signals were measured by the mean of a Faraday cup with a 1011 ohm resistor for 40Ar and 

39Ar while 39Ar, 38Ar, 37Ar and 36Ar were analyzed with a photomultiplier after interaction on 

a Daly plate. Gain between both collectors was estimated by duplicate analysis of 39Ar on 

both collectors during each analysis, and also by statistical analysis over a period of several 

years. This gain is 95 and is know at better than 1.5%. This error is included in the age 

calculation, along with analytical errors on each signal and errors on the blank values. 

Detailed analytical results are available as electronic supplements. Age plateau given are 

weighted mean plateaus; the error takes the error on the J factor into account. With the 

historical decrease of analytical errors, strict plateau criteria [Berger and York, 1981; 

Dalrymple and Lanphere, 1974] are less frequently met. Thus, pseudoplateaus are used when 

a significant number of steps overlap globally at 2σ even if contiguous steps do not. For K-

feldspars, plateau ages cannot be defined, but since we wish to compare and discuss series of 

steps with similar ages we used simple mean, thus unweighted, ages. Isochron ages are 

obtained on an inverse isochron diagram of 36Ar/40Ar versus 39Ar/40Ar [Roddick, 1978; 

Roddick et al., 1980], which often allows homogeneous excess components to be identified. 

Errors on age and intercept age include individual errors on each point and linear regression 

by York’s method [1969]. The goodness of fit relative to individual errors is measured by 

Mean Square Weighted Deviation (MSWD). 

For micas, classical furnace step heating was conducted and usually yielded an almost 

perfectly flat age spectra, from which plateau and isochron ages were calculated and are 

shown side by side to assess potential excess argon problems. If the inverse isochron age is 

close to the plateau age and 40Ar/36Ar is not significantly different from present day 40Ar/36Ar 
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atmospheric ratio (295.5), we consider that the plateau age is reliable. When this is not the 

case, we suspect a non-atmospheric initial 40Ar/36Ar ratio and we thus prefer to rely on the 

inverse isochron age if this one is well determined. 

A more peculiar step-heating schedule was conducted on K-feldspar in order to retrieve 

diffusion characteristics, to apply diffusion models, and to calculate model thermal histories 

[Harrison et al., 1991; Lovera et al., 1989; 1991]. We conducted duplicated isothermal step 

heating at low temperatures (450-800°C); these often yield a sawtooth-shaped age spectrum 

where the second of the two stages is systematically younger and probably less affected by 

excess argon (e.g., [Harrison et al., 1994]). The use of pseudoplateaus or isochrons on series 

of steps on K-feldspars may seem at odds with the classical definitions. However K-feldspars 

are known to be composite and also to record, in certain conditions, cooling histories and 

especially rapid cooling events, which are theoretically, marked by flat portions of the age 

spectra [Lovera et al., 1989, 1991]. Those portions can be treated by statistical approaches 

(such as plateaus and isochrons) and can be interpreted as revealing undisturbed quenched 

parts of the sample or alternatively the presence of excess argon. All errors are quoted at 2 

sigmas. 

 

5.2. U-Th-He techniques 

 

We used euhedral apatite grains that were checked for inclusions under a binocular 

microscope. Grain dimensions were measured under a microscope to determine the α 

emission correction [Farley et al., 1996]. All replicates where loaded in platinum capsules 

and heated for He extraction by laser for 5 minutes at ~1050 ˚C following the procedures 

described by [House et al., 2000]. Packets were then transferred into Teflon beakers for 
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dissolution before being analyzed with a Finnegan Element ICP-MS (see [House et al., 2000] 

for detailed analytical procedure). The mean age is reported as there were three replicate 

analyses (Table 2). Propagated errors on He ages based on the analytical uncertainty in U, 

Th, and He measurements are 2% (1-sigma) for laser samples [Farley, 2002]. However the 

propagated error from geometrical correction of ages as well as intrinsic heterogeneities in U 

content usually lead to much higher errors. Farley [2002] suggests a minimum uncertainty of 

3% (1-sigma) for all ages, based on the reproducibility of laboratory standards. Mean error is 

reported at 1-sigma as standard errors using the standard deviation of the replicate analyses 

divided by (n-1)1/2 where n is the number of replicate analyses performed (Table 2). This 

error estimate is larger than the analytical error alone and likely reflects the age uncertainty 

due to differences in grain size, zoning of parent material and other factors which may 

contribute to grain differences in He age and uncertainties in the alpha-ejection correction 

[i.e., House et al., 2001]. 

 

5.3. Apatite fission track (AFT) methodology 

 

Apatite was separated using standard magnetic and density methods, then mounted on 

glass slides with araldite epoxy. After grinding and polishing to expose an internal surface, 

the apatites were etched with 5.5 molar nitric acid for 20 seconds at 21°C. Samples were 

irradiated at Oregon State University. After irradiation, mica external detectors were etched 

in 40% HF for 45 minutes at 21°C.  For age determinations, 20 to 23 good-quality grains per 

sample were selected at random and dated using the external detector method.  Laboratory 

procedures are essentially the same as those reported in [Sobel and Strecker, 2003]. 
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At temperatures hotter than ~ 110 – 150°C, all fission tracks are totally annealed, 

resetting the fission track clock to zero. The total annealing temperature (TA) and the 

effective closure temperature depend on the kinetic characteristics of the apatite and the 

cooling rate [Ketcham et al., 1999]. The partial annealing zone (PAZ) extends from the TA 

down to ~ 60°C, and within this temperature range tracks are partially annealed. Below ~ 

60°C, AFT are effectively stable because annealing occurs at a very slow rate [e.g. Gleadow 

et al., 1986]. Following convention, all statistical uncertainties on pooled ages and mean 

track lengths are quoted at the ±1σ level, but ±2σ uncertainties are taken into account for 

geologic interpretation. 

 

6. Analytical results  

 

6.1. K-feldspar 

 

The shapes of all age spectra are roughly similar, with a first low temperature (LT) 

pseudoplateau between ~10-40% of gas release corresponding to furnace temperature below 

700°C, followed by a rapid age increase toward a high temperature (HT) plateau or 

pseudoplateau (Table 3, Figure 9a, and Appendix A). 

The youngest steps on K-feldspar LT ages (L90, L91, C27, C30, C38, C43, P32, P57), 

or pseudoplateaus (C31, P56) defined on K-feldspar LT steps, appear diachronous between 

the northernmost section and other localities: two samples from section (1) yield ages at ~14-

12 Ma, whereas in other sections (2, 3, 4, 5 and 6), the eight K-feldspar samples invariably 

exhibit LT pseudoplateau age in a range of ~10-7 Ma. Inverse isochron diagrams on the 

same LT steps often revealed slight excess argon, in agreement with most studies revealing 
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excess argon release from K-feldspars at low temperature due to fluid inclusion breakdown 

[Burgess et al., 1992; Harrison et al., 1994]. In our case, excess argon had only a minor 

effect since the isochron age estimates are similar to the pseudoplateau ones when considered 

at the 2σ confidence level. 

