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BURSTING AIR BUBBLE AT A FREE SURFACE: REGRIDDING 

INFLUENCE ON THE INTERFACE EVOLUTION 
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ACHARD(3) 

 
 
Abstract: The numerical simulation of an air bubble bursting at a free surface was made 

in a potential flow of a viscous fluid assumption, through the Boundary Element Method. 

The evaluation of the numerical code precision was allowed trough a global mechanical 

energy balance, expressed only in surface integrals terms. The bubble cavity collapse 

behaviour, finalised by the jet formation and its successive break up, depends on the 

regridding performed during the whole computation. 

 
1. INTRODUCTION 
 

When a rising air bubble reaches a free surface, the liquid film formed 
between the bubble cap and the adjacent gaseous phase is rapidly drained, and 
finally atomised into tiny “film droplets”. The gaping bubble cavity collapses then: 
a surface wave converges axially and generates an upward high-speed liquid jet that 
splits up into several “jet drops”. The droplets formation following air bubbles 
bursting at a free liquid surface plays an important role in mass transfer between 
phases in stratified two-phase flows. 
 Due to strong non-linearities, free boundary conditions, and breaking 
processes, the bursting bubble problem offers a stimulating challenge to numerical 
modelling. The first numerical simulation of the cavity collapsing process for an air 
bubble bursting at a free pure water surface was made by Boulton-Stone and Blake 
[1]; it was improved by Boulton-Stone [2] for a contaminated surface. Both studies 
follow an inviscid fluid model through a Boundary Element Method completed by 
boundary-layer effect consideration. The bursting process for large air bubbles in 
water was modelled by Sussman and Smereka [3], by solving the Navier-Stokes 
equations in both fluids on a fixed grid, through the level set method; because of 
the important computational effort, the bubble equivalent radius was greater than 4 
mm. There are no comparisons with the previous numerical studies, which cover a 
range of bubble radius from 0.5 to 3 mm. 

 We simulated the interface evolution during the cavity collapsing process 
of a bursting air bubble, by using a purely irrotational flow model, where viscous 
effects have been incorporated to some extent as it was allowed for potential flows 
of fluids with constant viscosity [4]. For different liquids, we reproduced most 
observed experimental data, namely the first jet drop geometric and kinetic 
characteristics, and the critical bubble diameter upon which the liquid jet decays 
without releasing any jet drop [5], [6]. Emphasis has been placed on numerical 
accuracy: a Boundary Element Method has been selected with a second-order time-
evolution scheme. In the absence of analytical tests, the evaluation of numerical 
code precision was allowed trough a global mechanical energy balance expressed 
only in surface integrals terms. In this paper we point on the regridding 
requirements allowing the simulation of the interface evolution during the whole 
collapsing process. 
 
2. PROBLEM STATEMENT 
 
 We focus exclusively on the “break up stage” of a bursting bubble process: 
after the liquid film disintegration, the bubble cavity collapses, being finally solved 
in an unstable liquid jet that splits up into several jet drops. Modelling only this 
stage stands with the difficulty to express realistic initial conditions. 
 We consider a bounded axisymmetric liquid domain LΩ , extending largely 
over the bubble size, in order to obtain a negligible influence of phenomena at the 
periphery. The interfaces shape corresponds to a stationary bubble entrapped 
beneath a free surface [7]. The resulting bubble cavity surface bΣ , film equivalent 
interface fΣ , and external meniscus mΣ  of the free surface are in equilibrium with 
the surrounding fluid, being joined along the crater line (figure 1). At any point of 
the interface between two phases i and j, there is a positive pressure jump 
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when passing towards the phase i where the centre of curvature lies; 1 R  and 2 R  
are the corresponding local principal radii of curvature; ijσ  equals the surface 

tension σ on bΣ  and mΣ , and it equals the film tension γ on fΣ . The adjacent gas 
pressure 0p  is assumed to be constant. The gas pressure pG inside the bubble and 
the liquid pressure pL depend on z. The system derived from (1), completed with 
the normal force balance at the triple contact point C, and with the geometric 
relation issued for the radius of curvature of the film assumed to be a part of a 
sphere, is nondimensionalized by taking the bubble equivalent radius 0R  as length 
scale (the radius of a sphere with the same volume), and is solved through a 
globally convergent Newton Method [5], by considering the Froude number 
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( )2
0L  Fr Rgρσ=  as control parameter. Once we get the equilibrium position of the 

three joined interfaces, the initial geometric conditions requested by the bursting 
simulation are established by the connected interface mbi Σ∪Σ=Σ , the film being 
artificially removed. 
 

