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69134 Écully cedex, France

29/8/2006

Abstract. The three-dimensional boundary layer produced by a disk rotating in
otherwise still fluid is analytically investigated and its stability properties are sys-
tematically established. Using a local parallel flow approximation, finite-amplitude
primary travelling vortices governed by a nonlinear dispersion relation are obtained.
A secondary stability analysis yields the secondary linear dispersion relation and
the secondary absolute growth rate, which determines the long term stability of
the primary nonlinear vortex-trains. By using these local characteristics, spatially
developing global patterns of crossflow vortices are derived by employing asymptotic
techniques. This approach accounts for both the self-sustained behaviour, exhibiting
a sharp transition from laminar to turbulent flow, and the spatial response to ex-
ternal harmonic forcing, for which onset of nonlinearity and transition both depend
on the forcing parameters. Based on these results, an open-loop control method is
described in detail. Its aim is not to suppress the primary fluctuations but rather to
enhance them and to tune them to externally imposed frequency and modenumber,
and thereby to delay onset of secondary absolute instability and transition. It is
shown that transition can be delayed by more than 100 boundary layer units.

Keywords: absolute instabilities, boundary layers, control, rotating disk

1. Introduction

The von Kármán [37] boundary layer on an infinite disk rotating in
otherwise still fluid is certainly a rather crude and academic representa-
tion of centrifugal pumps, fans, turbomachinery elements, or backwards
swept aircraft wings. However, despite its simplicity, it displays most of
the features observed in situations of higher complexity or with more
elaborate geometries. All these types of boundary layers display similar
three-dimensional velocity profiles, are subject to inviscid crossflow in-
stabilities and rapidly undergo transition to turbulent flow [34, 36, 35].
Thus, ever since the pioneering work of von Kármán [37] and Gregory,
Stuart and Walker [13], the rotating disk flow has served as the archety-
pal three-dimensional boundary layer, and its study has lead to many
results of considerable practical importance, e.g., to the aeronautics
industry.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.
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In the rotating-disk flow, the magnitude of the local boundary layer
velocity profiles increases linearly with radial distance. As a result,
the nature of the local stability features successively displays the three
well-known régimes from the disk axis outwards: stability, convective
instability, absolute instability (for theoretical definitions see [16, 15]).
Lingwood’s theoretical local linear stability analyses [19] have revealed
that absolute instability first occurs at a critical radius closely corre-
sponding to the experimentally observed transition from laminar to
turbulent flow. Her findings suggested that the onset of absolute in-
stability is the driving mechanism responsible for the self-sustained
time-dependent flow. Indeed, in stable or convectively unstable systems,
perturbations either decay or are carried away by basic advection so
that, at given position, the flow returns to its unpertubed state in the
long term. It is only when the instability is absolute that an initial
disturbance may grow in time at fixed spatial position and thus lead
to a permanently perturbed flow. While this scenario for the behaviour
fo the rotating-disk flow seems to be confirmed by most experimen-
tal studies (including Lingwood’s [20]), it does not however take into
account two major effects: spatial inhomogeneity and nonlinearity.

Global stability analyses of spatially inhomogenous systems gov-
erned by strictly linear dynamics are by now fairly complete. For the
linear complex Ginzburg–Landau equation with spatially varying coef-
ficients, Chomaz et al. [5] demonstrated that the complex frequency of a
linear global mode is determined by a saddle point condition applied to
the local linear dispersion relation. According to Monkewitz et al. [22],
the same criterion also holds for the Navier–Stokes equations linearized
about an arbitrary slowly varying basic flow. In this linear setting, local
absolute instability is a necessary but not sufficient condition for global
instability: in general, the existence of unstable global modes requires
a finite range of local absolute instability. The question whether or
not the local absolute instability in the rotating-disk boundary layer
is strong enough to lead to unstable linear global modes has recently
been addressed via direct numerical simulations [9] (see also [10] in
this volume). These simulations have shown that the local absolute
instability of this flow does not produce a linear amplified global mode
and is only associated with a transient temporal growth; a result also in
agreement with analytical developments [12, 24]. These findings seem
to be further supported by recent experimental work [23], carefully
designed to remain within the linear régime.

Thus it appears that the self-sustained transition experimentally
observed in the rotating-disk flow cannot be explained within linear
hydrodynamic stability theory applied to spatially developing flows: a
fully nonlinear approach is thus required. The study of finite-amplitude
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states covering spatially inhomogenous systems [6, 29, 7, 33, 8, 32, 30]
has shown that there exists a variety of nonlinear global modes. The
main result [32] of interest here is that now local absolute instability is
a necessary and sufficient condition: nonlinear global modes exist how-
ever small the absolutely unstable domain. In this context, nonlinear
global modes may exist in globally linearly stable media and their onset
occurs via a saddle-node bifurcation [32].

Thus Lingwood’s scenario can be restored by taking into account
both spatial inhomogeneity and nonlinearity: the rotating-disk bound-
ary layer is locally absolutely unstable [19], globally linearly stable [9]
and globally nonlinearly unstable [27].