The HT K-feldspar age plateau (L90, L91, C30, C31, C38, C43), or pseudoplateau 

(C27), yield a relatively wide range of average ages from 21.2 ± 1.0 to 15.3 ± 0.7 Ma (Table 

3), with no correlation with the geographic position of the samples. Most corresponding 

inverse isochron diagrams yield relatively scattered data (Fig. 9, Appendix A), preventing 

any reliable isochron age calculations (MSWD > 30). Only for sample C38 an HT isochron 

age of 17±1 Ma can be calculated (40Ar/36Ari =420±90) that is not statistically different from 

the HT Simple Mean Age (Table 1). The high temperature steps of the P32, P56 and P57 K-

feldspar age spectra have partially scattered ages and do not present reliable plateau or 

pseudoplateau ages; it was thus impossible to get reliable age estimates or perform thermal 

modelling on those samples. Locally, older spikes appear on all the increasing middle 

temperature part of the spectra, but they are relatively minor and were neglected for 

modelling. 

 

6.2. Micas 

 

Muscovite and biotite age spectra are charactistically flat for most of the gas release 

(Tables 4 and 5, Figures 9b and 9c, Appendix B and C, respectively). Inverse isochron 

diagrams reveal that the 40Ar/36Ari is systematically close to the atmospheric composition; 

consequently, inverse isochron ages, plateau ages, and total fusion ages are identical. 
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Like LT feldspar ages, mica ages are diachronic between the northernmost section (1) 

and the other sections. In valley (1), white mica ages are 15.4 ± 0.3 - 14.4 ± 0.3 Ma, whereas 

biotites recorded an age of 14.3 ± 0.3 Ma; micas from other sections (2, 3, 4, 5, 6) provide 

constant ages lying in a narrow range of 12.7 ± 0.2 - 10.4 ± 0.8 Ma for muscovite, and 11.9 ± 

0.3 - 10.8 ± 0.7 Ma for biotite.  

 

6.3. U-Th-He on apatite 

 

Three replicates, each containing four apatite grains from sample P32 (section 5), were 

analyzed. Replicates gave relatively good reproducibility (the standard deviation represents 

less than 14% of the apatite age). Age estimates are comprised between ~4.8 and 3.7 Ma 

with a mean value of 4.4 Ma (Table 5). Calculated mean error is 0.4 Ma and analytical 

uncertainties < 0.1 Ma (1σ). In the following, only the mean error value based on the 

samples' reproducibility will be used. 

 

6.4. Fission tracks on apatite 

 

Samples P18 and C32, from the frontal part of valleys 2 and 5, yield ages of 5.4 ± 0.4 

and 5.5 ± 0.6 Ma, respectively, whereas sample L87, located 10 km southwestward of the 

frontal part of section 1, shows an age of 8.5 ± 0.5 Ma (Table 6). Pooled ages are reported as 

all samples pass the chi-squared test. Sample L87 yielded 25 confined track-lengths; 

although normally a larger number are utilized for modelling, an average of 3 tracks/Ma is 

sufficient to permit moderate resolution thermal modelling using the AFTSolve model 
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[Ketcham et al., 1999].  The kinetic characteristics of the apatite in this sample were 

constrained using etch pit diameter measurements (Dpar), calibrated against reported 

Durango apatite  [Ketcham et al., 1999]; a value of 1.55 µm was used.  The TA for this 

sample is ca. 130°C. 

 

7. Constructing a cooling history 

 

7.1. Closure temperatures and cooling paths 

 

Once the age of a given mineral is calculated, a fundamental and controversial issue is to 

determine whether this age corresponds to mineral crystallization, re-crystallization, or 

cooling below a given closure temperature. The temperatures estimates for ductile 

deformation are above 350-400°C; higher than closure temperatures for the radiogenic 

systems used in this study. Therefore, 40Ar/39Ar, AFT and U-Th/He ages most likely 

correspond to cooling ages, and we choose to systematically build cooling histories from our 

results. This choice leaves open further discussion on the internal consistency of such 

cooling histories and the relationship between 40Ar/39Ar ages and deformation events. For 

example, 40Ar/39Ar ages of the finest white micas may in fact correspond to the age of syn-

kinematic crystallization (e.g., [Kirschner et al., 1996]). We assumed closure temperature of 

390 ± 45°C for the white micas ([Hames and Bowring, 1994] and references therein), 320 ± 

40°C for biotites (e.g., [Harrison et al., 1985]), 115 ± 15°C for the AFT (when thermal 

modelling was not possible, [Gleadow et al., 1986; Ketcham et al., 1999]), and 80 ± 20°C for 

the U-Th/He on apatite [Farley, 2000]. 
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Most K-feldspar data permitted modelling of their cooling history. We restricted our 

models to the simplest possible solution: monotonic cooling. Allowing transit reheating 

would lead to significantly different but less constrained thermal histories. Modelling was 

performed on 7 K-feldspar fractions. Modelled age spectra are shown on figure 9 and in 

appendix A and cooling histories are presented on Figures 10a and 10c. The experimental 

Arrhenius diagrams were satisfactorily fit with diffusion models assuming 5 to 8 domains 

sharing common activation energy on the order of 33.5-39.9 Kcal/mol. The best cooling 

models invariably show two rapid cooling phases separated by an isothermal or slow cooling 

rate period. The age of the oldest cooling event varies over a wide range of ~23-14 Ma in 

relation with the variability of HT ages in K-feldspars, but these ages are poorly constrained, 

since it was impossible to obtain a perfect fit for the oldest part of the age spectrums (Figure 

9, and Appendix A). Moreover the modelling is based on the assumption that argon diffuses 

out of the lattice, while within the furnace, breakdown of the feldspars takes place in the 

range 1050-1100°C, thus violating the model hypothesis above these temperatures. 

Modelling above 1100°C is therefore unconstrained. Following cooling from high 

temperature a period of slow cooling rate (<15°C/Ma) is modelled and corresponds to a drop 

of temperature down to ~210-260 °C. The youngest cooling event is always very well 

constrained at ~12 Ma for samples of the northernmost valley (section 1) and at ~11-9 Ma 

for all the others (sections 2, 3, 4). 

 

7.2. Pertinence of the cooling models from K-feldspars 

 

The time-temperature diagram reveals an incompatibility between the K-feldspar time-

temperature modelling and the rest of the data set: all but L91 K-feldspar cooling curves, and 
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especially the protracted slow cooling periods, do not match the mica ages if classical mica 

closure temperature are accepted (Figures 10a, 10c). It is noteworthy that the white mica 

ages of dextrally deformed samples (L90, L91) from valley 1 are identical to those of white 

micas coming from a non-deformed sample (L86) located in the same valley. Similarly, 

consistent biotite ages determined from deformed samples of valleys 4 and 6 are 

contemporaneous with non-deformed biotite ages from samples located in valley 5 (P57, 

P56). This strongly suggests that the micas crystallized prior to the last deformation 

increments, and thus not below their closure temperature, ruling out exceptionally low 

temperatures that would bring the mica ages down on the feldspar cooling curve. Therefore, 

micas 40Ar/39Ar ages most likely represent cooling ages at “normal” closure temperature. 

Similarly, there is no reason to suspect abnormally high kinetic characteristics in the 

feldspars that would imply that the less retentive domains closed at higher temperature 

around 11-9 Ma. Our calculated activation energies 33.5-39.9 Kcal/mol are on the low side 

compared with the statistical study of Lovera et al. [1997], which showed that feldspars from 

various origins and terrains have activation energies varying around a mean of ca 46 ± 6 

kcal/mol. However, even activation energies of 50 kcal/mol would not imply closure 

temperatures high enough to reconcile feldspars and mica data. 