 
Figure 1. Resulting three joined interfaces (meridian plane rOz) 

 
 The liquid domain LΩ  has the boundary wi Σ∪Σ=Σ , where wΣ  is the 
solid wall and base surface of a cylindrical pool. The depth of the pool equals its 
radius, being fourth times greater than the bubble radius. We take a unit outward 
normal n on Σ. A potential flow assumption is appropriate because of the impulsive 
character of the phenomenon. We will take into account the viscous effects only by 
the normal viscous stress at the interface: ( )nv ∂∂µ nL 2 , where Lµ  represents the 
dynamic viscosity of the liquid, and nv  is the normal component of the velocity. 

 It is convenient to adopt 0Rσ  as pressure scale, ( ) 21
L0ρσ R  as velocity 

scale, and the ratio between length scale 0R  and velocity as time scale [1]. The 
dimensionless equations governing the potential fluid flow are classically the 
Laplace equation for the velocity potential ∗φ  and Euler’s equation. The viscous 
effects are considered through boundary conditions, namely the normal momentum 
balance at any point of the interface iΣ . Combining those last two equations to 
reduce the pressure terms, we obtain the Bernoulli’s equation: 
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where, according to the choice of scales, the Weber number is We = 1, and the 
Reynolds number is ( ) L

21
0L  Re µσρ= R . We add also a non-penetrability 

condition at the interface iΣ . The expressions of the normal gradient of normal 

velocity 22 ∗∗ ∂φ∂ n  are defined in [5]. The initial kinetic conditions correspond to 
a velocity field assumed to be zero [1], iΣ  being frozen till the beginning of the 
cavity collapse. 
 
3. NUMERICAL METHOD 
 
 The bubble cavity collapse represents a transient free-boundary problem 
that involves two types of calculations. (i) The evolution problem is successively 
divided into tiny time steps ∗∆t . At a fixed instant ∗t , we solve the Laplace 
equation, 02 =φ∇ ∗ , to obtain the velocity potential values ( )∗∗φ t , hence, the 
corresponding normal component, and tangential component of the velocity. (ii) A 
time-stepping scheme allows the connection of two successive steps to determine 
the new potential values and interface position at the following instant ( )∗∗ ∆+ tt . 
 The Boundary Element Method (BEM) is well adapted to the first type of 
calculation: it replaces worthwhile Laplace’s equation extended in the whole liquid 
domain LΩ , by a second kind Fredholm integral equation extended only on the 
boundary Σ. For this direct BEM calculations [8], [9], the velocity field is generated 
by source and normal doublet type singularities spread over Σ. The integral 
equation on boundary Σ is written 
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where MP is the distance between the observation point M and the singularity 
point P. We define the kinetic conditions of Dirichlet type on the gas-liquid 
interface iΣ , where the velocity potential ∗φ  is known, and of Neumann type on 

the immobile solid surface wΣ , where the normal velocity vanishes: 0=∂φ∂ ∗∗ n . 
The temporal interface evolution is determined through a Lagrangian 

description of a variable N number of nodes ( ))( ),(MM ∗∗∗∗= tztr , unevenly 

redistributed on the boundary ( )∗Σ t  at each time step, with respect to some criteria 
like the adaptation at surface gradients [8]: that leads to a concentration of nodes at 
places where the interface curvature is important, or where two portions of the 
interface approach one another (see Appendix). On each boundary element, cubic 
splines define the geometric variables, and cubic Hermite polynomials approximate 
the field variables. Following an explicit numerical scheme [10] improved for the 
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capillary [11], and viscous effects [12], the time progression is made through 
second-order limited Taylor series expansions of a function ( )∗χ t  