The discrepancy between the global linear and nonlinear dynamics
is, among others, due to the important radial outflow and the large
convectively unstable region upstream of the absolutely unstable re-
gion. Thus even small external perturbations may undergo a strong
transient amplification and trigger nonlinear dynamics. When external
perturbations are switched off, such an externally forced perturbed
state would decay in the long term according to linear theory, but
can survive forever due to nonlinear interactions if finite amplitudes
are reached. Most experimental studies [13, 18, 38, 17] have focused
on perturbations that are fixed with respect to the disk, generated by
roughness elements and permanently applied. Two already mentioned
studies [20, 23] specifically address the impulse response and the related
issue of self-sustained disturbances. In these two experiments, a short
air pulse is applied either through a hole in the disk surface once every
disk rotation [20] or from above the boundary layer at independent
timings [23]. So far the competition between self-sustained and exter-
nally forced dynamics has not been investigated in terms of complete
hydrodynamic linear and nonlinear stability analyses.

The present investigation outlines a new control method where a
carefully-designed periodic forcing is continuously applied in the con-
vectively unstable region so as to modify the self-sustained nonlinear
dynamics and to delay onset of transition.

This contribution first reviews and extends recent results from [25,
26, 27, 28], and then applies them to control the flow and delay tran-
sition beyond a radius at which the unforced flow would have become
transitional. By systematically computing primary (Sect. 3) and sec-
ondary (Sect. 4) stability characteristics, and using asymptotic devel-
opments (Sect. 5), the naturally selected flow dynamics is explained
(Sect. 6) and the spatial response to localized harmonic forcing estab-
lished (Sect. 7). Based on these results, a new open-loop control method
to delay transition is described (Sect. 8).
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2. Basic flow structure

The infinite disk problem lacks a characteristic length scale and thus
allows the use of non-dimensional variables based on disk rotation
rate, fluid viscosity and density, so that the flow does not depend
on any control parameter. Throughout this paper an inertial frame
of reference is used with r, θ and z denoting radial, azimuthal and ax-
ial coordinates respectively. The time-independent axisymmetric basic
flow is then given by von Kármán’s [37] exact similarity solution to the
Navier–Stokes equations as

U(r, z) ≡





rU(z)
rV (z)
W (z)



 and P (z), (1)

where rU , rV and W are the non-dimensional radial, azimuthal and
axial velocity components, and P is the pressure.

The boundary layer thickness is constant, of order unity in non-
dimensional coordinates. As a result, when investigating features far
from the disk axis and near a given radial location R≫ 1, the assump-
tion of slow radial development is appropriate and local properties at
given r = R are derived by freezing the radial dependence of the basic
flow (1) and studying the corresponding homogenous three-dimensional
flow U(z;R) ≡ (RU(z), RV (z),W (z)). The value of R then appears as
a control parameter rather than a coordinate and plays the rôle of an
effective local Reynolds number.

3. Local linear and nonlinear travelling vortices

In subsequent developments, the total instantaneous flow field prevail-
ing at a given location R is separated into basic and perturbation
quantities according to

{

U(z;R) + u(r, θ, z, t),
P (z) + p(r, θ, z, t).

(2)

Local linear instability properties are then derived by assuming infi-
nitesimally small velocity and pressure disturbances, written in normal-
mode form as

{

u(r, θ, z, t) = ul(z;α, β;R) exp i(αr + βθ − ωt),
p(r, θ, z, t) = pl(z;α, β;R) exp i(αr + βθ − ωt),

(3)

where α is a complex radial wavenumber, β an integer azimuthal mode-
number, ω a complex angular frequency and ul, pl the associated com-
plex velocity and pressure components. Substitution of (3) into the
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linearized version of the local governing equations yields an eigenvalue
problem in the z-direction. From it, the local linear dispersion relation

ω = Ωl(α, β;R), (4)

together with the eigenfunctions ul(z;α, β;R) and pl(z;α, β;R) are
routinely derived. Complex values of Ωl computed in the (α, β)-plane
for R = 450 and R = 550 are shown in figure 1(a1,a2,b1,b2).

In the context of open flows [16, 15], a crucial feature is the complex
absolute frequency ω0 and the associated absolute wavenumber α0,
defined by a vanishing group velocity condition [4, 2] as

ω0(β;R) = Ωl(α0, β;R) with
∂Ωl

∂α
(α0, β;R) = 0. (5)

The linear instability properties of the rotating-disk boundary layer
are well known [19, 21]. Local growth rates increase with radial distance
away from the disk axis: the central region R < Rsc ≃ 285 is linearly
stable, convective instability prevails for Rsc < R < Rca ≃ 507, and
absolute instability in the outer region R > Rca. Transition from the
convectively unstable (cu) to the absolutely unstable (au) domains
occurs at Rca for an azimuthal modenumber of βca and with a marginal
real absolute frequency of ωca

0 , where

ωca
0 ≃ 50.5, βca = 68, Rca ≃ 507. (6)

In regions of linear instability, the three-dimensional boundary layer
admits nonlinearly saturated travelling crossflow vortices, governed by
the complete nonlinear equations. The finite-amplitude perturbation
velocity and pressure fields of these nonlinear wave solutions are of the
form

{

u(r, θ, z, t) = unl(z, αr + βθ − ωt;α, β;R),
p(r, θ, z, t) = pnl(z, αr + βθ − ωt;α, β;R),

(7)

where the functions unl and pnl are 2π-periodic in their second variable
φ ≡ αr + βθ − ωt with α and ω now real quantities. After expanding
unl and pnl as Fourier series in φ and substituting them into the local
nonlinear governing equations, these finite-amplitude spiral waves are
numerically obtained by a Newton–Raphson search procedure [26]. The
real frequency ω of the saturated waves is then determined by the local
nonlinear dispersion relation

ω = Ωnl(α, β;R). (8)

Values of Ωnl, computed in the domain of the (α, β)-plane where non-
linear travelling vortices exist and delimited by Ωl

i = 0, are shown in
figure 1 (a3) and (b3) for R = 450 and R = 550 respectively.
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Figure 1. Local linear and nonlinear dispersion relations in (α, β)-plane for
(a) R = 450 and (b) R = 550. (a1,b1) Isocontours of linear real frequency Ωl

r.
(a2,b2) Isocontours of linear temporal growth rate Ωl

i. (a3,b3) Isocontours of non-
linear frequency Ωnl, in subregion of (α, β)-plane where saturated wave solutions
exist.