On the other hand, petro-structural observations show significant syn-kinematic re-

crystallization of K-feldspar with the development of a mantle of re-crystallized grains 

around crystal cores. Thus, the dated K-feldspars were most likely constituted of clusters 

made of several generations of intimately mixed crystals having grown, crystallized and 

cooled at various times during the deformation rather than monogenetic single crystals with 

simple diffusion domains. This strongly suggests that thermal models are not reliable in that 

case. 
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Since thermal modelling using simple diffusion and monotonic cooling does not 

adequately explain the continuous re-crystallization of the dated phases, we therefore used a 

cruder approach, assuming accepted closure temperatures for micas. Since pseudoplateaus 

exist for both LT and HT ages, it is likely that argon loss was limited at the corresponding 

times.  This implies that rapid cooling took place at those periods, pointing to a limited 

closure temperature window at those times. We also make the hypothesis that, although the 

kinetic characteristics calculated from the continuous thermal modelling of feldspars are not 

adequate to be used for a single grain, they can be used as crude estimates for the closure 

temperatures of crystals degassing during LT and HT phases. Using these data suggest that 

the LT ages correspond to cooling at ~150-300°C, whereas HT ages (at 1000-1400°C 

furnace temperatures) correspond to cooling at ~300-450°C (Figures 10b, 10d) (e.g., Leloup 

et al, 2001). As it is often difficult to assess which of the isochron or plateau ages is the most 

realistic because both are equally acceptable statistically, we quote uncertainties that include 

the entire range of isochron and plateau age estimates, the resulting global uncertainties are 

taken at the 2σ confidence level. 

 

8. Geochronological constraints on the age of right-lateral shearing and normal faulting 

along the Ayilari range. 

 

8.1 High to medium temperature thermochronological data (argon HT Kf) and (U-Th/Pb) 

geochronology: evidence for a first Lower Miocene rapid cooling event. 

 
U-Th-Pb ages obtained by classical Isotopic Dilution - Thermo Ionisation Mass 

Spectrometry (ID-TIMS) and by Secondary Ion Mass Spectrometry (SIMS) on zircons and 
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monazites (Lacassin et al. [2004] and Valli et al. [2005 and submitted]) reveal that the most 

recent magmatic episode took place at ~25-21 Ma in the Ayilari range. This episode was 

synkinematic with right-lateral shear and was accompanied and followed by metamorphism 

from ~22 to 19 and hydrothermalism between ~22 and 15 Ma (Valli et al. [2005 and 

submitted]) (Fig. 11a). These results are interpreted as reflecting heat and fluid advection 

during deformation along the KFZ. Those ages are very close to or identical within error to 

the HT ages from K-feldspars of the present study.   Theoretically, the granitoid 

crystallization temperature (~750-800°C [Clemens, 2003]) is ~350°C above the feldspar HT 

cooling temperature (~400°C), (Fig. 11), which should have lead to significantly different 

ages. Three hypotheses can be envisaged to explain both data sets. (1) K-feldspar HT ages 

could be too old because of excess argon. However, a close analysis of inverse isochrons 

show that there is no clear evidence for such excess; the age of the only sample with an HT 

isochron age is confirmed by the Simple Mean Age (see section 6.1). This strongly suggest 

that little excess argon is present and that K-feldspar HT ages are meaningful as is the spread 

in age between samples of ~6 Ma observed in each section (Figure 10). (2) K-feldspar HT 

ages could correspond to unusual high closure temperatures. But as discussed in section 7, 

there is no reason to suspect such a case. (3) Both magmatic zircon U/Pb and argon HT K-

feldspars ages are correct and associated with the expected closure temperatures. This 

implies that the Early Miocene (~25-21 Ma) syn-kinematic magmatic episode was 

immediately followed by a period of rapid cooling during which metamorphism took place 

until ~19 Ma and metasomatism until ~15 Ma (Fig. 11). For example, in section 1, 

temperature dropped from solidus temperature (<750°C for two-mica granitoids [Gardien et 

al., 1995) at 24.2±2.4 Ma (L89 magmatic monazite), to closure temperatures corresponding 

to the HT part of the K-feldspars age spectra (400 ± 50°C) at 18.4±1.3 (C38, most reliable Kf 
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HT age), (Figure 11a). Because hydrothermal monazites and zircons can have crystallized in 

a large range of temperatures (~350-700°C, [Seydoux et al., 2002] it is not possible to draw 

more precise cooling histories. For example L89 metamorphic or hydrothermal monazites 

have the same age than the HT K-feldspar. 

Rapid cooling soon after 25-21 Ma could results from tectonic exhumation immediately 

after the granitoids emplacement and associated with thrust or normal components of 

displacements along the KFZ at that time. However, in the North Ayilari range all kinematic 

indicators associated with deformation under high to medium temperature conditions (>600-

400°C) indicate an almost pure dextral shear with horizontal lineations (see section 3.1. and 

Figure 5). Dextral-normal deformation is restricted to the more brittle and recent stages of 

deformation (see below). A phase of tectonic exhumation coeval with this Early Miocene 

rapid cooling event is thus unlikely. Alternatively, rapid cooling could follow high 

temperature shearing at shallow depths. High geothermal gradient due to shear heating 

and/or heat advection is common in strike-slip shear zones [e.g., Leloup et al., 1999] It may 

induce fast local cooling when deformation slows-down or ceases at one location, even if it 

continues in another part of the shear zone. Such process could explain the differences 

between the various HT K-feldspar ages, as the samples are located at different places within 

the shear zone. Unfortunately, we do not have good constraints on the depth of right-lateral 

deformation in the North Ayilari range to confirm this hypothesis. 

In the Pangong range 200-350 km to the northwest (Figure 1) outcrop other right-

laterally sheared ductile mylonites [Searle et al, 1998; Dunlap et al., 1998; Rolland and 

Pêcher ,2001; Rolland, 2002; Rolland et al., in press ]. Dunlap et al. (1998) state that the 

strike-slip motion is restricted to amphibolite and greenschist metamorphic conditions. 

However, recent petrologic and thermo-barometric studies constrain the P-T–t path during 
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this deformation [Rolland and Pêcher, 2001; Rolland et al., in press]. Both granulitic 

(≥800°C and ~5.5-5 kb) and amphibolitic (650°C-6-7 kb) conditions occur. Peak temperature 

in the amphibolitic rocks were attained at ~18 Ma, at the time of Tangtse granite 

emplacement (Fig. 11b, sample 450 of Rolland et al, in press). As strike-slip deformation 

continued, temperature dropped to ~500°C at ~13.6 Ma (Fig. 11b, sample 441 of Rolland et 

al, in press) during cooling to low T amphibolitic conditions (500-300°C and 2-5 kb). This 

suggests that strike-slip deformation at middle to upper crustal levels (depth ≤20 km) occurs 

under anomalously high temperature conditions. The shear zone thermal state was probably 

very similar in the North Ayilari range.  

8.2 Medium to low temperature cooling history of the Ayilari range: evidence for a second 

rapid cooling in the Middle Miocene. 