(4) ( ) ( ) 
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where ( )∗χ t  denotes ( ) ( ) ( )∗∗∗∗∗∗φ tztrt  and ,  ,  respectively. We mention that the 
matrix of the BEM calculations following (3) depends only on geometrical 
quantities. Thus it has to be computed only once for each time step, and this 
explains why the temporal scheme (4) is very efficient. The order of the time 
stepping scheme must be consistent with the order of the BEM solver used [11]. In 
the case of mixed capillary-gravity waves, a cubic BEM formulation is used; 
according to the consistency condition, a second order time stepping procedure 
must be chosen [13]. The material derivative of the velocity potential is: 

( )2DD ∗∗∗∗∗ φ∇+∂φ∂=φ tt , where the local time derivative ∗∗ ∂φ∂ t  is defined 
by (2). The corresponding second-order Lagrangian derivative becomes: 
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The normal component of the velocity ∗∗∗ ∂φ∂= nvn , and the tangential-one 
∗∗∗ ∂φ∂= svt , allow the determination of the radial component of the velocity 

( )β+β−= ∗∗∗ cossin tnr vvv , together with the axial-one ( )β+β= ∗∗∗ sincos tnz vvv . 
The angle β is defined between the radial unit vector re  and the tangent unit vector 
t. In a meridian plane, the curvilinear abscissa s starts from the bottom of the 
bubble cavity, follows the interface iΣ , than the solid surface wΣ , and ends on the 
Oz axis. The expressions of Lagrangian derivatives that appear in the right hand of 
(5) are depicted in [5]. All those terms need the calculations of the normal and 
tangential derivatives of ∗∗ ∂φ∂ t . This involves the computation of an extra 

Laplace equation: ( ) 02 =∂∂φ∇ ∗∗ t . The boundary conditions are: ∗∗ ∂φ∂ t issued 

from (2) on iΣ , and ( ) 0=∂∂φ∂∂ ∗∗∗ nt  on wΣ . 

 The variable time step ∗∆t  is selected at each time through a stability 
criterion derived from an eigenvalue problem based on the above temporal scheme 
[11], [13]. This latter explicit scheme is stable in the sense of classical numerical 
analysis, but it diverges at infinity with an exponential-like law. This explains why 
we have also used, without computational time penalty, an explicit/ implicit scheme 
[14], which provides conditional stability over a much longer evolution time (the 
Eulerian part of the scheme - BEM solver - is explicit, but the Lagrangian part can 

be solved under an implicit form). The time step is defined by a gravity-capillary 
waves criterion [13] 
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where ∗∆ mins  is the minimum value of the arc length measured between two 

consecutive points of the boundary ( )∗Σ t . 
 In the absence of non-linear analytical tests, the evaluation of numerical 
code precision is allowed through the global mechanical energy balance [6], [13]: 
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where ∗Ad  is the axisymmetric surface element. Upon an azimuthal integration, the 
mechanical energy balance deals with line integrals of the terms computed through 
the BEM, being easily implemented in the computational procedure. The 
dissipation of mechanical energy due to shear viscosity depends only on the normal 
component of the velocity, and on its normal derivative, 22 ∗∗ ∂φ∂ n . 
 