4. Secondary stability analyses

In order to investigate the stability of the above primary finite-amplitude
crossflow vortices (7) with respect to secondary perturbations, a sec-
ondary stability analysis needs to be carried out. For nonlinear trav-
elling waves of wavenumber α, modenumber β and frequency ω at a
radial station R, the total flow fields are then decomposed as

{

U(z;R) + unl(z, αr + βθ − ωt;α, β;R) + û(r, θ, z, t),
P (z) + pnl(z, αr + βθ − ωt;α, β;R) + p̂(r, θ, z, t),

(9)
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where U+unl, P+pnl represent the new basic flow solution which is per-
turbed by û, p̂. Assuming infinitesimally small secondary velocity and
pressure disturbances and using Floquet theory [14], the perturbation
quantities are written in normal-mode form as
{

û(r, θ, z, t) = ûl(z, αr + βθ − ωt; α̂, β̂;α, β;R) exp i(α̂r + β̂θ − ω̂t),

p̂(r, θ, z, t) = p̂l(z, αr + βθ − ωt; α̂, β̂;α, β;R) exp i(α̂r + β̂θ − ω̂t),

(10)
where α̂ is the secondary complex radial wavenumber, β̂ is the sec-
ondary integer azimuthal modenumber and ω̂ is the associated complex
secondary frequency. The eigenfunctions ûl and p̂l have the same pe-
riodicity as the primary wave, i.e., are 2π-periodic in the real phase
variable φ ≡ αr + βθ − ωt, so that a Fourier series in φ is again
appropriate. Two-dimensional eigenproblems in the variables z and φ

are then obtained after substitution of (9) with (10) into the local
governing equations and linearization about the new basic flow (see [26]
for numerical details). For each primary nonlinear wave characterized
by the real parameters α, β and R and for each combination of α̂ and
β̂, the solution of the corresponding eigenproblem yields the secondary
linear dispersion relation

ω̂ = Ω̂l(α̂, β̂;α, β;R) (11)

together with the associated eigenfunctions ûl and p̂l.
Whether or not the primary finite-amplitude waves are permanently

affected by a secondary disturbance depends on the absolute or convec-
tive nature of the secondary instability. Indeed, in the case of secondary
convective instability an external impulse only triggers a transient per-
turbation that is eventually carried away radially outwards, while, for
secondary absolute instability, perturbations are exponentially ampli-
fied at fixed radial position.

Following Brevdo & Bridges [3], the secondary absolute frequency ω̂0

and absolute radial wavenumber α̂0 for periodic wave solutions are
obtained by a saddle point condition in the complex α̂-plane

ω̂0(β̂;α, β;R) = Ω̂l(α̂0, β̂;α, β;R) where
∂Ω̂l

∂α̂
(α̂0, β̂;α, β;R) = 0,

(12)
which is formally analogous to the criterion of Briggs [4] and Bers [2]
established for spatially homogenous systems.

The stability of a system of periodic nonlinear crossflow vortices
corresponding to given values α, β and R depends on the maximum
secondary absolute growth rate

ω̂max
0,i (α, β;R) ≡ max

β̂

Im ω̂0(β̂;α, β;R). (13)
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Thus it is the sign of this quantity which determines whether the
primary spiral vortices are stable (ω̂max

0,i < 0) or not (ω̂max
0,i > 0) in

the long term with respect to secondary perturbations.
Figure 2 shows isocontours (thin solid curves) of ω̂max

0,i ≥ 0 computed
in the (α, β)-plane for R = 500 and R = 550. Nonlinear crossflow
vortices exist in the region delimited by the (thick solid) marginal curve
Ωl

i(α, β;R) = 0, and their nonlinear frequencies ω = Ωnl(α, β;R) are
indicated by dashed isolines. The symbols in these plots correspond to
crossflow vortices at particular values of β and ω and will be used in
Sect. 8.

5. Spatially developing pattern of crossflow vortices

The analyses described in the previous sections entirely characterize
the local properties of the rotating-disk boundary layer: primary lin-
ear stability, primary nonlinear saturated waves, secondary stability of
these finite-amplitude periodic vortices. Based on these results, we are
now in a position to derive a global structure of spiral vortices devel-
oping over an extended radial domain and to express them in the form
of wavetrains that are slowly modulated in the radial direction. This
approach is set on a firm theoretical basis by using wkbj asymptotic
techniques [1, Chap. 10].