 

Below 400°C, time-temperature paths can be drawn from argon (muscovite, biotite, LT 

K-feldspar), apatite fission track and apatite U-Th/He data (Figure 10b, 10d, 11a). These 

paths show good agreement between the different thermochronometers since, within error, 

age estimates decrease with the closure temperature of the minerals (Figures 10b, 10d). 

At temperature around 400°C, the HT parts of the K-feldspars spread in age between 

~22-15 Ma in section 1 (Figure 10b), and ~21-15 Ma in the southern valleys (Figure10d), 

while muscovite ages are grouped between ~15-14 Ma and ~13-12 Ma, respectively (Figures 

10b, 10d). These suggest cooling rates lower than 14°C/Ma during the ~22-14 Ma period in 

section 1, and lower than 10°C/Ma during the ~21-12 Ma period in the southern valleys. The 

flatness of mica plateaus (Figures 9b, 9c, and Appendix B-C) is atypical for gneisses or 

granitoids; it is more characteristic of rocks in which crystals were quenched. This, together 

with the narrow age difference between muscovite and biotite, strongly suggests the 
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initiation of rapid cooling at ~15-14 Ma in the northernmost section, and at ~13-12 Ma in the 

other sections. The thermochronometric estimates, in the time period ~15-5 Ma for section 1, 

and ~ 13-4 Ma for the other sections, suggest monotonic rapid cooling at an average rate of 

~40°C/Myr and ~36°C/Myr, respectively (Figures 10b, 10d).  This second episode of rapid 

cooling is clearly associated with petrostructural indicators of medium to low temperature, 

indicating the onset of a component of normal throw on the Karakorum fault in the Gar 

basin. This kinematic change induced exhumation and faster cooling and was probably 

associated with the rise of the Ayilari range. 

In summary petrostructural data not only show that deformation with a dextral 

component of shear started at temperature >400-600°C, but also that it has been continuous 

up to near-surface conditions, and was thus associated to the cooling history deduced in the 

21 - ≤4 Ma age range. Our thermochronological results reinforce and extend our previous 

conclusions [Lacassin et al., 2004; Valli, 2005; Valli et al., submitted], now demonstrating 

not only that right-lateral motion was already in progress in the early Miocene (25-21 Ma) 

but also that right-lateral shear with a normal component initiated at 12-15 Ma and continued 

until at least 4 Ma. Since such deformation is still active [e.g., Armijo et al., 1989; Chevalier 

at al., 2005], this implies at least 20 million years of deformation along the southern part of 

the Karakorum Fault zone. 

 

9. Large-scale geometry and kinematics of the Karakorum fault zone.  

 

9.1 Large-scale kinematics of the KFZ 
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Along the entire KFZ, the crystallization ages of numerous granitoids which are likely 

syn-kinematic, as well as thermochronological ages (40Ar/39Ar, Fission tracks, U-Th-He) of 

cooling coeval with dextral shear, also suggest an early onset of deformation along the KFZ. 

As already mentioned, dextrally sheared mylonites of the KFZ also outcrop in the 

Pangong range and in the Nubra valley (Fig. 1). In the Pangong range, a ~6 km wide band of 

mylonitized leucogranites, migmatites, amphibolitic and granulitic gneisses outcrop in 

between two strands of the KFZ [Searle et al., 1998, Rolland et al., in press]. U/Pb shrimp 

zircon ages of 18.0 ±0.6 (sample 215) and 18.5±1.5 (sample O22) were interpreted as dating 

crystallization of the Tangtze granite [Searle et al., 1998]. Mylonitic leucogranites from 

Tangtze and Nubra yield U/Pb ages of ~16 Ma (samples P1, P11, P38 [Phillips et al., 

2004],), while cross-cutting dykes yield ages of ~14 Ma (samples P8 & P37, [Phillips et al., 

2004]), (Fig. 11b) Such ages are interpreted to bracket the time of initiation of right-lateral 

faulting along the KFZ because ductile deformation is considered to have started after granite 

crystallization and have ended prior to leucocratic veins emplacement [Phillips et al., 2004]. 

While such ages dismiss the idea of a purely Holocene KFZ, as proposed by Searle [1996] on 

a regional basis , they imply a younger onset than the ≥ 21Ma age proposed in the Ayilari 

range [this study; Lacassin et al., 2004; Valli et al., submitted].  

Several lines of evidence suggest that the Tangtse granite is syn-kinematic to the KFZ 

and thus that ~18 and ~16 Ma are only lower bounds, not upper bounds, for the age of this 

fault. (1) As already emphasised for the North Ayilari range (section 2-2, Fig. 5d) the 

emplacement of a network of variously deformed dykes which come together to form a main 

sheared pluton represent reliable field evidence of syn-kinematic crystallization [Lacassin et 

al., 2004a]. Such field relationships correspond to the Tangtse granite and associated dykes 

[Philips et al., 2004; Searle et al., 1998; Weinberg and Searle 1998]. (2) S-C fabrics are 
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ubiquitous in the North Ayilari range (Fig. 5b & c), and in the Tangtse granite [Rolland, 

2000; Searle et al., 1998]. Such structures are typical of shear deformation under high to 

medium-grade temperature conditions, and they might be typical of syn-kinematic granitoid 

[e.g., Gapais, 1989a; 1989b; Gapais and Barbarin, 1986]. The deformed rocks indeed show 

clear evidence for the re-crystallization of feldspar and quartz, the latter by subgrain rotation 

and grain boundary migration (Figure 8 of [Searle et al., 1998], and [Rolland, 2000]), 

demonstrating that strike-slip deformation occurred at temperature above 600-400°C (see 

section 2-3). Such temperatures are close to the 750°C solidus temperature of two mica-

bearing granites and dykes [Gardien et al., 1995, and references therein]. This suggest that 

crystallization of the Tangtse granite might have been syn-kinematic. The possibility of high 

temperature (>350 - ≤750 °C) strike-slip deformation was already evoked by Dunlap et al. 

[1998] (p904), and Weinberg and Searle [1998] (p885 and 890). (3) The Tangtse granite is 

intrusive within granulitic and amphibolitic rocks. The P-T path of these rocks is retrograde 

from granulitic (T>800°C, P~5.5 Kb) or amphibolitic (T~750-700°C, P~4-5 Kb) to 

greenschist (T~500°C, P~3Kb) conditions [Rolland and Pêcher, 2001; Rolland et al., in 

press]. These host rocks were penetratively deformed in a dextral transpressive environment 

at temperature ranging from >800°C, thus above the Tangtse granite solidus temperature 

(750°C), to surface conditions. This again suggests a syn-kinematic emplacement of the 

granite. 