4. RESULTS 
 
 The numerical simulation of the break up stage of an isolated air bubble 
bursting at a free surface has been systematically made for 21 pure Newtonian 
liquids and different parent bubble sizes [5], starting from 0.5-mm-radius up to the 
critical bubble radius, in order to compare numerical and available experimental 
data. To exemplify, we present the interface evolution during the collapse process 
of an air bubble in distilled water at 20°C, for an equivalent radius of 0R  = 0.5 mm 
(figure 2). After the first jet drop ejection, the liquid jet still rises and ejects drops. 
Finally, because of the energy decrease, the jet (thick and short) falls down. 
 The velocity of the central node (on the Oz axis) increases rapidly, and 
reaches a maximum when the jet starts to form (that instant being linked to a 
viscous dissipation peak); then, the velocity magnitude decays sharply to 
successive levels that correspond to each jet rupture moment. After ejecting the last 
drop, the velocity decays slowly. The maximum value of the velocity decreases 
with increasing bubble radius. The first drop ejection time increases with increasing 
bubble size. According to the velocity variation, the mechanical energy balance is 
affected through the rates of the kinetic energy and dissipation of energy due to 
viscosity: when the jet rises, the balance (7) is no more well verified, but still 
preserves an admissible range of variation relative to the initial mechanical energy. 
This discrepancy that we have imputed above to a viscous energy dissipation peak, 

3



is also due to numerical instabilities, which appear when steps diminish in the final 
part of the collapsing process. 
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Figure 2. Bursting bubble at a free surface: R0 = 0.5 mm, Fr = 29.7, Re = 190 

 
By decreasing the time step, the problem becomes more and more stiff. 

Towards the end of the collapse, the mechanical energy balance is less verified for 
the small bubble case (the relative mechanical energy balance deviation δE, 
considered to be the ratio of the difference between left and right hand terms of (7) 
to the initial mechanic energy is less than 5%), and is verified for large bubbles (δE 
< 1%), because of the greatest velocity values in the former case. The form (7) of 
the mechanical energy balance was successfully used as validation test of code 
accuracy in transient free-boundary axisymmetric and 2D problems solved through 
the BEM [15]. 
 In accordance with the regridding procedure described in the Appendix, in 
figures 3 and 4 we present two examples of the interface discretization, namely 
zoomed images of the upper part of the liquid jet, both at Fr = 29.7 and Re = 190, 
but for different values of the constant e in (A.3). The sequences are taken prior to 
the moment of the first jet pinch-off and ejection of the formed “jet drop”. 

 

 
Figure 3. Meshing of the upper part of the jet: e = 0.75, t* = 0.938, N = 77 

 
One can see clearly the concentration of nodes (plotted by “+” marks) at 

places where the curvature is important (e.g. the inferior part of the formed drop, at 
the connection with the jet neck - figure 3), or where two portions of the interface 
get closer (e.g. the long tiny jet – figure 4). Only the computation in figure 3 can be 
trustworthy, the balance (7) being well verified. The computation in figure 4 cannot 
be validated because it leads to δE values exceeding the admissible range; besides, 
the phenomenon seems to be retarded, the interface evolution behaviour being not 
realistic since the jet height exceeds 4-5 times the parent bubble radius, and the first 
jet rupture comes two times slower than in the previous case. We found that values 
of the constant e around the unity lead to a higher concentration of nodes when 
approaching the axis of symmetry, which involve a faster pinch-off after the “jet 
drop” is formed. 
 
5. CONCLUSION 
 
 To study the jet drop formation, the final sequence of a bursting bubble 
process was modelled for several air/ liquid couples, using a potential flow of a 
pure viscous fluid. We focused on collapsing bubble process started from an 
equilibrium position. The numerical simulation of the bubble cavity collapse was 
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made through a Boundary Element Method with an explicit second-order time-
evolution scheme, considering capillary and viscous effects. To prevent numerical 
instabilities, the progression time step was issued from a stability criterion linked to 
the gravity-capillary dispersion equation. The precision of the numerical code was 
checked through the global mechanical energy balance, being very well verified 
until the jet formation, and lying in an admissible range during the jet ascension. 
 

 
Figure 4. Meshing of the upper part of the jet: e = 2, t* = 1.841, N = 91 

 
In order to avoid numerical instabilities, a variable number of nodes are 

unevenly redistributed on the boundary at each time step, in accordance with the 
criteria imposed by the regridding procedure. Thus, the simulation of the interface 
evolution is performed during the whole collapse process, without applying 
smoothing techniques that can affect the physics of the phenomenon. 
 