In the rotating disk flow, the region of particular interest is the
neighbourhood of Rca ≃ 507 where onset of primary absolute insta-
bility first occurs. This characteristic radius is large compared to the
boundary layer thickness, hence fulfilling the assumption of slow radial
development. It is thus legitimate to use

ǫ ≡
1

Rca
≪ 1 (14)

as a small parameter in the asymptotic formulation and to introduce
the slow radial coordinate

R̄ = ǫr. (15)

In this multiple-scales approach, the fast r-scale accounts for the oscilla-
tory behaviour of the spatially extended wavetrain, while its amplitude
and local structure are slowly modulated on the R̄-scale so as to adjust
to the radial evolution of the underlying basic flow. In classical wkbj

fashion, the flow fields are expanded in powers of ǫ and written as

{

u(r, θ, z, t) = u(z, φ; R̄) = u0+ ǫu1+ ǫ2u2+ . . . ,

p(r, θ, z, t) = p(z, φ; R̄) = p0+ ǫp1+ ǫ2p2+ . . . ,
(16)
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Figure 2. Isolines (thin solid curves) of nonnegative maximum secondary absolute
growth rate ω̂max

0,i (α, β; R) for (a) R = 500 and (b) R = 550. Nonlinear vortex
trains exist to the left of the marginal curve Ωl

i(α, β; R) = 0 (thick solid line)
with frequencies corresponding to the dashed isolines. Symbols refer to crossflow
vortices at (ω, β) = (ωca

0 , βca) (thick dot), (ω, β) = (65, 90), (45, 50) (diamonds),
and (ω, β) = (65, 80), (50, 50), (50, 40), (45, 35), (35, 20) (triangles).

with 2π-periodicity in the fast phase function φ(r, θ, t) whereas the
R̄-dependence accounts for the slow radial development. For regular
spatially developing global solutions, the local frequency ω = −∂tφ

and local azimuthal modenumber β = ∂θφ necessarily remain constant
in the entire system, while the local radial wavenumber α(R̄) = ∂rφ

varies slowly with radial distance, leading to a fast phase function of
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the form

φ =

(

1

ǫ

∫ R̄

α(ρ̄)dρ̄

)

+ βθ − ωt. (17)

After substitution of the global solution (16) with (17) into the
Navier–Stokes equations, the local governing equations are recovered
at leading order in the expansion parameter ǫ. At the local level, R̄
solely acts as an external control parameter, and for each value of R̄
the leading-order solution, among all possible waves, is the one that
matches the overall frequency ω and modenumber β, as derived from
the relevant dispersion relation. Note that in the previous sections,
local properties were derived with the local Reynolds number R as
control parameter. When carrying out the present asymptotic analysis,
however, it is more appropriate to rescale this parameter as R̄ = ǫR

and to consider the local properties as functions of the slow R̄ instead.
Two different situations arise depending on the magnitude of the

perturbation fields: in small-amplitude regions the wave pattern is de-
scribed by the linearized equations while the fully nonlinear equations
are needed in regions of finite amplitude vortex-trains.

Small-amplitude regions are governed by the linear dispersion rela-
tion (4). The radial wavenumber α(R̄) in the rapidly varying phase (17)
is then complex, accounting for both wavelength and growth rate in
the radial direction. When solving (4) for the wavenumber α with
prescribed β and ω, two complex spatial branches αl±(R̄;ω, β) are
obtained. The separation of these into + and − branches is dictated ac-
cording to classical causality arguments [4, 2] and determined whether
they correspond to a downstream or upstream spatial response to lo-
calized harmonic forcing. The leading-order wkbj solution (16,17) cor-
responding to a branch αl(R̄;ω, β) takes the form

u ∼ A0(R̄)ul
(

z;αl(R̄;ω, β), β; R̄
)

exp i

(

1

ǫ

∫ R̄

αl(ρ̄;ω, β)dρ̄+ βθ − ωt

)

,

(18)
where ul is one of the family (3) of linear eigenfunctions and A0(R̄)
is a slowly varying amplitude determined by a solvability condition at
order ǫ.

In contrast, the finite-amplitude régime is governed by the local non-

linear equations and the associated dispersion relation (8). Solving (8)
with prescribed β and ω yields the corresponding real wavenumber
branch αnl(R̄;ω, β). In nonlinear regions, the global solution associated
with αnl(R̄;ω, β) within the family (7) of saturated crossflow vortices
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has the form

u ∼ unl

(

z,
1

ǫ

∫ R̄

αnl(ρ̄;ω, β)dρ̄+ βθ − ωt+ Φ0(R̄);αnl(R̄;ω, β), β; R̄

)

,

(19)
where the slowly varying phase function Φ0(R̄) obeys a solvability
condition obtained at order ǫ.

The stability of the spatially developing finite-amplitude vortices (19)
with respect to secondary perturbations is determined by the sec-
ondary local dispersion relation (11) and in particular by the maxi-
mum secondary absolute growth rate (13) along the relevant nonlinear
wavenumber branch

ω̂max
0,i (R̄;ω, β) ≡ ω̂max

0,i

(

αnl(R̄;ω, β), β; R̄
)

. (20)

In regions where ω̂max
0,i (R̄;ω, β) > 0, secondary perturbations develop

on top of the nonlinear wkbj solution (19), grow at fixed radial po-
sitions and trigger transition. In contrast, while ω̂max

0,i (R̄;ω, β) < 0,
secondary perturbations are at most convectively unstable and do not
permanently affect the underlying primary wavetrain of frequency ω

and modenumber β.

6. Self-sustained behaviour

As demonstrated in earlier investigations [32], spatially developing sys-
tems display a nonlinear self-sustained state whenever a region of ab-
solute instability is present. This intrinsic state is the only non-trivial
behaviour that would be observed in the absence of any external per-
turbations: a perfectly smooth disk and no residual perturbations in
the surrounding fluid.