 One may speculate that other granitoids along the fault may also be used as evidence 

for syn-tectonic magmatism and metamorphism. Farther to the NW, the Baltoro batholith 

crystallized between 26 and 20 Ma  [Parrish and Tirrul, 1989; Schärer et al., 1990], at 

relatively low temperature (750-600°C) [Searle et al., 1992]. The batholith has a sigmoidal 
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shape; the southern and northern edges strike ~N110°, 100 km west of the KFZ and 

progressively bends eastward to become parallel to the KFZ (N142° strike, Fig. 1). South 

directed thrusting occurred during granite emplacement along the southern edge of the 

batholith [Searle et al., 1992]. The eastern border of the batholith is crosscut by the KFZ 

active strand and shows dextral S-C structures [Searle et al., 1998]. Similar to the Tangtse 

granite, the Baltoro batholith has been interpreted as predating the onset of dextral motion 

along the KFZ [Searle, 1996; Searle et al., 1998]; however, its large-scale sigmoid shape 

suggests an intrusion synchronous with right-lateral deformation along the KFZ, coeval with 

thrusting on the batholith southern edge and dextral high to medium temperature deformation 

along its eastern border. In this case, the 26-20 Ma ages of the batholith would, as already 

suggested by Mahéo et al. [2004], represent a lower bound for the initiation of the KFZ.  

In the Pangong range, Dunlap et al. [1998] report two phases of rapid cooling, one at 

ca.17-13 Ma followed by an intervening period of relatively slow cooling, and the second 

starting at ca. 8 Ma and continuing until at least 7 Ma [Dunlap et al., 1998] (Fig. 11b). This 

time-temperature evolution was mainly based on K-feldspar models, which, as in the Ayilari 

range, are barely consistent with micas 40Ar-39Ar ages from the same samples, or from the 

same structural unit. This suggests that these K-feldspar thermal models are no more reliable 

than ours. However, a cautious interpretation of the data, assuming that the mica and 

amphibole 40Ar-39Ar ages correspond to cooling ages, shows that a single monotonic cooling 

history cannot perfectly reconcile the entire data set (Figure 11b), as is the case in the Ayilari 

range, suggesting that the shift in cooling rates at ca 8 Ma is real. . This rapid cooling event 

occurred during right-lateral transpression [Dunlap et al., 1998; Rolland, 2000; 2002; 

Rolland and Pecher, 2001], whereas the contemporaneous rapid cooling event recorded in 
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the Gar-Baer basin (between ~16-12 and <4 Ma) is associated with transtension [this study; 

Lacassin et al., 2004; Valli et al., submitted],  

The shift from transpression to transtension along the fault could be explained by 

“zipper tectonics” [Harrison  et al., 1996]) , a model thoroughly documented along another 

major continental strike-slip fault: the Ailao Shan - Red river shear zone [Leloup et al., 

2001]. If the KF was a transform fault in the strictest sense, it would follow a small circle of 

the Euler rotation pole between the Ladakh and Qiangtang blocks. Motion would be purely 

strike-slip and there would be only local denudation along the fault zone in restraining or 

releasing bends. On the other hand, if the fault does not follow a small circle, transpression 

and transtension would take place along large portions of the faults; in the NW and SE parts 

of the right-lateral KFZ if the rotation pole is located NE of the fault. The neutral point that 

corresponds to the place where the fault zone aligns with a small circle is the only place 

where motion is purely strike slip and would be located somewhere between the Pangong 

and Ayilari ranges, thus allowing transtension in the Gar-Baer basins and transpression in the 

Pangong range and to the north. Since these ranges underwent a strike-slip deformation with 

only minor denudation prior to 18-12 Ma, a regional kinematic change may have occurred at 

that time, possibly related to blocks readjustments linked to the initiation of the left lateral 

Gozha fault which formed the northern boundary of the Pangong range (Fig.1). It should be 

emphasized that this model remains highly hypothetical because of the scarcity of well 

constrain time-temperature paths along the KF and within adjacent blocks. 

 

9.2 Formation of the Gar pull-apart basin and hints of long-term slip rate of the KFZ. 

 
The exhumation of the Ayilari range by normal faulting along its northeastern edge was 
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probably associated with the development and deepening of the Gar and Baer pull-apart 

basins concurrent with the rise of the regional topography. This drove the incision and 

entrenchment of major river courses that flow in these basins, most notably that of the Indus 

River (Figure 12a). Likely, the gorges that permit to the Indus River to flow across the 

Ayilari range date back to the time of rapid uplift of this range at 15-12 Ma, as suggested by 

our thermochronological data. Matching this outflow channel of the Indus with an upstream 

inflow channel will thus give an offset accrued in the last 12 to 15 Myrs. If this offset 

correspond to the present day 120 km offset of the Indus River course along the northern 

branch of the KFZ (Figure 12b) this would imply dextral motion at a minimum long-term 

average rate of  9 ± 1 mm/yr (Figure 12b). Such a reconstruction also implies that the river 

now flowing in the Bangong lake was the upstream part of the Shyok river ~14 Ma ago. 

However, as with most major rivers crossing active faults, the present day offset 

probably represents only a lower bound of finite motion along the northern branch of the 

KFZ [Gaudemer et al., 1989], because the watershed of the Indus River could have been 

highly modified during the last millions of years. In the Middle Miocene, this river possibly 

flowed on the southern side of the Kailas range, where the Gangrinboche molasses were 

deposited [Davis et al., 2004; Gansser, 1964; Miller et al., 2000], implying a much larger 

offset of ~280 km (Figure 12c). In this scenario, after the Indus river started to entrench 

across the rising Ayilari range (15-12 Ma), the dextral offset of its upstream and downstream 

channels forced the river to flow along the fault, in a way similar to the actual Gar River. 

Thrusting in the Kailas area [Yin et al., 1999]. might have  started to change the watershed of 

the Indus River at ca ~13 Ma  The actual upstream channel and watershed of the Indus river, 

which presently flows from the Shiquanhe basin, might have been captured only recently 

~10 km south of Zhaxigang. Taking into account such a hypothetical scenario (Figure 12c) 
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would bring the estimate of the long-term average rate on the northern branch of the KFZ to 

20 ± 3 mm/yr. 

For comparison, the total long term offset on the two branches of the KFZ is estimated at 

280 to 400 km from the offset of the Shyok and Indus suture zones [Lacassin et al., 2004], 

corresponding to average rates of 12 ± 1 to 17.5 ± 1.5 mm/yr assuming fault initiation 

between 25 and 21 Ma ago. 
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Figure captions: 

 

Figure 1: Large-scale sketch map of KFZ and adjacent units. Inset shows location in the 

large-scale Asian active tectonic framework. Dark-gray tones outline the Indus-Zangbo, the 

Bangong-Nujiang/Rushan-Pshart suture zones, and the main continental blocks. Hatched 

tones correspond to Shiquanhe and Shyok suture zones. Faults are mapped from Brunel et al. 

[1994], Lacassin et al. [2004a], Ministry of Geology of USSR [1989], Tapponnier et al. 

[2001], and Weinberg and Dunlap [2000]. PU, Plutonic Unit; TSZ, Thanglasgo Shear Zone. 

Map is projected in UTM 44 using the ellipsoid WGS84. 

 

Figure 2: Geological map of the double rhomb-shape Gar-Baer basin. Drawn from field 

observations, satellite image interpretation (Landsat 7, Spot 5, SRTM), and pre-existing 

maps [Armijo et al., 1989; Jiao et al., 1988; Kapp et al., 2003; Matte et al., 1996; Murphy et 

al., 2000]. Light shading outlines topography. Green lines show sections studied in the field 

(1 to 6 see Fig.4) and regional cross sections (A-A’ and B-B’ see Fig. 3b & c). B: Baer, G: 

Gar, M: Menshi, S: Shiquanhe, T: Tsada, Z: Zhaxigang. Map is projected in UTM 44 using 

the ellipsoid WGS84.  