 
6. APPENDIX: REGRIDDING PROCEDURE 
 

The regridding procedure [8] generates the distribution of boundary 
elements on Σ(t), in the meridian plane (rOz) – we will suppress here the asterisk 
related to nondimensional variables. A moving surface Σ(t) can be viewed as a 
family of surfaces, one for each time t, which can be characterized either by the 
equation f(M,t) = 0, where f is smooth with respect to t, or by the smooth mapping 
valid at least on Σ(t): ( )tzrMM ,,′=′ . We need a coordinate system 

( )tzrxx ,,jj = , (j = 1,2) to give the usual parametric representation of Σ(t): 

( )tzrxx ,,jj ′=′ , (j = 1,2). The basic ideas of the meshing method will not be 
obscured by the complex formalism of the surface representation. At a fixed time t, 
the vectorial form of the curve equation is: ( )uxx = , the curve coordinate u being 
assumed to be positively oriented. To make calculations easier, a preliminary 
transformation must be done from u to s, the arc-length parameter of the curve. The 
local increasing transformation ( )suu =  meets two requirements: local smoothness 
and adaptation of the boundary elements to the variation of a function F. The 
variable u  allows the numbering of the surface nodes, by attaching them an integer 
value: u  = 1,2,3,… (the node u  = 1 is on the axis Oz, and the last node 
u  = N is on the solid wall Σw). The vector ( ) ( ) ( )uuuu xxx −∆+=∆  representing a 
boundary element is given by 

(A.1)   ( ) ( )uOu
u
su ∆+∆=∆ tx  

d
d , 

where 1=∆u , and sddxt =  is the unit tangent vector. The difference between two 
successive boundary elements is given by 

(A.2)  ( ) ( ) ( )1 
d
d

d
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2

2

2
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κ






+=∆−+∆ ntxx , 

where κ is the normal curvature and n is the unit normal. A mesh will be 
considered as locally smooth if two subsequent boundary elements have [8]: (i) two 
orientations differing by less than a given amount θmax, (ii) two component 
magnitude along t differing by less than a given maximum amount, and (iii) if the 
product of the strictly positive weight function F(s) by the boundary element length 
is smaller than a constant c. The function F reflects the fact that the nodes must be 
concentrated at some place: firstly, to avoid great discrepancies, the segment length 
must be adapted to the gradient of the velocity potential φ; secondly, some self-
crossing of the surface can occur if not enough points are used when different parts 
of the surface approach one another. We add a fourth constraint (iv) related to the 
proximity to the axis of symmetry: ( ) ( ) esus ≤κaxidd , where κaxi(s) is the 
axisymmetric curvature; it diminishes the distance between two successive nodes 
when approaching the Oz axis. The function 
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(A.3)  ( ) ( ) ( )( ) ( )( )[ ]sesFcuss aximax  , ,mindd κκθ==ζ  
verifies the constraints (i), (iii) and (iv), and it is possible to correct this function in 
order to respect the second constraint. Thus the unknown function ( )su  is: 

(A.4)    ( ) ( )∫ ζ
=

s

l
lsu

0

d , 

which gives also the inverse function ( )us . However, the value ( )maxmax suu =  is 
not an integer, but we must consider a node at the final extremity of the boundary. 
There are two options: (a) the first-one consists in imposing ( ) 1int max += uN , the 
curvilinear abscissa of each node being 
(A.5)  ( ) ( ) ( )[ ] NNuus ,1,j     , 11j max

1
j K=−−= − . 

Since the maximum boundary length smax varies at each time t, the node distribution 
is not continuous at each regridding. The second option, (b), consists in inverting 
the function ( )su  only for the first (N-1) nodes, which gives 

(A.6)   ( ) ( ) 1,,1j     ,1j1
j −=−= − Nus K . 

The last node is positioned then exactly at the end of the curve, at smax. That last 
option leads to a continuous regridding for the first (N-1) nodes, and it is preferred 
to the first one, because it gives 20% improvement on the global mechanical energy 
balance, the interpolation errors being diminished (at each iteration, the nodes are 
relatively very close to their precedent position). 
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