The naturally selected finite-amplitude solutions (so-called ‘elephant’
global modes [31]) are characterized by a stationary front located at
the transition radius from local convective to absolute instability. The
selection mechanism is the following: in the au region, amplified pertur-
bations develop and their envelope advances inwards against the radial
flow. At the station of neutral absolute instability a balance between up-
stream perturbation growth and downstream advection is reached and
perturbations pile up at that location. Nonlinearities lead to saturation
of the perturation amplitude and a stationary front is formed. This
front generates a downstream propagating fully nonlinear wavetrain
and an upstream exponentially decaying tail. It thus connects linear
and nonlinear regions, acts as a source and effectively tunes the entire
system to its own frequency. The stationary front obeys a marginal

cdisk.tex; 29/8/2006; ; p.11



12

(a) (b)

Rca Rf Rnl R̂ca

Figure 3. (a) Self-sustained flow structure. Finite-amplitude spiral vortices are trig-
gered at Rca, by onset of primary absolute instability, and immediately give way
to turbulence, caused by secondary absolute instability. (b) Externally forced flow
structure. Localised harmonic forcing applied at Rf produces a radially amplified
response. Finite-amplitude crossflow vortices develop beyond saturation radius Rnl

and break down by secondary absolute instability beyond R̂ca.

stability criterion [11], hence the global frequency of these modes equals
the real absolute frequency prevailing at the front location.

In the rotating-disk flow, the absolute growth rate ω0,i(β;R) de-
pends on both azimuthal modenumber and radial position, and it is
for βca = 68 that absolute instability first occurs: at Rca ≃ 507 with a
marginal frequency ωca

0 ≃ 50.5 (6). Hence the expected self-sustained
behaviour (see sketch in figure 3a) is characterized by a front at Rca of
frequency ωca

0 and azimuthal modenumber βca [26]. The naturally se-
lected flow fields can then be interpreted as the spatial response to this
source, which generates the inwards exponentially decaying linear wave-
train and the outwards spiralling finite-amplitude crossflow vortices.
In terms of wkbj expansions, the inner region R < Rca is described
by linear waves of the form (18), decaying towards the disk centre
and following the complex αl−(R;ωca

0 , β
ca) radial wavenumber branch.

In the outer region R > Rca, a nonlinear wavetrain of the form (19)
prevails and follows the nonlinear wavenumber branch αnl(R;ωca

0 , β
ca).

Computation of ω̂max
0,i (R;ωca

0 , β
ca), the maximum secondary absolute

growth rate (20) along this naturally selected nonlinear wavenumber
branch (see also figure 4), reveals that the primary saturated waves ini-
tiated by the front at Rca are already absolutely unstable with respect
to secondary perturbations [26].
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In view of these results, the intrinsic behaviour of the rotating-disk
boundary layer (figure 3a) may be explained in the following way. The
self-sustained finite-amplitude fluctuations are produced at the inner
boundary Rca of the absolutely unstable domain. This frontier for
onset of primary absolute instability acts as a source and generates
outwards spiralling saturated crossflow vortices, governed locally by
the associated nonlinear dispersion relation. Due to secondary absolute
instability, this naturally selected primary structure is dynamically
unstable and immediately gives way to a disordred state.

7. Externally forced behaviour

The rotating disk boundary layer is convectively unstable over the
radial interval Rsc ≃ 284 < R < Rca ≃ 507 and can thus also act
as an amplifier of external perturbations, such as roughness elements
on the disk surface or fluctuations in the external flow. In order to char-
acterize the response of the boundary layer to external perturbations,
this section addresses the signalling problem: the spatial response to
radially localized harmonic forcing applied in the at most cu domain
(see sketch in figure 3b).

Consider a radially localized forcing at Rf with frequency ωf , azi-
muthal modenumber βf and small amplitude Af . In the vicinity of the
forcing location, the magnitude of the response is of the same order as
the forcing amplitude and thus governed by linear dynamics, provided
that Af ≪ 1. Near Rf the spatial response then follows a linear wkbj

expansion of the form (18) where the complex local radial wavenumber
branches αl±(R;ωf , βf ) are obtained by solving (4) with ω = ωf and
β = βf : the αl+-branch pertains to the outwards R > Rf side of the
forcing and the αl−-branch to the inwards R < Rf side.

In stable or cu regions, the upstream spatial response decays for all
frequencies and modenumbers, thus αl−

i (R;ωf , βf ) < 0 for all R < Rf .
The linear wkbj approximation (18) which is exponentially decay-
ing towards the disk axis with local wavenumber αl−(R;ωf , βf ) then
applies to the entire region upstream of the forcing location.

For forcing applied at Rf in the cu domain, there exists however
a range of frequencies and modenumbers yielding downstream growth,
i.e., with αl+

i (Rf ;ωf , βf ) < 0. At leading order, the order of magnitude,
ψext, of the externally forced linear spatial response (18) for R > Rf is

ψext ∼ Af exp

∫ R

Rf

−αl+
i (ρ;ωf , βf )dρ (21)
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and hence grows exponentially radially outwards. The nonlinear sat-
uration station Rnl where the spatial response takes O(1) values is
determined by the condition

∫ Rnl

Rf

−αl+
i (ρ;ωf , βf )dρ = − logAf . (22)

At Rnl, nonlinear saturation prevents further growth and leads to
a nonlinear wavetrain, again with frequency and modenumber deter-
mined by the forcing. Beyond Rnl, the spatial response thus consists
of a finite-amplitude saturated wavetrain of the form (19), uniquely
determined by the forcing parameters ωf and βf , and whose local radial
wavenumber follows the nonlinear branch αnl(R;ωf , βf ).