 

Figure 3: Panoramic field photograph of the Ayilari range and cross-sections. Section 

locations and legend are on Figure 2. a: the Gar pull-apart basin and the north Ayilari range 

seen from the northeastern side of the basin (point of view location reported on Figure 2). 

The main active dextral / normal strand of the KF follows the foot of the topography 

evidenced by cumulative several hundreds meters high triangular facets. b: A-A’ section 

across the north Ayilari range. c:  B-B’ section passing through the southern Ayilari range. 

Some units were not clearly seen and are postulated by question mark. Movements on the 

southern strand of the KFZ are postulated from satellite imagery, and large scale 

reconstruction as postulated in Lacassin et al. 2004. 

 

Figure 4: Five geological sections on the northern side of the north Ayilari range, west of 

Shiquanhe (location on Figure 2). Samples quoted were dated with Ar-Ar, U-Th-He, fission 
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tracks (this study), or U-Th-Pb techniques (shaded samples [Valli, 2005; Valli et al., 

submitted]). 

 

Figure 5: Structural data from the North Ayilari range (lower hemisphere Schmidt 

diagrams). Great circles are foliation planes; dashed great circles represent C (shear) planes; 

and arrows show the direction of lineations with the arrow pointing towards the hanging wall 

motion. Extreme and average values of lineation stikes are indicated. Left and right columns 

correspond to greenschist and higher grade metamorphic facies, respectively. 

 

Figure 6: Characteristics of deformation along the Karakorum shear zone. a: Steep foliation 

with an horizontal lineation made of stretched feldspar, quartz and mica in a leucocratic vein 

(section 2, Figure 2). The hammer is for scale. b: Steep foliation (S) transposed along the 

shear (C) planes in two-mica gneisses close to the frontal part of valley (section 3, Figure 2). 

The bag gives scale. c: dextrally sheared leucogranitoid seen from above (section 3, Figure 

2). The compass is for scale. d: Two-mica gneiss exhibiting dextrally sheared sigmoidal 

feldspars (section 2, Figure 2). View from above. 

 

Figure 7: Optical photomicrographs under cross-polarized light of feldspar microstructures. 

a: feldspar porphyroclast surrounded by a mantle of re-crystallized feldspars (arrows, sample 

C38). b: Well-developed myrmekite (Myr.) on a K-feldspar grain (K-fs) boundary (arrows, 

sample P32). c: bending of feldspar twin lamellae by dislocation glide (arrows, sample C29). 

 

Figure 8: Optical photomicrographs under cross polarized light of quartz microstructures.  a 

: relics of large old quartz grains with undulose extinction and elongate subgrains passing 

laterally into domains of small grains dynamically re-crystallized, probably by subgrain 

rotation re-crystallization (sample P32). b. Polycrystalline quartz with irregular grain 

boundaries formed in response to grain boundary migration re-crystallisation (sample P32). 

 

Figure 9: Typical 40Ar/39Ar results from the north Ayilari range. Data are summarized in 

Table 3, 4, 5, and samples located on Figure 4. All other samples are shown in appendix. 

Left: conventional age spectra; double arrows represent age plateaus or pseudoplateaus (see 
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text for explanation on the calculation and use of these terms). Right: Inverse isochrones for 

which each step is plotted with the corresponding error bars and step number. The regression 

line corresponds to the calculated age and 40Ar/39Ari. Step numbers in shaded boxes were not 

used for calculations. A: K-feldspar (sample L90). Superimposed curves represent synthetic 

age spectra resulting from thermal modeling at 2σ confidence level. B: muscovite (sample 

C43). C: biotite (sample P56). Data from other samples, and K/Ca, Cl/K plots are reported in 

the appendix: A (K-feldspar), B (muscovite), C (Biotite).  

 

Figure 10: Time-temperature diagrams showing biotite, muscovite, and K-feldspar 40Ar/39Ar 

age estimates, together with Fission Track (FT) and U-Th-He results on apatite. Ages are 

systematically ~2-3 Ma older in the northernmost valley (section 1) than in the other sections 

(2, 3, 4, 5). This implies a different time-temperature evolution between the northernmost 

section and the others, and consequently, data from this valley are plotted separately. A, B: 

northern most field section (1, location on Figure 2). C, D: other sections (2, 3, 4, 5, 6). Age 

uncertainties for the 40Ar/39Ar analysis include the entire range of isochron and plateau age 

estimates each quoted at the 2σ confidence level; fission track and U-Th/He age estimates at 

2σ confidence level (see text for details). Continuous lines represent K-feldspar (A, C) and 

apatite cooling models (A, B, see text for details). Thick and fine curves are respectively the 

95 and 65% confidence intervals of the best-fit cooling history (K-feldspar modelling has 

tested various solutions by a Monte Carlo algorithm to assess the variance of the resulting 

best fits). A, C: Note the inconsistency between most K-feldspar thermal models and mica 

age estimates. B, D: Preferred Time-Temperature history for the Ayilari range (see text for 

explanations). The cooling history is most likely bounded by the black-dashed lines, which 

were drawn by using a minimum of straight segments passing through all the data at 2σ 

confidence level. 

 

Figure 11: Cooling histories for the Ayilari and Pangong Ranges. Dashed lines represent the 

cooling histories. Mag, magmatic;;Zr, zircon; Mz, monazite. Ages are plotted with a 2σ 

confidence level. A. North Ayilari range. U-Th-Pb data constraining the high temperature 

part of the diagram are from the work of Valli et al. [submitted], whereas the medium to low 

temperature evolution is documented in this study (Figure 10). The zircons and monazites 
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are taken as constraining the crystallization of the syntectonic granites at ca 750-800°C 

[Clemens, 2003] The timing of onset of the KKF in the Ayilari range [Lacassin et al., 2004] 

and the onset of normal faulting (this study) are shown. B. Pangong Range. Data compiled 

from the literature and discussed in the text. Samples 129, 129A, 130, 135, 135A, 136, 212, 

215, and 217 are from the work of [Dunlap et al., 1998]; the sample “Rolland” is from 

[Rolland, 2000; 2002; Rolland and Pecher, 2001]; the samples P1, P8, P11, P37 and P38 are 

from [Phillips et al., 2004]; and the samples 450, 022, and SC are from [Searle et al., 1998]. 

Data from U/Pb analysis have been plotted accordingly to the published ages with  

uncertainties as discussed in the original papers, the temperature of crystallization being 

arbitrarily chosen between 650°C and 800°C as postulated in Valli et al. (submitted). Data 

from K-feldspar analysis were treated in a similar way to those from the present study: from 

the original data low temperature (LT) and high temperature (HT) pseudoplateaus were 

appreciated and are plotted with a range of closure temperature of 150-300°C and 300-400°C 

respectively (see text for discussion). Ages are plotted with a 2σ confidence level. 