The long-term stability of these primary nonlinear spiral vortices is
dictated by ω̂max

0,i (R;ωf , βf ) the maximum secondary absolute growth

rate (20) following along the nonlinear wavenumber branch αnl(R;ωf , βf )

(see figure 4). Denote by R̂ca(ωf , βf ) the radius corresponding to tran-
sition from secondary convective to absolute instability, i.e., defined
by

ω̂max
0,i (R;ωf , βf ) = 0 for R = R̂ca(ωf , βf ). (23)

For R < R̂ca(ωf , βf ), a secondary perturbation is at most convectively
unstable (ω̂max

0,i (R;ωf , βf ) < 0) and thus does not succeed in perma-

nently affecting the primary crossflow vortices. For R > R̂ca(ωf , βf ),
however, the au finite-amplitude crossflow vortices (ω̂max

0,i (R;ωf , βf ) >
0) give way to a disordered state.

It should be noted that, for given ωf and βf , the saturation loca-
tion Rnl depends on both forcing amplitude Af and radius Rf , whereas
the nonlinear wavetrain (19) prevailing beyond Rnl does not. Thus the

radius R̂ca(ωf , βf ) for onset of secondary absolute instability is uniquely
determined by the forcing parameters ωf and βf , while that, Rnl, for
primary nonlinearity further depends on the parameters Af and Rf .

The character of the forced spatial response depends on the relative
positions of R̂ca and Rnl. In situations where Rnl < R̂ca (sketched
in figure 3b), the linear spatial response (18) grows from Rf to Rnl,
followed by nonlinear periodic crossflow vortices (19) in the domain

Rnl < R < R̂ca. Secondary absolute instability occurs at R̂ca, leading
to a disordered state in R > R̂ca. An increase/decrease of the forc-
ing amplitude Af results in earlier/later onset of nonlinearity (Rnl)
but does not modify the secondary stability properties nor transition
at R̂ca(ωf , βf ).

With very low forcing amplitudes, onset of nonlinearity may be de-
layed beyond R̂ca, i.e., Rnl > R̂ca. Near Rnl, nonlinear saturation then
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leads to a wavetrain which is already au with respect to secondary
perturbations (ω̂max

0,i (Rnl;ωf , βf ) > 0). Thus the nonlinear periodic
régime (19) is bypassed and a disordered state covers the entire region
beyond Rnl. Since the transition radius then directly depends on Rnl,
an increase/decrease of the forcing amplitude Af then brings about ear-
lier/later transition. Due to the exponential growth of the response, a

situation whereRnl > R̂ca generally occurs, however, only for extremely
small forcing amplitudes.

8. Open-loop control

The above results show that the rotating-disk boundary layer displays
all the features required for successful implementation of the open-
loop control method previously developed for a one-dimensional model
problem [27]. In this strategy, localized periodic forcing is applied in
the cu region so as to replace the naturally selected nonlinear global
structure by the spatial response to external forcing. The aim is not to
suppress the primary vortices but to tune them to an externally im-
posed frequency and modenumber and thereby delay onset of secondary
absolute instability and transition.

Assuming that the boundary layer displays the self-sustained be-
haviour described in Sect. 6, the au domain R > Rca ≃ 507 is covered
by finite-amplitude fluctuations initiated at Rca, while a linear wkbj

approximation (18) of frequency ωca
0 and modenumber βca describes

the inner range R < Rca. The resulting linear wavetrain decays expo-
nentially towards the disk centre and, to leading order, the order of
magnitude, ψint, of its amplitude varies with radial distance R as

logψint ∼

∫ Rca

R
αl−

i (ρ;ωca
0 , β

ca)dρ. (24)

Suppose that a radially localised external forcing of frequency ωf

and modenumber βf is applied to the above flow structure at Rf in
the cu region, i.e., Rsc < Rf < Rca. For small forcing amplitude Af ,
the order of magnitude (21) of the linear spatial response for R > Rf

is given by

logψext ∼ af −

∫ R

Rf

αl+
i (ρ;ωf , βf )dρ, (25)

where af = logAf . In the neighbourhood of Rf , both the spatial
response and the self-sustained global mode are governed by linear
dynamics and the resulting flow is a superposition of both fields. This
linear régime prevails through the region extending from Rf outwards
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until either ψext or ψint reaches finite levels. Nonlinearity of the self-
sustained field appears at Rca, whereas the forced response achieves
O(1) amplitude at the saturation radius Rnl, defined by (22) and
which depends on the forcing parameters. The nature of the nonlinear
dynamics taking over from the linear régime thus crucially depends on
the relative positions of Rca and Rnl.

For given ωf , βf and Rf , there exists a critical forcing amplitude
Ac ≡ eac , defined by

ac =

∫ Rca

Rf

αl+
i (ρ;ωf , βf )dρ, (26)

for which the nonlinear saturation radius Rnl of the externally forced
response coincides with the onset radius Rca of intrinsic nonlinearities.
For stronger forcing levels Af > Ac (resp. weaker levels Af < Ac),
the saturation radius moves upstream Rnl < Rca (resp. downstream
Rnl > Rca).

The open-loop control strategy [27] to be applied here for the rotating-
disk boundary layer is based on the following results. For weak forcing
levels Af < Ac, the spatial response does not achieve O(1) amplitudes
at radius Rca and is thus unable to perturb the nonlinear self-sustained
state selected by the front at Rca and triggering finite-amplitude fluc-
tuations for R > Rca. However, for higher forcing levels Af > Ac, the
spatial response reaches nonlinear saturation upstream of the front,
i.e., Rnl < Rca, and the naturally selected behaviour is then suppressed

and replaced by the forced spatial response throughout the flow.

This behaviour may be interpreted as the result of two competing
sources of different periodicities at different locations: the self-sustained
(ωca

0 , β
ca)-front at Rca (responsible for the intrinsic nonlinear structure)

and the external (ωf , βf )-forcing at Rf . In the absence of external
forcing, the front at Rca acts as a keystone upon which the global
structure is based. When forcing is applied at Rf , the intrinsic wave-
maker at Rca survives only if its upstream decaying tail experiences
an unperturbed medium. As soon as the front is overwhelmed by in-
coming finite-amplitude perturbations, the source of the global mode is
suppressed and hence so is the entire self-sustained structure. The un-
derlying (primary) au region then plays no rôle in the dynamics, since
it is effectively masked by an externally imposed nonlinear wavetrain.

Without external input, the boundary layer displays transition to
turbulence near Rca ≃ 507 (figure 3a). With open-loop control by
external forcing of periodicity ωf and βf , transition occurs instead near

R̂ca(ωf , βf ), where the externally forced nonlinear crossflow vortices
become au with respect to secondary perturbations (figure 3b). The
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goal of delaying transition can then be achieved if the two conditions

Rnl < Rca and R̂ca > Rca (27)

are both fulfilled. Identification of efficient control parameters thus re-
quires a systematic investigation of primary and secondary instability
characteristics.

The condition Rnl < Rca is necessary for control of the primary
wavetrain to be effective: the forced spatial response needs to reach
nonlinear levels and to saturate upstream of Rca in order to supersede
the self-selected dynamics. The second condition, R̂ca > Rca, then
guarantees that onset of secondary absolute instability, and thus of
transition, is postponed to beyond Rca. Thus the forcing parameters
ωf and βf must be chosen so that, near Rca, the resulting nonlinear
crossflow vortices have negative secondary absolute growth rate.

Suitable control parameters may be derived from figure 2(a) which
shows the (α, β)-plane for R = 500, slightly upstream of Rca. Saturated
travelling waves exist to the left of the marginal boundary Ωl

i(α, β) = 0
(thick solid curve) and their nonlinear frequencies Ωnl(α, β) are in-
dicated by dashed curves. Among these nonlinear waves, those asso-
ciated with secondary absolute instability (ω̂max

0,i ≥ 0, indicated by
thin solid isocontours) must be avoided. As a result, the two control
conditions (27) may be met for frequencies ωf and modenumbers βf

associated with nonlinear vortices located between the curves Ωl
i = 0

and ω̂max
0,i = 0. In figure 2(a), selected forcing parameters are indicated

by symbols: transition can be delayed for (ωf , βf ) = (65, 80), (50, 50),
(50, 40), (45, 35) or (35, 20) (triangles), but not for (ωf , βf ) = (65, 90),
(45, 50) (diamonds), nor of course for the self-sustained (ωca

0 , β
ca) (thick

dot).

With external forcing, the new transition radius R̂ca(ωf , βf ) is deter-
mined by the zero crossing of the maximum secondary absolute growth
rate ω̂max

0,i (R;ωf , βf ). Figure 4(a) shows the radial evolution of ω̂max
0,i

for different values of ωf and βf ; the associated nonlinear wavenumber
branches αnl(R;ωf , βf ) are given in figure 4(b). The values of ω̂max

0,i for
R = 500 and R = 550, corresponding to the forcing parameters used
in figure 4, are shown by symbols in figures 2(a) and (b) respectively.

It is seen that the naturally selected vortices, for ωca
0 and βca (cor-

responding to the solid dot in figure 2), are among the most unstable
primary nonlinear waves. The associated ω̂max

0,i and αnl curves are given
in figure 4 for 400 < R < 600, but note that the values for R < Rca are
irrelevant to the self-sustained global mode, since it has finite amplitude
only for R > Rca.

When the intrinsic dynamics at (ωca
0 , β

ca) is replaced by nonlinear
waves with (ωf , βf ) = (65, 90) or (45, 50) (diamonds in figure 2), sec-
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Figure 4. (a) Maximum secondary absolute growth rate ω̂max
0,i (R;ωf , βf ) and

(b) nonlinear spatial branches αnl(R;ωf , βf ) for different values of ωf and βf . The
zero-crossings of ω̂max

0,i in (a) define the corresponding R̂ca(ωf , βf ) and are marked
by dots. The αnl branches in (b) terminate at low R when the marginal Rm(ωf , βf )
is reached. Solid lines in (a) and (b) correspond to forcing parameters which delay
onset of secondary absolute instability to beyond Rca.

ondary instability is reduced and the ω̂max
0,i curves in figure 4(a) are

lowered. For these forcing parameters, however, the radius Rca remains
within the secondarily au region ω̂max

0,i > 0. In consequence, rather than
reducing the size of the turbulent domain, external harmonic forcing
actually promotes earlier transition because the secondary perturba-
tions propagate inwards below Rca down to the corresponding marginal
radius R̂ca(ωf , βf ) < Rca (indicated by small dots in figure 4a).