 

Figure 12: Progressive offset along the Karakorum fault as can be postulated from the 

entrenchment of the Indus and Shyok rivers in the Ayilari range at ~14 Ma (see text for 

explanations). A. Arrows represent possible right-lateral apparent offset of the Indus river 

across the Karakorum fault. B. and C. show the corresponding hypothetical reconstructions 

at ~14 Ma if the Shiwuanhe basin is taken as the upstream of the Indus or Shyok river at that 

time. In the latter case the upstream of the Indus had to be somewhere south near Mt Kailas 

and could be at the origin of the deposits of the Kailas molasses. The Landsat 7 image is 

projected in UTM 44 using the ellipsoid WGS84. 
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Tables:  

 

Table 1: Mineralogical composition and grain size of the dated samples. Percentages are 

estimated from thin section with an optical microscope, crystal sizes are quoted in 

centimeter. Abbreviations are from Kretz [1983] (Tit: Titanite) 

 

Table 2: Apatite (U-Th)/He ages. * Analytical uncertainty. Ages corrected for α ejection 

following method of Farley et al. [1996]. Analytical procedure after House et al. [2000]. r.: 

radius, l.: length. 

 

Table 3: K-feldspar 40Ar/39Ar results. LT, low furnace temperature (400-700°C) age; HT, 

high furnace temperature (1000-1400°C); SMA, Simple Mean Age. Errors are quoted at 2σ 

confidence level. 

 

Table 4: Muscovite 40Ar/39Ar results. Errors are quoted at 2σ confidence level. 

 

Table 5: Biotite 40Ar/39Ar results. Errors are quoted at 2σ confidence level. 

 

Table 6: Apatite fission track results. The pooled age is reported for all samples as they pass 

the chi2 test; error is one sigma, calculated using the zeta calibration method [Hurford and 

Green, 1983] with zeta of 369.6 ±7.6 (E. Sobel, unpublished). No Xls* is the number of 

individual crystals dated. Rho-S, Rho-I, and Rho-D are the spontaneous, induced, and 

dosimetry track density measured (tracks/cm2). NS and NI are the number of spontaneous 

and induced tracks counted. P(chi)2 (%) is the chi-square probability [Galbraith, 1981; 

Green, 1981]. Sd and n are the standard deviation of the track lengths and number of 

measurements, respectively. Values greater than 5% are considered to pass this test and 

represent a single population of ages. #ND is the number of tracks counted in determining 

Rho-D; CN5 dosimetry glass used. 

 

Appendix A: K-feldspar 40Ar/39Ar data from the north Ayilari range. Results are 

summarized in Table 3, and samples located on Figure 4. Left: conventional age spectra. 
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Curves represent thermal modeling at 2σ confidence level. Right: Inverse isochrones for 

which each step is plotted with the corresponding error bars and step number, the drawn 

regression line corresponds to the calculated age and 40Ar/39Ari. Step numbers in shaded 

boxes were not used for calculations. Bottom: K/Ca and Cl/K plots. 

 

Appendix B: Muscovite 40Ar/39Ar data from the north Ayilari range. Results are summarized 

in Table 4, and samples located on Figure 4. Same caption as Appendix A.  

 

Appendix C: Biotite 40Ar/39Ar data from the north Ayilari range. Results are summarized in 

Table 5, and samples located on Figure 4. Same caption as Appendix A. 
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Table 1
Minerals

Samples     .
Quartz Feldspar Muscovite Biotite Chl Grt Tita

nite Ox Ep Ap Minerals 
dated

Temperature of 
deformation (°C)

C27 25 %, < 0,4 35 %, < 1,5 10 %, < 0,01 - 10% - - 10% 10% - Kfs From >600-400 to <250
C30 40%, < 0,5 35 %, < 5 20 %, < 5 - 1% 5 %, <1 - <1% <1% - Kfs, Ms From >600-400 to <250
C31 50 %, < 0,5 40 %, < 1,5 10 %, < 2 < 1 % < 1 % - - - - - Kfs, Ms From >600-400 to <250
C38 50 %, < 0,5 35 %, < 2 15 %, < 1 - <1 % - - - - - Kfs, Ms From >600-400 to <250

C43 30%, 0.1 - 1 55%, 0.1 - 
15 10%, < 5 3%, < 5 2% - - <1% - - Kfs, Ms, Bt From >600-400 to <250

L86 35%, ~1 40%, 1 - 5 20%, ~1 5%, ~1 <1% - - <1% - - Ms no deformation

L87 30 %, < 0.5 45 %, 0.5 - 
10 10 %, ~0.5 15 %, ~0.5 < 1% - - < 1 % - < 1% Ap no deformation

L90 40%, ~1 35%, 1 - 5 15%, ~1 5%, ~1 <1% - - <1% - - Kfs, Ms From >600-400 to <250
L91 40 %, < 0,5 50 %, < 1,5 8 %, < 1 1% 1% - - < 1 % - - Kfs, Ms, Bt From >600-400 to <250
P18 20%, < 0.1 40%, < 10 20%, < 1 15%, < 1 - - - < 1 % - < 1% Ap From >600-400 to <250
P32 30 %, < 0,5 50 %, < 10 10 %, < 0,01 5% 10% - 1% 3% 1% < 1% Kfs, Bt, Ap From >600-400 to <250
P56 30 %, < 1 45 %, < 3 5 %, < 0,01 15% 5% - - < 1 % - - Bt no deformation
P57 30 %, < 1 45 %, < 3 5 %, < 0,01 15% 5% - - < 1 % - - Kfs, Bt no deformation



Table 2
mass 
(µg)

mean r. 
(µm)

mean l. 
(µm)

U 
(ppm)

Th 
(ppm)

Raw age 
(Ma)

He 
(nmol/g

)
Ft Corrected 

Age (Ma)
Incert. 
(1σ)

K3P32A 41.1 81.4 282.8 10 24.04 3.1 0.26 0.82 3.7 0.1 *
K3P32B 34.6 69.3 336.4 12.91 32.48 3.7 0.42 0.8 4.7 0.1 *
K3P32C 17.2 56.4 250.7 14.43 35.49 3.6 0.45 0.75 4.8 0.2 *

Mean 4.4 0.4



Table 3

Number Location Age. Ma Steps Age. Ma 40Ar/36Ari MSWD Steps

Section 1. 
frontal part L90 32º23'45.8"N 

79º33'30.0"E Plateau LT:13.2 ± 0.4 4 steps/26 (2-
5) 10% of gas 12.7 ± 0.2 568 ± 25 0.6 14 steps/26 (2-15) 

31% of gas

SMA HT: 21.2 ± 1.0
13 steps/26 

(13-26) 68% 
of gas

- - - -

Section 1. 
frontal part L91 32º28'46.9"N 

79º36'45.0"E Plateau LT: 12.1 ± 0.3 8 steps/26 (2-
9) 19% of gas 11.9 ± 0.4 719 ± 120 0.6 14 steps/26 (2-15) 

34% of gas

SMA HT: 15.7 ± 0.4
4steps/26 (21-

25) 36% of 
gas

- - - -

Section 2. 
frontal part C38 32º25'01.1"N 

79º42'09.4"E Plateau LT: 9.3 ± 0.3 4 steps/25 (2-
5) 9% of gas 9.1 ± 0.4 540 ± 80 4.1 12 steps/25 (2-13) 

21% of gas

SMA HT: 18.4 ± 1.3
4 steps/25 (22-

25) 44% of 
gas

17.0 ± 1.0 420 ± 90 5.1 4 steps/25 (22-25) 
44% of gas

Section 3. 
frontal part C27 32º23'28.9"N 

79º43'35."E Plateau LT: 9.0 ± 0.3 4 steps/26 (2-
5) 10% of gas 8.8 ± 0.4 533 ± 34 3.5 13 steps/26 (2-14) 