External forcing of nonlinear waves between the marginal Ωl
i = 0 and

ω̂max
0,i = 0 curves in figure 2(a) sufficiently weakens secondary instability

that the critical radius R̂ca for onset of secondary absolute growth is
located beyond Rca, fulfilling the second condition (27). Values corre-
sponding to (ωf , βf ) = (65, 80), (50, 50), (50, 40), (45, 35) and (35, 20)
are indicated by triangles in figure 2, and the corresponding ω̂max

0,i and

αnl branches are represented by solid lines in figure 4. With ωf = 50
and βf = 40 (lowest curve in figure 4a), onset of secondary absolute

cdisk.tex; 29/8/2006; ; p.18



19

instability is postponed to beyond R̂ca > 600. Hence it is possible to
delay the turbulent régime by approximately 100 boundary layer units
from Rca to R̂ca.

Due to the condition Rnl < Rca, it seems unlikely that forcing
parameters exist that would delay transition much further. Indeed,
the nonlinear solution branches are governed by the local nonlinear
dispersion relation (8) and terminate at low R when the marginal radius
associated with ωf and βf , denoted as Rm(ωf , βf ) and indicated by dots
in figure 4(b), is reached. Thus for given ωf and βf , saturation of the
spatial response may only occur for Rnl > Rm(ωf , βf ), and the range
of possible control parameters is therefore limited by the condition

Rm(ωf , βf ) < Rca. (28)

As can be seen from figure 4, settings of ωf and βf that yield high

values of R̂ca(ωf , βf ) also push Rm(ωf , βf ) outwards.
The spatial response at ωf and βf is radially exponentially amplified

over the interval Rm(ωf , βf ) < R < Rca, and the largest amplifica-
tion is obtained when forcing is applied at Rf = Rm(ωf , βf ). Due
to the exponential growth of the forced response, only small forcing
amplitudes (26) are generally necessary to reach a nonlinear state at
Rnl < Rca. However, when Rm is too close to Rca, the radial ampli-
fication of the spatial response is only moderate and more substantial
forcing amplitudes are required.

As a result, the values of ωf = 50 and βf = 40 are deemed to be
very close to the optimal forcing parameters for delaying transition by
the present open-loop control method.

9. Discussion

For the three-dimensional boundary layer produced by a rotating disk,
the scenario leading from the unperturbed boundary layer to the tur-
bulent state takes place in two steps and involves both primary and
secondary instabilities: primary nonlinear waves are the prerequisite
for a possible development of secondary absolute instability leading
to transition. Since the secondary disturbances feed on the primary
vortices, the turbulent régime prevailing at large radial distances may
propagate inwards until either the nonlinear waves cease to exist (R =
Rnl) or until their secondary absolute growth rate changes sign (R =

R̂ca).
The intrinsic dynamics, observed without external perturbations,

display a sudden transition from basic to turbulent states, where pri-
mary and secondary instabilities simultaneously take place. At the ra-
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dius Rca ≃ 507 of transition from primary linear convective to absolute
instability, a stationary front of frequency ωca

0 ≃ 50.5 and azimuthal
modenumber βca = 68 generates outward spiralling nonlinear crossflow
vortices. These finite-amplitude waves are already au with respect to
secondary perturbations. Hence a disordered state covers the whole
region R > Rca, while the unperturbed boundary layer prevails for
R < Rca. In this situation, the transition location is dictated by onset of
primary nonlinear waves, which in turn corresponds to onset of primary
absolute instability (Rnl = Rca).

When harmonic forcing is applied at Rf in the cu region with
frequency ωf and modenumber βf in the unstable range, the linear
response exponentially grows with radial distance and reaches finite-
amplitude at radius Rnl > Rf . The associated nonlinear vortices dis-

play secondary absolute instability for R > R̂ca. When forcing pa-
rameters are chosen so that Rnl < R̂ca, the spatial response displays
three successive régimes downstream of Rf : linear growth over Rf <

R < Rnl, nonlinear crossflow vortices over Rnl < R < R̂ca and a
turbulent state for R > R̂ca. In this situation, transition is due to onset
of secondary absolute instability at R̂ca, and this radius is uniquely
determined by ωf and βf .

The aim of the open-loop control strategy is to delay onset of sec-
ondary au perturbations, and thus transition, from Rca to larger radii
by a controlled modification of the primary nonlinear state. This tech-
nique consists in replacing the naturally selected flow state by the
spatial response to carefully chosen harmonic forcing. Transition is
effectively postponed for control parameters such that Rnl < Rca <

R̂ca: by enhancing primary instability, onset of secondary instability
may be delayed. Thus the natural dynamics, where primary and sec-
ondary instabilities occur simultaneously at Rca, is replaced by an
externally forced flow structure whose primary nonlinearities appear
earlier (at Rnl < Rca) but whose secondary perturbations develop only

later (at R̂ca > Rca). In other words, the linear (ωf , βf )-waves must be
sufficiently unstable to reach nonlinear saturation before Rca and at the
same time not too unstable so that the resulting finite-amplitude waves
display secondary absolute instability only after Rca. Best control (large

R̂ca) is thus obtained by applying weakly unstable forcing: transition
may be delayed by approximately 100 boundary layer units beyond Rca

when using ωf = 50 and βf = 40. However, optimizing for large R̂ca

requires a very precise tuning of the forcing parameters and is expected
to be difficult to implement experimentally.
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37. von Kármán, T.: 1921, ‘Über laminare und turbulente Reibung’. Z. Angew.

Math. Mech. 1, 232–252.
38. Wilkinson, S. P. and M. R. Malik: 1985, ‘Stability experiments in the flow over

a rotating disk’. AIAA J. 23, 588–595.

cdisk.tex; 29/8/2006; ; p.22