24% of gas

HT at highest 
step 20.8 ± 0.3 - - - - -

Section 3. 
frontal part C30 32º23'28.9"N 

79º43'35.0"E Plateau LT: 9.0 ± 0.3 4 steps/26 (2-
5) 7% of gas 8.7 ± 0.3 600 ± 54 1.9 12 steps/26 (2-13) 

18% of gas

Plateau HT: 15.3 ± 0.6
3 steps/26 (23-

25) 44% of 
gas

- - - -

Section 3. ~ 
500 m from 

front
C31 32º23'17.6"N 

79º43'25.3"E Plateau LT: 9.7 ± 0.2 6 steps/26 (2-
7) 15% of gas 8.8 ± 0.8 807 ± 200 10 14 steps/26 (2-15) 

30% of gas

SMA HT: 18.7± 0.4
3 steps/26 (23-

25) 37% of 
gas

- - - -

Section 4. ~ 
3.5 km from 

front
C43 32º19'22.7"N 

79º44'25.3"E Plateau LT: 10.1 ± 0.2 4 steps/26 (2-
5) 11% of gas 9.8 ± 0.4 606 ± 44 2.1 14 steps/26 (2-15) 

29% of gas

Plateau HT: 16.3 ± 0.6
3 steps/26 (24-

26) 35% of 
gas

- - - -

Outcrop 5 P56 32º08'14.7"N 
79º56'12.9"E SMA LT: 7.3 ± 1.0

11 steps/27 (4-
14) 18% of 

gas
- - - -

SMA HT: ≥ 16 - - - - -

Outcrop 5 P57 32º08'14.7"N 
79º56'12.9"E SMA LT: 8.3 ± 1.0 6 steps/31 (3-

8) 9% of gas 8.0 ± 1.0 358 ± 60 30 18 steps/31 (2-19) 
35% of gas

SMA HT: ≥ 16 - - - - -
Section 6. 
frontal part P32 32º01'38.4"N 

80º00'38.2"E Plateau LT: 9.0 ± 1.4 4 steps/30 (2-
5) 6% of gas 8.7 ± 0.8 295 ± 29 2.8 4 steps/30 (2-5) 6% 

of gas

Section/site Sample Plateau Age Inverse Isochron Age



Table 4
Total Fusion 

Age
Number Location Age, Ma Steps Age, Ma 40Ar/36Ari MSWD Steps

Section 1. 
frontal part L91 32º28'46.9"N 

79º36'45.0"E Plateau 14.7 ± 0.1 4 steps/8 (1-4) 
85% of gas 14.7 ± 0.4 305 ± 14 5.3 8 steps/8 (1-8) 

100% of gas 14.8 ± 0.2

Section 1. 
frontal part L90 32º23'45.8"N 

79º33'30.0"E SMA 14.5 ± 0.6 7 steps/9 (1-7) 
98% of gas 14.5 ± 0.4 308 ± 40 1.6 6 steps/8 (1-6) 

98% of gas 14.7 ± 0.2

Section 1. ~10 
km from front L86 32º23'45.8"N 

79º33'30.0"E Plateau 15.4 ± 0.5 5 steps/7 (1-5) 
98% of gas 15.4 ± 0.4 325 ± 34 2.7 7 steps/7 

100% of gas 15.4 ± 0.2

Section 2. 
frontal part C38 32º25'01.1"N 

79º42'09.4"E SMA 12.6 ± 0.2 6 steps/9 (1-6) 
98% of gas 12.7 ± 0.2 297 ± 4 1.0 8 steps/8 

100% of gas 12.6 ± 0.1

Section 3. 
frontal part C30 32º23'28.9"N 

79º43'35.0"E Plateau 12.0 ± 0.4 5 steps/8 (2-6) 
93% of gas 12.2 ± 0.2 241 ± 24 0.3 6 steps/8 (1-6) 

93% of gas 11.9 ± 0.1

Section 3. ~ 
500 m from 

front
C31 32º23'17.6"N 

79º43'25.3"E Plateau 12.1 ± 0.2 4 steps/7 (2-5) 
86% of gas 12.0 ± 0.4 332 ± 44 3 5 steps/7 (1-5) 

92% of gas 12.4 ± 0.3

Section 4. ~ 
3.5 km from 

front
C43 32º19'22.7"N 

79º44'25.3"E Plateau 12.0 ± 0.4 4 steps/6 (1-4) 
97% of gas 12.0 ± 0.4 304 ± 22 0.8 4 steps/6 (1-4) 

97% of gas 12.0 ± 0.2

Section/site Sample Plateau Age Inverse Isochron Age



Table 5
Total Fusion 

Age
Number Location Age, Ma Steps Age, Ma 40Ar/36Ari MSWD Steps

Section 1. 
frontal part L91 32º28'46.9"N 

79º36'45.0"E Plateau 14.2 ± 0.3 4 steps/7 (1-4) 
98% of gas 14.3 ± 0.2 299 ± 28 1.1 5 steps/6 (1-5) 

98% of gas 14.2 ± 0.4

Section 4. ~ 
3.5 km from 

front
C43 32º19'22.7"N 

79º44'25.3"E Plateau 11.6 ± 0.1 6 steps/9 (1-6) 
98% of gas 12 ± 0.2 250± 28 0.9 6 steps/9 (1-

6)99% of gas 11.6 ± 0.2

Outcrop 5 P56 32º08'14.7"N 
79º56'12.9"E Plateau 11.8 ± 0.1 7 steps/9 (1-7) 

98% of gas 11.8 ± 0.2 311 ± 86 1.3 5 steps/9 (1-5) 
98% of gas 11.9 ± 0.2

Outcrop 5 P57 32º08'14.7"N 
79º56'12.9"E Plateau 11.9 ± 0.1 7 steps/10 (1-

7) 94% of gas 11.9 ± 0.2 316 ± 60 3.3 7 steps/10 (1-
7) 94% of gas 12.2 ± 0.2

Section 6. 
frontal part P32 32º01'38.4"N 

80º00'38.2"E Plateau 10.9 ± 0.2 3 steps/10 (2-
4) 40% of gas 11.0 ± 0.2 311 ± 8 0.7 4 steps/10 (1-

4) 99% of gas 11.1 ± 0.1

Section/site Sample Plateau Age Inverse Isochron Age



Table 6
Pooled

Sample Elevation Location Rho-S NS Rho-I NI Rho-D #ND P(chi)2 Age  ± 1 s U length ± 2 σ SD n
number (m) (x104) (x106) (x106) (%) (Ma) ppm

P32 4700 32º01'38.4"N 80º00'38.2"E 0.0507 82 2.274 3680 1.3272 5291 100 5.5 0.6 21 0
L87 5230 32º23'45.8"N 79º33'30.0"E 0.1600 350 4.569 9995 1.3194 5291 70 8.5 0.5 43 14.25 0.42 1.07 25
P18 4500 32º23'28.9"N 79º43'35.0"E 0.1023 228 4.548 10137 1.3038 5291 54 5.4 0.4 44 13.05 2.00 2.65 7

Spontaneous Induced Dosimeter




